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Abstract In this paper, the (r,S) policy is considered for production/inventory systems where a single 
type items are produced on an item by item basis by a single production facility. The (r,S) policy considered 
in this paper is a pull type threshold policy which is very useful in situations where the time and cost 
required to setup the production facility are relatively high. The demand for the item is assumed to arrive 
according to a Poisson process. The processing time required to produce an item is assumed to follow an 
arbitrary distribution. When an item is demanded, one of the items in the inventory is delivered to the 
customer and the kanban on the item is removed. The removed kanban is immediately transmitted to 
the production facility. At the instant r kanbans are accumulated at the production facility, the operator 
turns the production facility on, which takes a random amount of time. In the production period, items 
are produced one by one and whenever each item is produced, a kanban is attached to it. When there are 
no kanbans at the production facility, the machine is shut. off and a non-production period begins, which 
lasts until the number of kanbans accumulated at the production facility is raised back to r. In this paper, 
assuming a linear cost structure, an efficient search procedure is developed to find the optimal threshold 
value r as well as the optimal number of kanbans S, which minimizes the expected cost incurred per unit 
time. 

1. Introduction 

Production/Inventory systems can be classified into two types, viz., push and pull types. 
In push type systems, the amount of demands for an item is forecasted in advance and 
the production schedule is set based on this forecast value. In pull type systems, on the 
other hand, production schedule is not set beforehand, but is decided by the evolution of 
the demand process of the item. This pull type system is actually operated by means of 
the kanban, a sort of card or tag. Since the successful applications of the pull type systems 
were reported in Japanese industry, there has been a considerable work in modeling of 
production/inventory systems within the framework of pull type systems. 

It is known that the pull type system works particularly well under the conditions of 
smoothed demands and reduced setup times. However, even when the setup costs/times 
are high, the pull type system could be applied successfully in some manufacturing envi­
ronments as will be considered in this paper. We consider in this paper a pull type pro­
duction/inventory system in which a single production facility produces items of a given 
type. Items are produced one by one by a single production facility with completed items 
going directly into output store. The processing time for producing (replenishing) one item 
is assumed to be an independent, identically distributed, random variable which follows an 
arbitrary distribution. Each time production is initiated, a random amount of time to turn 
the facility on is required. We assume that whenever each item is produced, a kanban is 
attached to it. Thus, to every item in the output store, a kanban is attached. The demand 
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142 H.-S. Lee 

for the item is assumed to arrive according to a Poisson process with rate A. If an item is 
demanded, one of the items in the output store is delivered to the customer if the inventory 
is available. At this time, the kanban on the item is removed. When this removed kanban 
is transmitted to the production facility, it becomes a production authorization card, that 
is, the presence of one kanban at the production facility authorizes the production of one 
item. If the inventory is not available at the instant of a demand arrival, the demand is 
backordered. We assume that there are unlimited raw materials available in front of the 
production facility at all times. 

If the time and cost required to setup the production facility are negligible, we can use 
the following very simple policy[lJ: produce whenever kanbans are available. However, when 
the setup cost/time is high, such a policy could be very costly. Thus in this case, to avoid 
the frequent setup of the machine, the following threshold policy can be adopted: 

When an item is demanded, one of the items in the output store is delivered to the 
customer and the kanban on the item is removed. The removed kanban, which is now 
activated as a production authorization card, is immediately transmitted to the production 
facility. When the number of kanbans accumulated at the production facility reaches r while 
the machine is shut off, the non-production period terminates and the operator takes a 
random amount of time to turn the production facility on, which initiates the production 
period. As soon as the setup is completed, items are produced one by one. During the 
production period as during the non-production period, removed kanbans are transmitted to 
the production facility whenever the items are delivered to the customers. When there are 
no kanbans at the production facility, the machine is shut off and a non-production period 
begins. The non-production period lasts until the number of kanbans accumulated at the 
production facility is raised back to r, at which moment the non-production period ends and 
the next production period begins, initiating another cycle. 

inventory 
level 

end of beginning end of 
production of setup setup 

one cycle -----~4" 
end of production 

Figure 1. the (r,S) policy for a production/inventory system with setup times 
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Suppose that the total number of kanbans, i.e., the maximum inventory level in the 
output store, is S. Since our policy is specified by values of the two control variables, 
namely, the total number of kanbans, S, and the threshold value, T', we will call this policy 
the (T', S) policy in this paper. Notice that the inventory level in the output store at the 
beginning of the production period is always S - T' and the inventory level at the end of the 
production period is always S. From this fact it is easily noticed that if we set 8 = S - T', 

the (T',S) policy in this paper is just the (8,S) policy for the production/inventory system 
in the literature (see figure 1) 

Associated with this (T', S) production/inventory system we impose the following classical 
cost structure: i) inventory holding costs are incurred linearly over time with respect to the 
inventory level ii) backorder costs are incurred linearly over time with respect to the backorder 
level and iii) a set-up cost is incurred each time the production facility is turned on. The 
objective of this study is to find an optimal (T', S) policy which minimizes the expected cost 
per unit time in the long run. 

The (T', S) policy in this paper is particularly useful in the situations where the production 
facility is used for some secondary work during a non-production period. For instance, when 
the production period ends, the production facility is switched to a secondary mode of 
operation and is used to produce items of another type. The production facility could be 
used to repair failed items or to rework defective items during the non-production period. In 
some cases, the regular maintenance work is performed during the non-production period. 
Since significant startup costs are usually incurred to switch the machine from one operation 
mode to another, the (T', S) policy would be very effectively used in all these situations. Other 
applications of the (T', S) policy could be found, for example, in multiproduct scheduling 
problems or production schedule in the chemical industry (see Gavish and Graves[5]). 

