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Abstract This paper presents a relaxed projection method for variational inequality problems over a 
polyhedral set K. Unlike standard projection methods, each iteration of the proposed method solves a 
modified variational inequality problem over an ellipsoid approximating the original set K. By choosing 
an appropriate radius of the ellipsoid, the projected point can be obtained in a closed-form. Convergence 
property of this method is investigated. The limited computational experiments yield promising results. 

1. Introduction 
Given a nonempty closed convex set J( C Rn and a function f from ~ into itself, the 
variational inequality denoted by VIe K, f) is to find x* E K such that 

f(x*f(x - x*) ~ 0 "Ix E K. 

In this paper, we concern with VI(K, f) with a bounded polyhedral set K. The application 
of a variational inequality covers a great number of areas including the traffic equilibrium 
problems (Dafermos [4]), the PIES model (Ahn [1]), the spatial equilibrium model (Freisz, 
Harker, and Tobin [6], and Berstekas and Gafni [3]), convex programming (Harker and 
Pang [9]), control theory, certain competitive equilibrium problems (Gabay and Moulin 
[8]), etc. (also see Harker and Pang [9]) Here, we concern with a numerical solution 
method of the variational inequality over a polyhedral set. 

A substantial number of algorithms for variational inequality problems have already 
been proposed and analyzed. Among the well known numerical methods are projection 
methods, linear approximation methods and relaxation methods, most of which fit into 
the following general iterative scheme (see Pang and Chan [10], and Dafermos [5]): 

Generate the next iterate Xk+l by solving VI( K, fk), 
where Jk is an approximating function of f. 

In a typical projection method, fk is given as fk(x) == f(xk) + ~G(x - xk) with a positive 
parameter 'Y and a symmetric positive definite matrix G. Letting PK,a denote the pro­
jection operator onto K with respect to G-norm, each iteration of this method may be 
written as 
(1) 

Note that G-norm of a vector x is defined as 

IIxlla == VxTGx. 
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Assuming that f is continuously differentiable and strictly monotone on K and that K is 
compact, Dafermos [5] shows that the sequence generated by (1) converges, provided that 'Y 
is sufficiently small. Unless the set J( is so simple, e.g., R+. or a rectangle, the projection 
operation itself is often computationally challenging, which often incurs a substantial 
computational burden. Hence, the overall algorithmic pedormance heavily depends on 
the efficiency of such generic projection operations. Since this projection operation in 
iterative methods finds an intermediate solution, inexact projections are often justified to 
reduce computational burden [7]. 

Main point of our method is to project onto an inner-approximating ellipsoid Kk of K 
instead of projecting onto K itself. In other words, each iteration of our suggestion solves 
VI( Kk, fk). Such ellipsoidal approximation of It polyhedral set is found in many interior 
point methods of linear programs (Barnes [2]). We show that, with an appropriate choice 
of the radius of the approximating ellipsoid, the next iterate xk+l can be expressed in 
a closed form. We also show that the convergence of Dafermos type (Dafermos [5]) is 
maintained under this ellipsoidal approximation, provided that 'Y is choosen sufficiently 
small. We assume that f is continuously differentiable and "V f( x) is positive definite on 
K, and that K has nonempty interior (int(I{) .,:. 0). 

2. Ellipsoidal approximation of projection operation 
As is well known, the projection operation PK,G( q) onto a polyhedral set K is a convex 
quadratic programming problem as follows: 

(2) 

where J( = {x I ... tx ~ b},x E Rn,b E Rm,A I;: Rmxn and G is any symmetric positive 
definite matrix. Throughout this paper, we assume A has full rank. 

