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Abstract An efficient cost scaling algorithm is presented for the independent assignment problem of 
Iri and Tomizawa, which is equivalent to the weighted matroid intersection problem of Edmonds. Our 
algorithm in general can be viewed as a generalization of Orlin and Ahuja's scaling algorithm for the ordinary 
assignment problem. On a bipartite graph with n vertices and integer arc costs bounded by C, an optimal 
r-independent assignment can be found in O( vrn210g(rC)) time by our algorithm under an independence 
oracle for matorids. 

1. Introduction 
The independent assignment problem was formulated and solved by M. Iri and N. Tomizawa 
[1l]. Given a bipartite graph with matroidal structures on both of the two sets of end­
vertices, the independent assignment problem is to find a maximum independent matching 
[16] having the smallest total cost, where a cost is given to each arc. It is a natural extension 
of the ordinary assignment problem. The weighted matroid intersection problem considered 
by J. Edmonds [4], E. L. Lawler [12] and others is equivalent to the independent assignment 
problem. 

The theoretical analyses and algorithms for the independent assignment problem can be 
found in [1l] and [8]. Algorithms for the weighted matroid intersection problem were given 
by J. Edmonds [4], [5], E. L. Lawler [12], A. Frank [7], J. B. Orlin and J. Vande Vate [14], C. 
Brezovec, G. Cornuejols and F. Glover [3], H. N. Gabow and Y. Xu [9] and others. The cost 
scaling approach based on the approximate optimality plays a fundamental r('.l(' in recent 
efficient algorithms for ordinary minimum cost flows and bipartite matchings. 

We propose an efficient cost scaling algorithm for the independent assignment problem. 
Our algorithm in general can be viewed as a generalization of the cost scaling algorithm, 
recently given by J. B. Orlin and R. K. Ahuja [13], for the ordinary bipartite assignment 
problem. The cost scaling technique is adopted in our algorithm. The procedure for each 
scaling phase can be decomposed into two parts: an auction-like algorithm (see [1], [13]) 
and a successive shortest path algorithm. We provide a complexity analysis under the 
independence oracle for matroids. 

In Sections 2"-'4 we give some preliminaries on matroids and the definition of the inde­
pendent assignment problem. The optimality and E-optimality conditions for the problem 
are given in Section 5. Sections 6 and 7 describe the detail of our algorithm. The final 
section, Section 8, is concerned with the complexity analysis of the algorithm. 

2. Preliminaries from Matroid Theory 
Let E be a finite set. For any X ~ E and e E E we write X + e and X - e instead of 
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A Cost Scaling for Independent Assignments 125 

x U {e} and X - {e}, respectively. The cardinality of X ~ E is denoted by IXI. Suppose 
that a family I of subsets of E satisfies the following (10)"-'(12): 
(10) 0 E I. 
(11) h ~ 12 E I ==? 11 E I. 
(12) h, hE I, lId < 1121 ==? 3e E 12 - h : h + e E I. 

The pair (E, I) is called a matTOid. Each I E: I is called an independent set of matroid 
(E, I) and I the family of independent sets of matroid (E, I). 

An independent set which is maximal with respect to set inclusion is called a base. Every 
base of matroid (E, I) has the same cardinality. A subset of E which is not an independent 
set is called a depmdent set. A minimal dependent set is called a circuit. 

The closure function cl : 2E -> 2E of matroid (E, I) is defined by 

(2.1 ) cl(X) = X U {v EEl X + v is dependent} 

for each X ~ E. The closure function cl satisfies the following: 
(cIO) VX ~ E: X ~ cl(X). 
(ell) VX, Y ~ E: X ~ cl(Y) ==? cl(X) ~ cl(Y). 

(cI2) VX ~ E, Ve E E: e' E cl(X + e) - cl(X) ==? e E cl(X + e'l - cl(X). 
For any independent set I E I and any element e E cl(I) - I, there exists a unique 

circuit contained in 1+ e. Such a circuit is called the fundamental circuit with respect to 
I and c, and is denoted by C(IIe). For any base B of M and any element e E. B, the set 
E - cl( B - e) is called the fundamental cocircuit with respect to Band e, and is denoted 
by K(Ble). 