Another type of policy which could be used to avoid the frequent setup of the machine 
is the (8,Q) policy[l]. In the (8,Q) policy, the total number of kanbans is 8 + Q and the 
kanbans removed from the items at the instant of demand arrivals are kept in the output 
store until the number of kanbans reaches Q. 'Whenever Q kanbans are accumulated, they 
are sent to the production facility immediately. At the production facility, production is 
performed so long as it has kanbans. When there are no kanbans at the production facility, 
the machine is shut off and a non-production period begins. The non-production period 
continues until Q kanbans are transmitted from the output store to the production facility. 
As soon as the production facility receives Q kanbans, it is setup and the production period 
begins. Note that the inventory level at the end of each non-production period is always 8 

in the (8, Q) policy. 
Therefore, in the (8, Q) policy, if more than Q demands arrive during the production 

of Q items, the production period does not terminate as soon as the production of these Q 
items are completed. In this case, since the production facility receives another Q kanbans 
while producing the first Q items, it produces at least another batch of Q items. Hence the 
number of items produced in one production period is always a multiple of Q. It should be 
noticed that the (8, Q) policy is just the traditional production/inventory policy with fixed 
reproduction point 8 and production quantity Q., 

It appears that the (8, Q) policy is a more planned policy compared to the (T', S) policy in 
that it has a predetermined production batch size Q. However, when the demand rate is very 
high, it is probable that more than one batches are produced in one production period. This 
fact indicates that the length of the production period is strongly dependent on the demand 
process in the (8,Q) policy. In addition, in the (8,Q) policy, since the inventory level at the 
end of the production period is not fixed, the variation of the length of the non-production 
period is very high compared to the (T', S) policy. Therefore, the (8, Q) policy is not suitable 
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144 H.-S. Lee 

for the situations where the non-production period is used for some secondary work. For 
this reason we analyze in this study only the (r, S) policy. 

The operating policy considered in this paper is a kind of the (8, S) policy. The (8, S) 
policies are known to be optimal in a variety of inventory situations where as many inventories 
as needed can be replenished all at once([S], [11]). However, the (r, S) policy considered in 
this study is different from these (8, S) policies in that the replenishment of the inventory can 
be done only on an item-by-item basis. Since the replenishment is made on an item-by-item 
basis, it is easy to note that our model has an analogy with an M/G/1 queueing system. In 
fact, when the upper control value S is set to zero, our (r, S) policy becomes the Heyman's 
N-policy[6]. Recently for this special case where the item is not produced to inventory as 
in job-shop systems, Federgruen and So proved that the (r,O) policy is optimal among all 
policies under very general assumptions[2]. 

While much work has been done on (8, S) inventory policies, only limited work has been 
done on (r, S) policies in which inventory is replenished on an item-by-item basis. The first 
model for this type of production/inventory system was introduced by Tijms [10]. He consid­
ers a system with unit POiSSOIl demands, general processing times and general setup times. He 
finds the optimal control values by using a denumerable state semi-Markov decision process. 
Gavish and Graves[4] consider a system with Poisson demands and deterministic processing 
times. In a subsequent paper, Gavish and Graves[5] extend the analysis to consider general 
processing times. Srinivasan and Lee[9] consider a more general model with compound Pois­
son demands, general processing times and with random inspection intervals. They develop 
an efficient search procedure to find the optimal policy. Federgruen and Zheng[3] consider 
a similar model with a more general cost structure. In their study, they derive an efficient 
algorithm for determination of the optimal policy. 

The production/inventory model considered in this paper is rather simple compared 
with Srinivasan and Lee's model or Federgruen and Zheng's model. In their models, however, 
setup times to turn the production facility on are not considered. Thus properties of the cost 
functions developed in their studies are not guaranteed to hold for the systems with setup 
times. Tijms[10] and Gavish and Graves[5] consider models with setup times. However, a 
semi-Markov decision process approach used by Tijms is reported (Gavish and Graves[4]) to 
take too much computational time compared to an intelligent search technique. Gavish and 
Graves use an efficient search procedure to find an optimal policy when setup times do not 
exist. In this search procedure some properties for cost functions are effectively exploited. 
But, when setup times exist, such an intelligent search procedure is not presented since no 
special properties for cost functions are proved in this case. 

In this paper, we analyze the same (r, S) inventory system as the one considered by Tijms 
or Gavish and Graves. However, for the system with setup times, we characterize the cost 
functions by deriving a set of properties these cost functions possess. Then by exploiting 
these properties effectively, we develop an extremely efficient search procedure to find an 
optimal policy. 

2. Analysis 

Let 
V(t) = distribution of the setup time, 
v, v(2) = mean and the second moment of the setup time, 
bj = probability that number of demands which arrive during a setup time is j, j = 
0,1,2,··· , 
U(t) = distribution of the processing time to produce a unit item, 
il, u(2) = mean and the second moment of the processing time, 
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qj = probability that number of demands which arrive during one processing time is 
j,j=0,1,2,''', 
K = setup cost 
Ch = holding cost/item/unit time, 
Cb = backorder cost/item/unit time, 
C(r, S) = sum of expected holding and backorder costs during a cycle when rand 
S are used as control values, 
L( r) = expected length of a cycle when r is used as a control value, 
TC(r, S) =: expected cost per unit time when rand S are used as control values. 

N ate that we use L( r) instead of L( r, S) to denote the expected cycle time when rand S 
are used as control values. This is because the expected cycle time is a function of r alone. 
For stability of the system, we assume that the production rate is greater than the demand 
rate, that is, p = All < 1. 