To reduce computational burden, we instead solve the problem with the ellipsoid J(k 

that approximates and is contained in J(. As was suggested in Barnes [2], an ellipsoid 
that is contained in K and has a cent er xk (a given interior point of K), can be expressed 
as 

Kk = {x I (x - xkf ATDk'2A(x - xk) ~ r2}, 

where yk = b - Axk, Dk = diag(y~ , y~, ... , y~), and 0 < r < 1. Throughout the remainder 
of this paper, AT Dk'2 A is denoted as Qk for notational simplicity. With this approximating 
ellipsoid J(k, we solve the following for an approximate solution instead of (2): 

(3) min IIx - q112G • 
xEKk 

First note that (3) now has a single nonlinear constraint rather than a set of linear inequal­
ities. If q E Kk (i.e., (q - xkfQk(q - xk) ~ r2), the solution is trivially q. To avoid this 
trivial situation, we suppose that q f/. Kk. Then, its Kuhn-Tucker optimality (necessary 
and sufficient) condition becomes: 

(4) 

(5) 

G(x - q) + PkQk(X - xk) = 0, 

(x - xk)TQk(X -- xk) = r2, 

Pk > O. 

Without knowing a priori the value of Pk, solving tIus would not be a simple task. In 
order to provide more insight on Pk, rewrite (4) and (5) as 

(6) 
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(7) g(Jlk) == (q - Xk)TG(G + JlkQktlQk(G + JlkQktlG(q - xk) = r2. 

Note that the equation (7) involves a single variable Jlk, so that Jlk can be numerically 
computed. Unfortunately, a close look at (7) reveals that it is not easy to solve due to the 
repetitive computation of (G + JlkQk)-I. 

So we go around this difficulty by rescaling r. Since the radius r has been given an 
arbitrary value in (0,1), we find an alternative l' that makes it easy to solve (7). In other 
words, instead of solving (7) for a given r, we find a pair of positive values, say, Jik and l' 
satisfying (7) and l' < 1. 

We here suggest one such pair. That is, set Jik and l' as 

Jik = V(q - xkyGQ;;IG(q - xk), 

l' = V9(Jik). 

It is easily seen that Jik and l' above solve (7). Further, l' < 1 is satisfied, as shown below. 

Proposition 1 If Jik = [(q - xk)TGQ;;IG(q - xk) and l' = V9(Jik), 
then l' < 1. 

Proof: Since 

and 

we get 

1- 1'2 
1 = {q - xkl G[72Q;;l - (G + ilkQk)-IQk(G + ilkQk)-l]G(q - xk) 

Jl.k 

= (q - xkl G(G + ilkQk)-l[ :1 (G + ilkQk)Q;;I(G + ilkQk) - Qk](G + ilkQk)-IG(q - xk) 

= (q - xkl G(G + ilkQk)-IL
1
2 GQ;;lG + '! G](G + ilkQk)-lG(q - xk). 

Jl.k Jl.k 

As Qk and G are positive definite, 1 - ;;2 > O. This completes the proof. • 

With this proposition, we know that, if f is given as the radius of the ellipsoid, Ji is a 
closed form solution of (7). Summarizing this approximated projection operation PKk,a(q), 
we get: 

If q E K (rather than q E Kk) then x = q 

(8) else {ik = V(q - xk)TGQ;;IG(q - Xk) 

x = Xk + (G + JikQktlG(q - xk). 

We see that with this choice of ellipsoidal approximation the projection operation is sub­
stantially simplified. Now the questions are: how this approximated projection can be 
applied to variational inequality problems? Does this algorithm converges? The remain­
der of this paper will address these issues. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Ellipsoidal Projection Method for VI 165 

3. Proposed scheme for variational inequalities 
A generic iteration of our suggested method solves an approximated variational inequality 
problem VI(K\Jk), as mentioned before. We use an ellipsoid Kk to approximate K, and 
use fk as suggested in typical projection methods. In other words, 

Kk = {x I (x - xk)TQ,~(x - xk) ~ r2}, 

k k 1 k f (x) = f(x ) + --G(x - x ), 
~( 

where G is symmetric positive definite. As is well known in the literature on projec­
tion methods (see Pang and Chan [10], for example), the next iterate xk+! generated 
from VI(K\ fk) is precisely the approximated projection as follows: 

(9) 

Substituting q in (8) with xk -'YG-1 f( xk), the solution procedure of (9) can be summarized 
as follows: 

If xk - 'YG-1 f( xk) E int( K) then xlr+! = xk - 'YG-1 J( xk) 

(10) else ilk = 'YV f(xk)TQ'k1 J(x") 

xlr+! = xk - 'Y(G + il"Q"t1f(x"). 