For convenience we assume that any single element subset is independent, i.e., there 
exist no selfloops in M. 

3. The Independent Assignment Problem 
Let G = (V+, V-; A) be a bipartite graph with the left (right) end-vertex set V+ (V-) and 
the arc set A. For any a E A, a+a (a-a) is the initial (terminal) end-vertex of a. We 
assume that a+a E: V+ and a-a E V- for each a E A. Also for any M ~ A, a+ M (a- M) 
denotes the set of the initial (terminal) end-verti,::es of arcs in M. A subset M of A is called 
a matching in the bipartite graph G = (ll+, ll-: A) if la+ MI = IMI = la- MI. 

Let M+ = (V+,I+) and M- = (V-,I-), respectively, be matroids on V+ and V­
with families I+ ~:;; 2v+ and I- ~ 2v - of independent sets. A cost function c : A -> 

Z is given, where Z is the set of all integers. We denote this network by N = (C; = 
(V+, V-;A),M+,.M-,c). 

An independent matching M ~ A in N is a matching in G such that a+ M E I+ 
and a- AI E I-. The maximum independent matching problem is to find an independent 
matching M in N of the maximum cardinality. 

For a positive integer k, a k-independent matching M in N is an independent matching 
of cardinality k. An optimal k-independent assignment in N is a k-independent matching 
M having the minimum cost c( M) = L:eEM c( e) among all the k-independent matchings in 
N. When costs are taken into account, we use the term, assignment, instead of matching 
(in a bipartite graph). 

Let B+ (B-) be any base of M+ (M-), where we assume that IB+I = IB-I = r. 

In this paper we will give a new efficient scaling algorithm for finding an optimal ]"­
independent assignment if there exists one. The general optimal k-independent assignment 
problem can be solved by our algorithm after applying k-truncation (see [17]) of M+ and 
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126 S. Fujishige & X Zhang 

M-. Throughout this paper, we denote the dosure function of M+ (M-) by d+ (d-), the 
fundamental circuit with reBpect to I and e in M+ (M-) by C+(Ile) (C-(Ile)) and the 
fundamental cocircuit with respect to Band e in M+ (M-) by l(+(Ble) (l(-(Ble)). 

4. Further Properties of Matroids 
In this section we give some further properties of matroids which play a fundamental role 
in our algorithm. Some of them are adopted from Iri and Tomizawa [11]. We provide no 
proofs for those well known (see, e.g., [10] and [17]). 

Let M = (E, I) be a matroid with a family I of independent sets. 
Lemma 4.1: If I E I and v E d(I)-I, thenforeachu E C(Ilv), I+v-u is an independent 
set. 0 

Lemma 4.2: For a given 1 E I, if 2q distinct elements U'I,'" ,uq (E I) and VI,'" ,Vq 
(E d(I) - I) satisfy the relations: 

(4.1 ) 

and 
( 4.2) 

then for each m = 1,"" q Im = (I - {UI,"', um }) U {VI,"" vm } is also an independent 
set and d(Im) = deI). Furthermore, for m = 2"", q, we have Um E C(Im-llvm ). 0 

Lemma 4.3: For I E I and a pair (u,v) such that v E d(I) - I, 11 E C(Ilv) -- v, denote 
the independent set I + v - Il by I'. If (w, z) is a pair such that z E d(I') - 1', w ~ C(Ilz) 
and wE C(I'lz) - z then we have 

(i) either 11 = Z or U E C(II,,) - z, 

(ii) either v = w or w E C(Ilv) - v. 0 

For a family S = {SI, ... ,St} of subsets of E, a transversal of S is a set {el," . ,et} of 
t distinct elements of E such that ei E Si for i = 1,'" ,t. 

Lemma 4.4: Let B be a base of M and VI,"', Vt be t elements of B, where t ::; IBI. 
Suppose that there are t circuits Cl, ... ,Ct of M such that (1) Vk ECk for k = 1" .. ,t and 
(2) Vk ~ Cl if k :f:. l, for k, l= 1"" ,t. Denote Tk = K(Bh) - Vk for k = 1" .. ,t. Then, 
there exists a common transversal of the families C = {Cl, ... , Ct } and T = {TI' ... , Tt}. 