Our first objective in this paper is to obtain an expression for TC(r, S), the expected cost 
per unit time for given control values rand S. The approach used to obtain an expression 
for TC(r, S) is based on that used in Srinivasan and Lee [9]. Let the time interval from 
the beginning epoch of a non-production period to the beginning epoch of the subsequent 
non-production period be defined as a cycle. Then from the renewal reward theorem [7], the 
expected cost per unit time when rand S are used as control values, is obtained by 

(2.1 ) TC( S) 
= K + C(r,S) 

r, L(r)' 

To obtain C(r,S) and L(r), we divide a cycle into the following three sub-periods: 
(i) Period 1 begins when the facility is turned off and lasts until the inventory level 

drops to S - r for the first time. 
(ii) Period 2 begins at the end of period 1 (beginning epoch of a setup time) and lasts 

until the inventory level is raised back to S - r for the first time. 
(iii) Period 3 begins at the end of period 2 and lasts until the inventory level reaches S 

for the first time. 

Let Cl(r,S) denote the expected cost incurred during period 1 and C3(r,S) denote the 
expected cost incurred during period 3. Note that the expected cost incurred during period 
2 is completely determined by the inventory leyel at the beginning epoch of period 2. Let 
Ck denote the expected cost incurred during period 2 which is initiated with k items in 
inventory. Then, since the inventory level at the beginning epoch of period 2 when rand S 
are used as control values is S - r, the expected cost incurred during period 2 is just (~S-r' 
Therefore, the sum of the expected holding and backorder costs during a cycle is expressed 
as 

(2.2) 

We now show how the terms Cl(r, S), C3(r, S) and CS- r are obtained. 

Computing the term Cl (r, S) 

The expected total cost during period 1 is easy to calculate. Let gk,k-l denote the 
expected cost incurred from the epoch at which the inventory level becomes k to the epoch 
when the inventory level drops to k - 1 during a non-production period. If k 2:: 0, the cost 
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for carrying k items is incurred until the next demand arrives and if k < 0, the cost for 
backlogging -k items is incurred until the next demand arrives. Thus 91<:,1<:-1 is given by 

(2.3a) 
Ch 

91<:,1<:-1 =;:k, if k 2:: 0, 

(2.3b) _ Cb k 
A ' 

if k < O. 

The expected cost during period 1 when rand S are used as control values is then expressed 
by 

(2.4) 
S 

C1(r,S) = E 
I<:=S-r+1 

91<:,1<:-1' 

Computing the term C3(r, S) 
During the production period, the production completion epochs are the times at which 

the inventory is replenished. To compute C3(r, S), we restrict our attention only to these 
epochs. Let fi,j denote the expected cost from the epoch at which the inventory level reaches 
i to the epoch at which the inventory level is raised to j(j 2:: i) for the first time with li,i = 0 
for any integer i. Then the expected total cost incurred during period 3, C3(r, S), is just 
IS-r,s which, in turn, is expressed as 

S-l 
(2.5) C3(r,S) = IS-r,s = E 11<:,1<;+1, 

I<:=S-r 

From equation (2.5), we see that the term C3 (r, S) is obtained if we can calculate each value 
of hl<;+l. 
If we set 

illl<: = hl<;+l - 1k-1,1<:, for all k, 

/1<:,1<:+1 is computed recursively using the following lemma. The proof of lemma 2.1 is given 
in the appendix. 

Lemma 2.1 
The term /1<:,1<:+1 is expressed recursively as 

(2.6.a) 
U 

1k,1<:+1 =11<:-1,1<: - (1 _ p) Cb for k ::; 0, 

1 1 00 I<: U 00 

(2.6.b) /1<:-1,1<: + -{illl<:-l + ~ E qj(Ch + Cb) - E qjilll<:_j + ~Cb E qj}, k > 0, 
qo j=1<: j=l P j=l<;+l 

with an initial value 
Cb AU(2) _ 

1-1,0 = (1 _ p) {2(1 _ p) + u}, 

where p = AU. 

Computing the term CS- r 
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Let 

(2.7) Tk = 9k+l,k + !k,k-+1, for all k. 

Then, using equations (2.2), (2.4), (2.5) and (2.'1), C(r, S) is expressed as 

S-l 
(2.8) C(r, S) = L Tk + CS-To 

k=S-r 

To compute the term CS-r , we need the following lemma. 

Lemma 2.2 
The term Ck is expressed recursively as 

(2.9) 
00 

Ck = Ck-l + L bj(Tk-l -- Tk-l-j), for all k. 
j=O 

147 

Proof Let e" denote the expected cost incurred during a setup time that is initiated with 
k items in inventory. Then Ck is expressed as 

(2.10) 
00 

Ck = ek + L bj!k-j,k. 
j=l 

From equation (2.10), Ck - Ck-l is expressed as 

(2.11 ) 

00 

Ck - C k- l = ek - ek-l + L bj(fk-j,lc - !k-l-j,k-l) 
j=l 
00 

= ek - ek-l + L bj(fk-l,k - ik-l-j,k-j) 
j=l 
00 

= ek - ek-l + L bj (Tk-l - Tk-l-j + 9k-j,k-l-j - 9k,k-l). 
j=l 

The term ek in equation (2.11) is obtained as follows. Let Wn denote the expected cost 
incurred per unit time when the inventory level is n. Suppose the length of the setup time 
is x and n items are demanded during x. Given n demand arrivals during x, the joint 
distribution of these arrival epochs have the same distribution as the order statistics of n 
independent random variables uniformly distributed on [0, xl (see, for example, Ross 1970). 

n 
From this fact, the expected cost incurred during x is expressed as L _x_Wk _j . By 

j=O n + 1 
unconditioning number of demand arrivals and length of the setup time, ek is expressed as 

00 n 

= L bn +1 L 9k-j,k-i-l· 
n=O j=O 
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Hence, ek - ek-1 is expressed as 

(2.12) 

00 n 

ek - ek-1 = L bn+1 L(9k-j,k-j-1 - 9k-j-1,k-j-2) 
n=O j=O 
00 

= L bj(9k,k-1 - 9k-j,k-j-d· 
j=l 

Substituting equation (2.12) into equation (2.11) yields lemma 2.2. o 

Lemma 2.2 cannot be used for a computational purpose since there is an infinite number of 
terms in equation (2.9). However, as will be seen later, lemma 2.2 will play an important role 
to characterize the cost functions. To compute Ck, we use the following alternative equation 
which is stated as lemma 2.3. The proof of lemma 2.3 is given in the appendix. 