Note that G(q - x") = G«xk - 'YG-1J(x")) - :r") = -'Yf(x"). Unlike many other itera­
tive solution methods where each iteration needs to solve a mathematical programming 
problem, a generic iteration of the suggested method gets the next iterate x"+I in a 
closed form. More specifically, each iteration solves a system of linear equations, since 
(G + jJ.kQ,,)-lf(x") is the solution of (G + ilkQ,,)X = f(x"). 

In order that the proposed method is well-defined, the generated sequence must lie in 
the interior of K. The procedure (10) which is a special case of (8) generates the next 
iterate x"+! by projecting x" -'YG-1f(x") (denoted by q in (8)) onto K". Hence, 

(xk+! _ xkfQk(Xk+l _ xk) ~ r2. 

Reminding the fact that r < 1 from the proof of Proposition 1, we get x"+! E int(K) 
Figure 1 is a schematic representation of the proposed scheme. Unlike the existing 

projection methods whose generic iteration solves VIe K, Jk) (equivalently projecting xk -
'YG-1 J(x k) onto any convex set K with respect to G-norm), the proposed method solves 
VI(Kk, Jk). 

4. Convergence property 
It is known that iterative projection methods (see Dafermos [5], and Pang and Chan [10)) 
monotonically converges to a solution x*, if the relaxation parameter 'Y is chosen sufficiently 
small [5] under the assumptions that f is continuously differentiable and strictly monotone 
and that K is compact. This convergence discussion is rather theoretical, since a small 
'Y results in slow convergence often making it unacceptable as a realistic solution scheme. 
Our suggestion is to replace K with an ellipsoid K" for projection operation. Now the 
question is whether Dafermos' style of convergence, even if theoretical, is maintained 
under the ellipsoidal approximation. It is affirmative. That is, choosing 'Y sufficiently 
small, it can be shown to converge to a solution as well under the assumptions that f 
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166 S.-g. Baek & B.-H. Ahn 

Figure 1: Schematic representation of V I(Kk, fk) 

is continuously differentiable and "il f( x) is positive definte on K and that the problem 
has a bounded solution. To prove the convergence, some lemmas and propositions are 
presented. 

Lemma 1 If xk - ,G-1 f(x k) rt int(J(), then there exi3t3 6 > 0 3uch that 

Proof: Since the ellipsoid 

is contained in K, 

Hence, 

1 

If a denotes ,QZ G-l f(xk), it could be expressed as 

On the other hand, rewriting (10), 

Xk+l - xk = -,(G + {ikQd-1f(xk), 

(G + {ikQk)(X k+1 - xk) = -,f(xk), 

,f(xk) + G(Xk+l - Xk) = -{ikQk(Xk+l _ xk), 

f(x k) + ~G(xk+1 - xk) = _/f(:rk)TQ'klf(xk)Qk(xk+l _ xk). , 
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Letting a and M denote Vf(xk)TQ;;l f(x k ) and Q~!G(G + iLkQk)-lQk(G + iLkQk)-lGQ~! 
respectively for notational simplicity, we get 

(f(xk) + .!.G(Xk+l _ xkjf(xk _ Xk+l) , 
= _a(xk+1 _ xkfQk(:rk __ xk+1) 

= a,f(xkf(G + JikQk)-1Qk(G + JikQk)-1 f(xkh. 

= aaT M a ~ mnllal12 > am, 

where in is the minimum eigenvalue of the positive definite matrix M .• 

Lemma 2 There exists '?t > 0 such that 

(f(xk) + .!.G(xk+1 - xk)f(x" - Xk+l) ~ 0, , 
for any , ~ '11 where x* is a solution to V I(/(, I). 