Proof: It is known [8, p. 74] that there is a common transversal for C and T if a.nd only if 
for each X, 17 ~ {I, ... , t} we have 

( 4.3) I( U Ck ) n (U TI)I 2 IXI + IYI- t. 
kEX IEY 

Since IX n 171 2 IXI + IYI- t, from (4.3) it is sufficient for us to verify that 

( 4.4) I( U Ck ) n ( U 71)1 21X n 171· 
leEXnY IEXnY 

Without loss of generality we prove (4.4) when X n 17 = {I" .. ,t}. That is, we prove that 

t t 

(4.5) I ( U C le) n (U Tie) I 2 t. 
1e=1 1e=1 
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Denote 10 = {VI,"', vd and 11 = B - 10. Since Vk E cl(Ck - Vk) for k = 1"", t, we have 

t 

( 4.6) B ~ cl«( U (Ck - vd) U h). 
k=1 

Hence, there exist UI, ... ,Ut E Uk=1 (Ck - Vk) such that 11 +Uj + ... +Ut is a base of M. From 
the assumptions on C and {VI,"', vd we have {Ul,"" Ut} n 10 = 0. For each 1 ::; I ::; t, 
since 11 + UI E I, we have 10 ;2 C(BluL) - (h + uL) -:j:. 0. Hence, there is some element 
Vs E 10 n C(BluL). This implies that B + UI - Vs is also a base, i.e., UI ~ cl(B - vs). Thus 
UI E Ts. We have u],"', Ut E Uk=lTk and hence (4.5) is valid. 0 

Lemma 4.5: Given a weight function w : E ~ R (the set of all real numbers). A base B 
of M = (E,I) sat:isfies w(B) = max{w(B') I B' is a base of M} if and only if for each 
pair (u, v) such that U E C(Blv) we have w(u) 2: w(v). 0 

5. The Exact and Approximate Optimality 
In this section we define an auxiliary network and give optimality and c-optimality conditions 
for the independent assignment problem in terms of auxiliary networks. The concept of c­
optimality was introduced by D. P. Bertsekas [1] and E. Tardos [15] for the minimum cost 
flow problem and is essential in our cost scaling framework. 

Given a network N = (C = (V+, V-;A),M+,M-,c) as in Section 3, let [3+ ([3-) be 
the family of bases of M+ (M-). Consider a triple ~ = (B+, M, B-) that satisfies the 
following conditions: 

(5.1 ) 
( 5.2) 

(5.3) 

M is a matching of Cl = (V+, V-; A), 

B+ E [3+ and B- E B-, 

a+ M ~ B+ and a- M ~ B-. 

We define the auxiliary network Nil associated with ~ = (B+,M,B-) as Nil = (CLl,. = 
(V*, All)' M+, M-, Cll) with vertex set V* = V+ uV- and arc set All = AB+ UAUNJUA B-, 
where 

( 5.4) 

(5.5) 

(5.6) 

AB+ 

A B -

.M = 

{(u, v) I v E V+ - B+, U E C+(B+lv) - v}, 
{(v,u) I v E 'V- - B-,u E C-(B-Iv) - v}, 

{a I a E M} (a: a reorientation of a) 

and CIl : All ~ Z is defined from c : A ~ Z as 

(5.7) 
if a E A 

cll(a) = 0 
{ 

c(a) 

-c(a) if 
if a E AB+ U A B-

aEM. 

A triple ~ = (B+,M,B-) that satisfies conditions (5.1)",(5.3) is called an independent 
partial assignment and if, in addition, IMI = r, then ~ = (B+, M, B-) is called an indepen­
dent assignment. 

In the auxiliary network Nil, we consider ctd a) as the length of arc a E All' Then, we 
have the following. 