Lemma 2.3 

The term Ck is obtained from 

(2.13.a) 

with an initial boundary value, 

(2.13.c) 

Computing the term L(1') 

If setup times do not exist, the expected length of a cycle for (1', S) system is given by 

(1 : p )>. [9]. When setup times exist, the expected length of period 2 should be added to 

this term. The expected length of period 2 is obtained easily using the analogy between 
the production/inventory system and the queueing system as follows. Suppose j items are 
demanded during a setup time. Then, the inventory level at the end of the setup time is 
S - l' - j. Note that from this epoch until the instant the inventory level is first raised back 
to S - l' is just the convolution of j independent busy periods in an M / C /1 queueing system. 
Therefore, from the busy period analysis of an M/C/1 system, the expected length from the 

end of the setup time until the end of period 2 is j it . Since the probability that j items 
1-p 

are demanded during a setup time is bj, the expected length of period 2, L2, is given by 

(2.14) 

00 -

L2 = v + L bj} ( u ) 
j=O 1 - p 

1- p' 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



The Optimal (r,S) Policy 

The expected length of a cycle is, therefore, expressed as 

(2.15) 

r v 
L(r) = (1 _ p)A + 1 _ P 

r+Xi;' 
-(l-p)A' 

Hence, from equations (2.1), (2.8) and (2.15), we have 

S-l 

K + L Tk + Cs- r 

(2.16) TC(r, S) = (1 - p)A k=S-r 

r + AV 

3. The Optimal Control Values 

149 

To find the optimal policy (r*, S*), TC(r, s) must be minimized over the two-dimensional 
integer parameter space. This search could be performed quite efficiently if we exploit some 
properties of the cost functions. Let us denote by S*(r) the optimal S value for a given r. 
We now demonstrate some properties that are possessed by the cost functions. 

Property 1 

T", is convex with respect to k. 

Proof The proof is given in Srinivasan and Lee [9]. o 

Property 2 

Ck is convex with respect to k. 

Proof Define f}.(7k = Ck - Ck-1 and f}.Tk = Tk - Tk-1' To show the convexity of Ck, it is 
sufficient to show t.hat f}.Ck - f}.Ck-1 ~ 0 for all k, which can be proved using lemma 2.1 as 
well as the convexity of T", as follows: 

Property 3 

00 

f}.Ck - f}.Ck-1 = L bj(f}.Tk_1 -- f}.Tk-1-j) ~ 0, for all k. 
j=O 

For a given value of r, C(r, S) is convex with respect to S. 

S-l S-l 

o 

Proof Since C(r, S) = L Tk + Cs- r , C(r, 8) is convex if L Tk and CS-r are both 
k=S-r k=S-r 

convex. From properties 1 and 2, both of these terms can be shown to be convex with respect 
to S for a given value of r. 0 

Property 4 

If S*(r) = k, then S*(r + 1) ::; k + 1. 
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Proof From the given condition S*(r) = k, we have 

(3.1 ) C(r,K + 1) - C(r,K) = Ok-rH - Ok-r + Tk - Tk-r 2: o. 

Using lemma 2.1, inequality (3.1) can be rewritten as 

(3.2) 
00 

Tk 2: L bjTk-r-j. 
j=O 

Since T" is convex, inequality (3.2) implies that 

(3.3) 

To show S*(r + 1) :::; k + 1, it is enough to show that C(r + l,k + 2) 2: C(r + l,k + 1), 
which can be proved from inequality (3.2) as well as the fact that T,,+l 2: T" as follows: 

Property 5 

00 

C(r + 1, k + 2) - C(r + 1, k + 1) = Tk-1 - L bjTk-r_j 2: o. 
j=o 

If S*(n + 1) > S*(n), then S*(r + 1) is either S*(r) or S*(r) + 1 for r > n. 

Proof 

o 

Suppose S*(n) = k and S*(n + 1) = k + 1. Then, from C(n, k + 1) 2: C(n, k), we have 

(3.4) 
00 

L bjTk-n-j :::; Tk· 
j=O 

Similarly, from C(n + 1, k + 1) :::; C(n + 1, k), we have 

(3.5) 
00 

L bjTk-1-n-j 2: Tk· 
j=o 

From inequalities (3.4) and (3.5), the following relationship is obtained: 

00 00 

(3.6) L bjTk-l-n-j 2: L bjTk-n-j. 
j=o j=O 

00 

Inequality (3.6) and the convexity of L bjTk_j imply that 
j=O 

00 00 

(3.7) L bjTk-i-1-n-j 2: L bjTk-i-n-j for i 2: o. 
j=O j=O 

Suppose S*(r) = m for r 2: n + 2. Then, from property 4, the inequality k - n 2: m - r 
should be satisfied. Also from C (r, m) :::; C (r, m-I), we have 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



(3.8) 

The Optimal (r,S) Policy 

00 

L bjTm-l-r-.j ;::: Tm-l· 
j=o 

151 

To prove property 5, we need to show that C(r + 1, m) :::; C(r + 1, m-I), which can be 
written as 

(3.9) 
00 

L bjTm -2-r-.j ;::: Tm-l· 
j=O 

From inequality (3.7), k - n ;::: m - r. Thus, we have 

00 00 

(3.10) L bjTm -2-r-j ;::: :L bjTm-l-r-j. 
j=O j=O 

Inequality (3.10) together with inequality (3.8) implies that inequality (3.9) is true. 0 

Property 6 

If S*(n + 1) > S*(n), then TC(r,S*(r)) is llnimodal in r for r;::: n. 