Proof: 
case 1: when xk _,G-1 f(x k

) E int(K) 

Xk+l _ xk = _~yG-1 f(x k). 

f(x k) + .!.G(xk+1 - xk) = o. , 
case 2: when xk -,G-1 f(x k) f/. int(/{) 
From Lemma 1 and (10), 

(f(xk) + .!.G(xk+1 - xk)f(x" _ Xk+1'1 , , 

(f(xk) + .!.G(xk+1 - xk)f(xk - Xk+1') + (f(xk) + .!.G(xk+1 _ xk))T(x" _ xk) , ., 
> 6 + [J( a;k) - G( G + JikQk )-1 f( xk)f (.x" - xk) 

= 6 + f(x kf[l - G(G + l'aQk)-l]T(x" - xk) ~ 0, 

167 

for sufficiently small" since 1- G(G + ,aQkj-1 converges to 0 as, approaches o .• 
Lemma 3 If x" and Xk are bounded, then there exists '12 > 0 such that 

for any , ~ '12 and t E [0,1] where x" is a solution to V I(K, I). 

Proof: Let x be a point that maximizes the left hand side of the above inequality over 
the convex combination of xk and x". Then 

111 -,G-!Vf(tx* + (1- t)xk)G-~'1I2 

< 111 - /'G-tvf(x)G- t Il 2 

= sup yT(I -,G-tv f(x)G-!f(I -- /,G-tv f(x)G-!)y 
IIYiI=l 

< 1 - 2/, inf yTG-tv f(x)G-!y + 1,2 sup yTG-!V f(xfG- 1V f(x)G-t y 
IIYII=1 lIylI=1 

1 - 2/,m + /,2 L < 1, 
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for'Y < 2in/ L, where in and L are minimum and maximum eigenvalues of the symmetric 
parts of C-~Vf(x)C-~ and C-~Vf(xfC-IVf(x)C-~ respectively. Note that Vf(x) is 
positive definite and bounded .• 

Proposition 2 Suppose that xk and x* are bounded. If'Y is sufficiently small (i.e., 'Y :::; 
min{"h,7'2}), then 

where x* is a solution to V I(K, I). 

Proof: As Xk+l E K and x* solves VI(K, I) 

(11) 

From Lemma 2 

(12) 

Adding (11) and (12), we get 

Then 

(f(x*) - f(xk) + !C(xk - x*)f(Xk+l - x*) - !llxk+1 - x*lI& ~ o. 
'Y 'Y 

[f(x*) - f(x k) + !C(xk - x*)]TC-!C!(xk+1 - x*) 
'Y 

< IIC-~(f(x*) - f(x k)) + !C!(xk - x*)lIlIxk +1 - x*IIG. 
'Y 

Dividing by II X k+1 
- x*IIG, we get 

II X k+ 1 
- x*IIG :::; 'Yllc-t(f(x*) - f(xk)) + !C~(xk - x*)II. 

'Y 

By the mean value theorem, there exists t E [0,1] such that 

'YIIC-i(f(x*) - f(x k)) + !Ci(xk - x*)1I 
'Y 

= 'YIIC-!Vf(tx* + (1- t)Xk)(X* - xk) + !C!(xk - x*)11 
'Y 

= II{ -'YC-~V f(tx* + (1 - t}xk) + C~}(xk - x*)1I 

= 11{ -'YC-iv f(tx* + (1 - t)xk)C-t + I)}Ct(xk - x*)1I 

< II-'YC-!Vf(tx* +(l-t)xk)C-! +IIIII(xk -x*)IIG 

Combining this with the result of Lemma 3, we finally get 

By applying mathematical induction to Proposition 2, we know that the sequence {xk} 
is bounded, since x* and Xl are bounded. Hence, we finally conclude that the sequence 
{xk} generated by the proposed method converges to the solution x*. 
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Table 1: Computational Results of Example 1 