Proof Suppose S*(r) = m for some r > n. To prove property 6, we first need to show that 

(3.11) C(r+2,S*(r+2))-C(r+l,S*(r+l));::: C(r+l,S*(r+l))-C(r,S*(r)), forr;::: n. 

From property 5, only the following 4 cases can happen. Inequality (3.11) can be 
proved for each case as follows: 

i) case 1 : S*(r + 1) = m + 1, S*(r + 2) == m + 2 
{ C (r + 2, m + 2) - C (r + 1, m + I)} - {C (r + 1, m + 1) - C (r, m)} = T m+ 1 - T m ;::: 0 
since, as shown in property 4, if S*(r) == m then Tm+l ;::: Tm. 

ii) case 2 : S*(r + 1) = m + 1, S*(r + 2) == m + 1 
{C(r+ 2,m + 1) - C(r + I,m)} - {C(l" + I,m) - C(r,m)} = C(r + I,m) - C(r + 
I,m + 1).2: o. 

iii) case 3 : S*(r + 1) = m, S*(r + 2) = m + 1 
{C(r+ 2, m + 1) - C(r + 1, m)} - {C(r+ 1, m) - C(r,m)} = C(r + 1, m + 1) - C(r + 
I,m) ;::: O. 

iv) case 4 : S*(r + 1) = m, S*(r + 2) = m 

(3.12) 

00 

{C(r+2,m)-C(r+l,m)}-{C(r+l,m)-C(r,m)} = L bj(Tm - r-2-j-Tm - r -l-j);::: 
j=o 

00 

o since, as shown in inequality (3.10), E bj(Tm - r-2-j - Tm-r-l-j) ;::: O. 
j'=O 

We are now ready to prove the unimodality of TC(r,S*(r)). To this end we only 
need to show that 

·fK+C(r,S*(r)) K+C(r+l,S*(r+l)) h 
1 L(r) :::; L(r + 1) , t en 

K+C(r+l,S*(r+I)) K+C(r+2,S*(r+2)) 
----~~~~~~~< . 

L(r+l) - L(r+2) 
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Since L(r + 1) - L(r) = (I! p)>. for all r, from inequality (3.11), we have 

(3.13) 
C(r + 2, S*(r + 2)) - C(r + 1, S*(r + 1)) C(r + 1, S*(r + 1)) - C(r, S*(r)) 

L(r+2)-L(r+l) ;::: L(r+l)-L(r) . 

For positive values of a, b, c and d with ~ ;::: ~, it is true that if a > c and 

b > d, then ~ = ~ ;::: ~. If we apply this algebraic fact to the given condition 

K + C(r + 1, S*(r + 1)) K + C(r, S*(r)) b. 
L(r+l) ;::: L(r) ,weo tam 

C (r + 1, S* (r + 1)) - C (r, S* (r )) K + C (r, S* (r )) 
~--~~~~~~~~~~> . 

L(r + 1) - L(r) - L(r) 
(3.14) 

Collecting (3,13) and (3.14) yields 

(3.15) C(r + 2, S*(r + 2)) - C(r + 1, S*(r + 1)) > C(r + 1, S*(r + 1)) - C(r, S*(r)) 
L(r+2)-L(r+l) - L(r+l)-L(r) 

> K + C(r, S*(r)) 
- L(r) . 

We now use another algebraic fact that if a, b, c, d, e, f are all positive, then ::;:; ;::: 

~ ~; holds if ~ ;::: ~ ;::: 7. Applying this algebraic fact to inequality (3.15), we finally 

obtain 
K+C(r+2,S*(r+2)) > K+C(r+l,S*(r+l)) 

L(r+2) - L(r+l) . 

o 

Property 7 

Let us consider an associated production/inventory system with zero setup times, which 
differs from our system only by the fact that setup times are zero. Let an optimal upper 
control value for a given r for this system be denoted by SO' (r). Then S* (r) ;::: SO' (r) ;::: 0 for 
all r. 

Proof 
Note that for a given value of r, 

n+r-l 

MinCo(r,S) = Co(r,S;(r)) = Min I: Tk· 
s n 

k=n 

Let Co(r, S) be minimized at n = m, that is, S*(r) = m + r. To prove property 7, it is 
sufficient to show that 

m+r-l m+r-2 

(3.16) C(r,m + r) = I: Tj + Cm:::; I: Tj + Cm-l = C(r,m + r -1). 
j=m j=m-l 
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m+r-2 m+r-l 

From SO'(r) = m + r, we know L Tj < L Tj. Thus, if Cm < Cm-l inequality 
j=m j==m-l 

(3.16) holds. From the convexity of Tk as well as the fact that SO'(r) = m + r, we have 
Tm ~ Tm-l ~ Tm-2 ~ .... Hence, 

(3.17) 
00 

Cm - l - Cm = L bj(Tm-l-j - Tm-d ~ o. 
j=O 

o 

These properties enable us to devise an efficient search procedure. Property 3 can be 
used in searching S* (r) for a given value of r. Once S* (r) is obtained for some r, S* (r) for 
a different value of r can be found readily using properties 4 and 5. Properties 5, 6 and 
7 restrict considerably the range where the search should be performed. Property 5 states 
that once the function S*(r) increases, it never decreases. Property 6 states that in the 
range where S*(r) is non-decreasing, TC(r, S*(7')) is unimodal with respect to r. Usually, 
the function S*(r) begins to increase when r is very small, namely, r = 1,2 or 3. Therefore, 
properties 5 and 6 not only reduce the search time significantly but also guarantee that the 
solution found by the search procedure is a global optimum. In particular, if a setup time is 
exponentially distributed, we can develop more strong properties for the cost functions. 

Property 8 

Suppose a setup time V follows an exponential distribution, then 

(a) S*(r + 1) is either S*(r) or S*(r) + 1, for r ~ 1. 

(b) TC(r,S*(r)) is unimodal in r, for r ~ 1. 

Proof 
00 

(a) Suppose S*(r) = k. Then from the condition S*(r, k-1) ~ C(r, k), we have L bjTk-.l-r-j 
j=O 

~ Tk-l. To prove property 8.a, it is sufficient to show that C(r + 1, k) ~ C(r + 1, k -1), 
00 

which can be rewritten as L bjTk-2-r-j ~ Tk-l. Therefore, property 8.a is true if we 
j=O 

00 00 

can prove that L bjTk-2-r-j ~ L bjTk-l-r-j, which is shown below. If V follows 
j=O j=O 

t · I d· ·b·· ·1 b h th b {Av}j Th b· an exponen la lstn uti on , It can easl yes own at j = {I + Av}j+l . us j IS 

expressed recursively as bj = bj-l(1 - bo), for j ~ 1. Using this fact, we can express 
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00 00 

L bj Tk-2-r-j - L bjTk-l-r-j as 
j=O j=o 

00 00 00 00 

L bj Tk-2-r-j - L bjTk-l-r-j = L bjTk-2-r-j - L bjTk-l-r-j - bOTk-r-l 
j=o j=o j=o j=l 

00 

00 

= L(bj - bj+dTk-2-r-j - bOTk-r-l 
j=o 
00 

= L bobjTk-2-r-j - bOTk-r-l 
j=o 

00 

= bo(L bjTk-2-r-j - Tk-r-d· 
j=o 

To show L bjTk-2-r-j ~ Tk-r-l we consider the following two cases: First, if Tk-2-r-j ~ 
j=O 

00 

Tk-r-l, then from the convexity of Tk, it is obvious that L bjTk-2-r-j ~ Tk-r-l. On the 
j=O 

other hand, if Tk-2-r < Tk-r-b this implies that Tk-r-l ::; Tk-2. But, in this case, from 
00 

the given condition C(r, k - 2) ~ C(r, k -1), we have L bjTk-2-r-j ~ Tk-2' Hence, the 
j=O 

00 

inequality L bjTk-2-r-j ~ Tk-r-l is proved. 
j=O 

00 00 

(b) Using the relationship L bjTk-2-r-j ~ L bjTk-l-r-j, which is shown in the proof of 
j=O j=O 

property 8.a, it can be easily verified that C(r + 2, S*(r + 2)) - C(r + 1, S*(r + 1)) ~ 
C(r + 1, S*(r + 1)) - C(r,S*(r)) for all r. Now the unimodality proof can be done in 
the same way as in the proof of property 6 0 

While the property S* (r + 1) = S* (r) or S* (r) + 1 as well as the unimodality of 
TC( r, S* (r)) does hold for all r for the case of exponential setup times, for general cases these 
properties are not proved to hold until a point is encountered where S* (r) is first increased. 
However, our extensive computational experience suggests that these properties hold even 
before the first increase of S*(r) occurs although we have not been able to prove these. 
Based on these observations as well as properties 1 through 8 we can devise an extremely 
efficient search procedure to find the optimal policy as follows. Our algorithm starts with 
r == 1 and find C(l, S*(l)) first. To compute C(l, S*(l)), we simply compute C(l, k) from 
k = 0 up to the point k = 8*(1) + 1, at which C(l, k) is first increased. Then, due to the 
convexity of C(l,k), the minimum value is found at C(l,S*(l)). After we find C(l,S*(l)), 
we compute TC(l, S*(l)) using equation (2.16). Note that the search starts from k = 0 since 
by property 7, C(l, k) for k < 0 cannot be a minimum. Besides, since the initial boundary 
values for the recursive computation of ik,k+l and Ck are i-l,O and Co respectively, C(l, 0) 
is computed directly from these initial values. In the process of finding C(l, S*(l)), values 
of Tk and C k for -1 ::; k ::; S*(l) are computed. We store all these values because these are 
used repeatedly to find S* (r) for r > 1. 

Once C(l, S*(l)) is obtained, we find C(r, S*(r)) (and therefore, TC(r, S*(r)) sequen­
tially in the order of r == 2.3,4,· .. using properties 4 and 5. Note that from property 4, 
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we do not have to consider C(1' + 1, k) for k > 5*(1') + 1. Furthermore, due to property 
5, once we encounter l' where 5*(1') is increased, from that point onwards, we have only to 
consider 5*(1') and 5*(1') + 1 to find 5*(1' + 1). Thus, very few evaluations of C(1', k) are, 
in fact, needed in order to obtain C(1', 5*(1')) for each 1'. Our algorithm repeats this process 
(increase l' by 1 and compute C(1',5*(1')) and TC(1', 5*(1')) for new 1') until TC(1', 5*(1')) 
is first increased. Then, by property 6 as well as the unimodality observation, the local 
minimum point encountered can be considered as a global minimum and the optimal control 
values 1'* and S* are obtained. Note that, however, the solution found by this algorithm 
cannot be proved to be a global optimum except for the case of exponential setup times. But 
if we want to obtain a solution which is guaranteed to be a global optimum, it can be done 
simply as follows: Suppose 5*(1') is increased first at l' = k. If 1'* obtained by the algorithm 
is equal to or greater than k, (1'*,5*) should be a global optimum by property 6. On the 
other hand, if 1'* is less than k, a global optimum is guaranteed to be obtained simply by 
computing C(1', 5*(1')) and TC(1', 5*(1')) until" becomes k. In all problems we have tested, 
the first increase of 5*(1') is observed to occur before l' reaches 5, Hence, a global optimum 
can always be guaranteed to be obtained with very little additional computation. 