Iterations the propsed method the projection method 

k Z1 Z2 Z3 d Z1 Z2 Z3 d 

0 70.0 70.0 60.0 54.77 70.0 70.0 60.0 54.77 
3 107.2 92.7 68.2 13.24 113.9 96.1 69.4 8.70 
6 114.3 92.5 70.1 6.23 116.8 93.2 70.2 4.54 
9 117.0 91.5 70.2 3.40 118.3 91.7 70.2 2.45 
12 118.3 90.9 70.1 1.89 119.1 90.9 70.1 1.33 
15 119.1 90.5 70.1 1.06 119.5 90.5 70.1 0.72 
18 119.5 90.3 70.0 0.59 119.7 90.3 70.0 0.39 
21 119.7 90.2 70.0 0.33 119.9 90.1 70.0 0.21 
24 119.8 90.1 70.0 0.19 119.9 90.1 70.0 0.12 
27 119.9 90.0 70.0 0.10 120.0 90.0 70.0 0.06 
30 119.9 90.0 70.0 0.06 120.0 90.0 70.0 0.03 
33 120.0 90.0 70.0 0.03 120.0 90.0 70.0 0.02 

d: the Euclidean distance from the solution 

5. Numerical results 
Small-sized traffic equilibrium problems are solved by both the proposed algorithm and 
a standard projection method to compare computational performances. The result is 
promising in the sense that our method requires only a few additional iterations compared 
to the projection method to get the equal accuracy, even though our method involves more 
approximation at each iteration. The program was coded in Turbo-basic and run on a 
IBM 486DX2 PC. 

The first exanlple (Example 1) is taken from [4]. To fit into our standard form, the 
equalities representing set K are converted into inequalities and function f is transformed 
into a suitable form. The function f is given by 

f(x) = (~~2 ;~ -~) x - ( ~~~~ ) , 
-1 45 3300 

and the set K is given by 

K = {x I Xl + X2 ~ 210,x3 ~ 120,xj ~ 0 Vi}. 

The solution of this problem is known to be (120,90,70). The matrix G is chosen as the 
diagonal matrix whose elements are equal to the diagonal elements of the linear part of f. 
i.e., 

G = (3~ 3~ ~), 
o 0 45 

and the value of'Y is set to 0.5. Computaional results with the starting point (70,70,60) 
are summarized in Table 1. 

The column named "d" represents the Euclidean distance of each iterate from the 
known solution. This shows that our method needs about three more iterations than the 
projection method to get the equivalent accuracy. Similar computational results are shown 
in Table 2 for other examples, where 4 to 6 more iterations are required. Examples in Table 
2 are of the same type as Example 1, i.e., they are traffic equilibrium problems. As far as 
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Table 2: Computational results of other examples 

Iterations Example 2 Example 3 Example 4 

k A B A B A 

0 56.427 56.427 54.852 54.852 89.650 
15 2.490 1.060 2.249 1.123 5.833 
20 1.201 0.522 1.048 0.555 2.497 
25 0.590 0.257 0.518 0.274 1.061 
30 0.291 0.127 0.256 0.135 0.442 
35 0.144 0.063 0.126 0.067 0.180 
40 0.071 0.031 0.062 0.033 0.073 
45 0.035 0.015 0.031 0.016 0.030 
50 0.017 0.008 0.015 0.008 0.010 

problem l n 6 6 
size m 12 23 

Numbers in the table represents the Euclidean distance from the solution. 
A: the proposed method 
B: the projection method 
n: the number of variables 
m: the number of inequalities representing K 

B 

89.650 
2.869 
1.059 
0.392 
0.145 
0.054 
0.020 
0.007 
0.003 

10 
18 

Table 3: Summary of Computational Results 

problem problem size the proposed method the projection method 

name n m .. of iter.lou CPU time "# of i'eraton • CPU lime 

Example 1 3 5 31 0.27 28 0.16 
Example 2 6 12 42 1.21 36 2.36 
Example 3 6 23 41 1.59 37 7.69 
Example 4 10 18 39 3.02 33 3.19 
Example 5 20 35 136 57.12 125 81.73 
Example 6 20 50 130 69.75 110 72.01 
Example 7 40 60 146 557.88 99 727.87 

number of iterations and CPU Time until lI"k - ,,°11 ~ tfoo 11,,0 - ,,°11 

the number of iterations required is concerned, our method is only a little bit late despite 
the approximation applied to the set K. Table 3 summarizes the computational results 
of our limited computational experience. Similar results in terms of required number 
of iterations are shown for Example 4, Example 5 and Example 6 which was randomly 
generated. Note that we do not mention the total CPU time due to the subjectivity in 
selecting a QP algorithm for the existing projection method. 

In any event, this relatively slow convergence (in terms of required iterations) could be 
compensated by time saving from the closed-form solution of each iteration. Especially 
when the set K is not so simple, e.g., many inequalities representing K, a substantial 
computational burden may be incurred for each iteration of the projection method. On 
the contrary, computational burden of our method in this case is surmountable, since the 
size of the matrix to be inverted depends only on the number of variables. 

6. A practical version 
We presented an ellipsoidal projection method whose generic iterations are carried out in 
a closed-form. Because we are attempting to approximate a polyhedral set by an inscribed 
ellipsoid, it would be desirable to choose the radius of the ellipsoid as close as possible to 1. 
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However, there is no theoretical guarantee that the radius of the ellipsoid does not become 
too small. To avoid such a pitfall, we suggest a practical version with an additional step 
that gives safety against the possible risk of small radius. 

Unlike the original version where xk+l = xk -/(G+iikQk)-l f(x k), the practical version 
determines Xk+l somewhere on the line segment between xk -/(G + iikQk)-lf(xk) and 
xk -IG-1f(xk) with the restriction Xk+l E K. The additional step can be carried out 
without much computation, since it is only a standard minimum ratio test. The practical 
version can be summarized as follows: 

(13) 

qk = xk -IG-1 f(x k) 
If qk E int( K) then xk+1 = qk 

else ilk = I/i-f(-x-k)-T-Q-;-lf-(-x-k) 

yk = xk '-/(G + iikQktlf(xk) 
dk = qk __ yk 

t = max{ t > 0 I yk + tdk E K} 
f3 = lot 
xk+1 = yk + f3dk. 

where 0 < 10 < 1 is a given constant. Note that 0 < f3 ~ 10 < 1, since t ~ 1. 
Now, we will briefly show that the theoretical convergence is maintained under the 

pratical version. When xk -IG-l f( xk) E int( K), the convergence property of the practical 
version is the same as the original version since no additional step is performed in the 
practical version. In the remainder of this section, we will discuss the convergence property 
of the practical version when xk - IG-l f( xk) rt int( K). 

Noting that Xk+l in the previous sections is denoted by yk in this section, the conclusion 
of Lemma 1 can be rewritten as follows: 
There exists 6 > 0 such that 

(14) 

Next, we will show that the conclusion of Lemma 2 is valid under the practical version 
when xk -IG-1 f(x k) rt int(K). We get from (13) 

Xk+1 _ xk = yk + f3dk _ :rk 

= yk + f3qk _ f3 yk _ xk 

= (1 - (3)yk + f3xk -1f3G-1 f(x k) - xk 

= (1 - (3)(yk - Xk) - "If3G- 1 f(x k). 

Hence, it is enou!~h to show that there exists ~il > 0 such that 

(f(Xk) + .!.G(xk+1 - xk)f(x· _ x k+1) 
"I 

= (1 - (3)(f(x k) + .!.G(l-- xk»T(x· - yk - f3dk) ~ 0, 
"I 

for any 0 < "I ~ "it. From (14), case 2 of the proof of Lemma 2 becomes 
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(f(Xk) + .!.G(yk _ xk)f(xk _ yk) + (f(Xk) + .!.G(yk - xk)f(x* - xk -- (3dk) 
~ ~ 

> b + [f(x k) - G(G + PkQkflf(xk)f(x* - xk - (3dk) 

b + f(xk)T[I - G(G + ~aQkrlf(x* - xk - (3dk) ~ 0, 

for sufficiently small~. With this result, it is evident that Lemma 3 and Proposition 2 
are valid and that the sequence generated by the practical version also converges to the 
solution x*. 

Acknowledgment: The authors acknowledge the valuable comments and suggestions 
from Professor Fukushima. The practical version of section 6 is heavily due to his sugges­
tions. 
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