Algorithm to find the Optimal Control Values (1'*,5*) 

0, Set l' = 1, k =: O. 
Compute C(1, k) 

1. Set k = k + 1 
Compute C(1, k) 
If C(l, k) > C(l, k - 1), then 

else 

5*(1) = k: - 1. Compute TC(l, 5*(1)) 
go to step 2 

go step 1 
endif 

2. Set l' = l' + 1, k = 5*(1' - 1) + 1 
Compute C(",k) 

3. Set k = k - 1, compute C(1', k) 
If C(1', k) > C(1', k + 1), then 

else 

5*(1') = k + 1. Compute TC(1', 5*(1')) 
If TC(1', 5*(1')) > TC(1' - 1,5*(1' - 1)) then 

else 

Optimal control values have been found; (1' - 1,5*(1' - 1)). 
stop 

If 5*(1') > 5*(1' - 1), then 
go to step 4 

else 
go to step 2 

endif 
endif 

go to step 3 
endif 

4. Set l' = l' + 1, 
Compute C(1',5*(1' -1)) and C(1',5*(1' -1) + 1) 
If C(1', 5*(1' -- 1)) < C(1', 5*(1' - 1) + 1), then 
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S*(r) = S*(r - 1) 
else 

S*(r) = S*(1' - 1) + 1 
endif 
Compute TC(r, S*(r)) 
If TC(r, S*(r)) > TC(1' - 1, S*(r - 1)) then 

else 

Optimal Control Values have been found; (1' - 1, S*(1' - 1)) 
stop 

go to step 4 
endif 

4. Numerical Examples 

In order to verify the efficiency of our algorithm and to check whether TC(r,S*(1')) 
is unimodal for all l' 2:: 1, we made extensive numerical tests. Among these, we present 
two examples below. Usually the processing time for a typical manufacturing system has a 
very small coefficient of variation: it is almost deterministic. However, if the facility fails 
during a processing time, then the time to repair the facility could be accounted for in the 
processing time. In the first example, we consider such a distribution. Thus, in example 1, 
the processing time is a sum of the actual processing time of an item, plus the repair time 
of the failure that might occur during the processing of the item. In example 1, we assume 
that the actual processing time has a constant value, 3. The probability that the machine 
fails during a processing of an item is 0.05. The repair time to fix the machine follows an 
exponential distribution with mean 10. The setup time is assumed to have a deterministic 
value 20. Other parameter values are given as ). = 0.1, K = 500, Ch = 1 and Cb = 10. In 
example 2, the setup time is assumed to follow an exponential distribution with mean 20 and 
the processing time is assumed to follow a uniform distribution in the range [8,10]. Other 
parameter values are given as ). = 0.1, K = 500, Ch = 1 and Cb = 30. Note that example 
2, compared to example 1, represents the situation where the utilization of the production 
facility is very high and backorder cost is high. The results of the policy comparisons for 
these two test examples are presented in tables 1 and 2. In each table, to show the behavior 
of the cost functions, the values of 1',8*(1'), S*(r) and TC(r, S*(1')) are given for each value 
of r. The optimal policy found by the algorithm for example 1 is 1'* = 7 and S* = 9. This 
policy is a global optimum because S*(1') increases at l' = 1, while 1'* is 7. The policy, 
1'* = 5 and S* = 21, obtained for example 2 is also a global optimum because the setup time 
follows an exponential distribution. Although only two distributions for the setup time are 
demonstrated in the examples, many other distributions can be implemented easily because 
bj can be expressed in closed form for many distributions of practical interest. 

5. Conclusions 

We have introduced the (1', S) control policy for production/inventory systems where 
items are produced on an item by item basis with completed items going directly into in­
ventory. The (1', S) policy considered in this paper is a pull type policy which is very useful 
in situations where the production facility is used for some secondary work during a non­
production period. In this study, we assume that processing time to produce an item follows 
a general distribution and each time production is initiated a random amount of setup time 
is taken. For this system, under a linear cost structure, we obtained an expression for the 
expecteCl cost per unit time for given control values and developed an extremely simple, yet 
efficient search procedure to find the optimal control values. In devising search procedures, 
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unimodality property as well as the recursive nature of the cost functions was effectively ex­
ploited. Although proofs of optimality were presented only for the system with exponential 
setup times, a solution guaranteed to be a global optimum can be always obtained with very 
little additional computation. 

Table I. 
Result of Example 1 

r s*(r) S*(r) TC(r,S*(r)) 

1 3 4 14.303 
2 3 5 11.872 
3 2 5 10.595 
4 2 6 9.751 
5 2 7 9.288 
6 2 8 9.063 

*7 2 9 9.000 
8 1 9 9.043 
9 1 10 9.084 

10 1 11 9.200 
11 0 11 9.736 

( * indicates the optimal policy) 

Table 2. 

Result of Example 2 

r s*(r) S*(r) TC(r,S*(r» 

1 19 20 19.301 
2 18 20 18.897 
3 17 20 18.711 
4 17 21 18.604 

*5 16 21 18.596 
6 16 22 18.608 
7 16 23 18.694 

( * indicates the optimal policy) 
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Appendix: proof of lemmas 2.1 and 2.3 

Lemma 2.1 

The term fk,k+l is expressed recursively as 

U 
!k,k+l =fk-l,k - (1 _ p) Cb , for k S 0, 

1 look U 00 

fk-l,k + --{~fk-l + -:\ L qj(Ch + Cb) - L qj~fk-j + ~Cb L qj}, k :> 0, 
qO j=k j=1 P j:k+l 
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with an initial value 

Cb AU(2) _ _ 
f-l,O == (1 _ p) {2(1 _ p) + u}, where p = AU. 

Proof 
let Ek denote the expected cost incurred during a processing time that is initiated with 

k items in inventory. Then fk,k+l is expressed as 

(A.1) 
00 

fk,k+1 = Ek + L Qjfk+l-j,k+1. 
j=l 

The term Ek in equation (A.1) is obtained by the following equation (The proof can be found 
in Srinivasan and Lee[9]). 

If k ~ 0, 

(A.2.a) 

where 

if k < 0, 

(A.2.b) 

with 

1 k 
hk+l = ILk + ;:(1 - L qj), with hk = 0 for k ::; 0, 

j=O 

AU(2) 
Eo = -2-q· 

Let us define b.Ek = Ek - Ek-l. Then, from equation (A.1), we obtain 

(A.3) 
00 

b.fk = IlEk + L qj(fk+l-j,k+1 + fk-j,k). 
j=l 

After a little algebra using equation (A.3), b.fk - Ilfk-l is expressed as 

00 

Ilfk - Ilfk-l = IlEk - /}.Ek-l + L Qj{(fk+l-j,k+1 - fk-j,k) - (fk-j,k - fk-l-j,k-d} 
j=l 

(AA) 
00 

= IlEk - b.Ek-l + L qj(llfk - Ilfk-j). 
j=l 

Note that the last term in equation (AA) consists of infinite terms. However, b.fk - b.fk-l 
can be simplified without these infinite terms as described below. 

Let Dk denote the time period from the epoch when the inventory level reachesk to the 
epoch when the inventory level is raised to k + 1 for the first time. Note that the length 
of Dk is equivalent to one busy period in an M/C/1 queueing system, hence, from the well 
known busy period analysis, the expected length of Dk is ft/(l - p) where p = Aft. If we 
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compare the inventory level during Dk and the inventory level during Dk+1, the inventory 
level during Dk has the same stochastic path as the inventory level during Dk+1 if one item 
of inventory is added to the inventory level during Dk throughout this period. Consequently, 
if k < 0, the inventory level during Dk has only one more shortage than the inventory level 
during Dk+1 on the average. Thus, for k < 0, 

(A.5) 
it 

f:l.fk = h,k+! - fk-l,k = - (1 _ p) Cb· 

If we solve equation (A.4) in terms of f:l.h and substitute f:l.fk = - ( it ) Cb for k < 0, we 
1-p 

obtain the following recursive equation: 

(A.6) 
1 k k it 

f:l.fk = -{f:l.fk-1 + f:l.Ek - f:l. E k_1 -- L qjf:l.fk-j - (1 - L qj) ( _ ) Cb}, 
qo j=l j=l 1 P 

where from equation (A.2), 

(A.7) 
1 k-1 

f:l.Ek - f:l.Ek-1 = (hk - h k- 1)(Cb -- Ch) = ~(1 - L qj)(Ch + Cb)· 
j=O 

Now, from equation (A.6), the term f:l.fk for k ~ 0, can be computed recursively using 

the initial value f:l.f -1 = - ( it ) Cb, and hence, f:l.fk for any k can be computed. From this, 
1-p 

h,k+1 is obtained recursively as 

1 1 k-1 k 
fk,k+1 = fk-1,k + -{f:l.fk-1 + ~(1 - L qj)(Ch + Cb) - L qjf:l.fk-j 

qo j=O j=l 

k it 
- (1 - L qj) ( ) Cb}· 

j=l 1 - P 

The initial value i-1,0 can be obtained directly from the fact that f-1,0 is just the expected 
total cost incurred during the busy period in an associated M/C/1 queueing system where 
the unit waiting cost per customer is Cb. 

Lemma 2.3 

The term C\ is obtained from 

with an initial value, 

Proof Case k ::;. 0: 
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v 
Note that the expected length of period 2 initiated with k items in inventory is -- (refer 

1-p 
to equation (2.14)). We use the same argument as we used in the proof of lemma 2.1. Then 
by comparing the stochastic path of the inventory level during period 2 initiated with k 
inventories with that of the inventory level during period 2 initiated with k - 1 inventories, 
- - - v 
Ck is expressed as Ck = Ck-l - Cb ( ). 

I-p 

Case k > 0: 

(A.8) 

00 

Ck = Ck--1 + Tk-1 - E bjTk_l_j 
j=O 
k-l 00 

= Ck--1 + Tk-1 - E bjTk-l-j - E bjTk-l-j. 
j=o j=k 

The last term in equation (A.8) consists of infinite terms, which can be handled as 
follows. Let Tk denote the time period during which the expected cost of Tk is incurred. 
Then, there is a relationship that the length of Tk is equivalent to one cycle in an associated 
M / G /1 queueing system. Hence, from the known result of an M / G /1 system, the expected 

length of Tk is (1 _1 p)>..' Using this fact, we can express Tk for k < 0 as a function of Ll as 

follows: 

(A.9) 
1 

Tk = T -1 - (k + 1) (1 _ p )>.. Cb, for k < O. 

Now the infinite terms in equation (A.9) can be expressed as 

(A,10) 

By sUbstituting (A.IO) into (A.8), we obtain the desired result. The term Co which is used 
as an initial value can be computed in a similar way. From Fubini's theorem, ~o is obtained 

>..v(2) it 
as -2-Cb' Note also that !k,k+l = !-1,0 - (1 + k\ _ p Cb, for k < O. Using these facts Co 
is expressed as 

00 

Co = ~o + E bj!_j,o 
j=l 
00 j-l -

=~o+EbjE{f-l,O+(j-I-k)I: Cb} 
j=1 k=O p 

it 00 j(j - 1) 
= ~O + !-I,O>"V + ~Cb E bj 2 

P j=1 

>..v(2) p>..v(2) + 2pv >..2vu(2) 

= -2-Cb + 2(1 _ p) Cb + 2(1 _ p)2Cb. 

o 
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