Theorem 5.1 (Fujishige [8]): An independent assignment ~ = (B+, M, B-) is an optimal 
independent assignment of N if and only if there. is no negative directed cycle in Nil. 0 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



128 s. Fujishige & X Zhang 

Given a function p : V* -;. R, called a potential, we define c~,p( a) = c~ (a) + p( 0+ a) -
pea-a) for each a E A~. From Theorem 5.1 we also have 

Theorem 5.2: An independent assignment 6. = (B+, M, B-) is an optimal independent 
assignment of N if and only if there exists a potential p such that c~,p( a) 2: 0 fOT all 
a E A~. 0 

Definition 5.3: An independent partial assignment 6. = (B+, M, B-) is said to be [-optimal 
if there exists a potential p such that c~,p( a) 2: -[ for all a E A~. 0 

Put C = maxaEA le(a)l. Then, we have 

Lemma 5.4: Any independent assignment is [-optimal for [ 2: C and any [-optimal inde­
pendent assignment with [ < 1/141'1 is an optimal independent assignment. 
Proof: The first part of the lemma can be verified by taking p == O. For the second part of 
the lemma, we see that if [ < 1/141'1, then there is no negative directed cycle in N~, since 
the length L:aEC c~(a) = LaEC c~,p(a) of each cycle C is an integer and is greater than or 
equal to -[141'1 > -l. Hence, the optimality of the independent assignment follows from 
Theorem 5.l. 0 

6. A Cost-Scaling Framework 
We first give a higher-level description of our cost-scaling algorithm for finding an optimal 
independent assignment. Starting from [ = C, the algorithm proceeds by obtaining [­
optimal independent assignments for successively smaller values of [ until the value of f 

is less than 1/141'1. Thus, at the end we have an optimal independent assignment due to 
Lemma 5.4. Therefore, the algorithm consists of a number of cost-scaling phases. In each 
cost-scaling phase, the algorithm performs procedure Refine which transforms a 2E-optimal 
independent assignment to an E-optimal independent assignment. 

Procedure Refine consists of two subprocedures: Auction and SuccessiveShortest.Path. 
Procedure Auction can be viewed as a generalization of the auction procedure given by J. 
B. Orlin and R. K. Ahuja [13] which is designed for the optimal assignment problem on a 
bipartite graph without any additional matroid constraints. The auction procedure by Orlin 
and Ahuja [13] is a variation of the auction algorithm by D. P. Bertsekas and J. Eckstein [2]. 
Our procedure Auction starts with an E-optimal independent assignment and first converts it 
into an E/4-optimal independent partial assignment 6. = (B+, M, B-) with IMI == 0. During 
the execution of the procedure, the E / 4-optimality of the independent partial assignment is 
maintained and at the termination the obtained independent partial assignment M satisfies 
l' - IMI :::; "fi. Procedure SuccessiveShortestPath starts with this independent partial 
assignment and further enlarges the size of M one by one through successive shortest path 
augmentation steps, which yields an E/2-optimal independent a'3signment at the termination. 

The optimal independent assignment algorithm is described as follows. Details of the 
subprocedures will be given in the next section. The value of the parameter c is not 
changed during the execution of procedure Refine and its subprocedures Auction and Suc­
cessiveShortestPath. The input L can be any positive integer and will be optimized latcr 
(in Section 8), 

Algorithm Assignment 
Input: N = (G = (V+, V-;A),M+,M-,c), a potential p == 0, a positive integer L, and 
E = C = max {Ic( Cl) 1 1 a EA}. 
Output: A potential p and an optimal independent assignment 6. = (B+, M, B-) of N 
with respect to p. 
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A Cost Scaling for Independent Assignments 129 

Step 1: While E 2: 1/141"1, put E' f- E/4, perform procedure Refine(E', L,p) and put E +- E/2. 
(End) 

Procedure Refine(E, L,p) 

Input: N, L, E, and p such that there exists a 4E-optimal independent assignment with 
respect to p. 
Output: A potential p and a 2E-optimal independent assignment ~ = (B+,lvI,B-) of N 
with respect to p. 
Step 1: Perform procedure Auction(E, L,p). 
Step 2: Perform procedure SuccessiveShortestPath(E,p, ~ = (B+, lvI, B-)). 
(End) 

7. The Refinement of the Approximate Optimality 
For an E-opt.imal independent partial assignment ~ = (B+, lvI, B-) with respect t.o a po­
tential p, an arc a E A6 is called an admissible arc in N6 if -E .:::; C6,p( a) < O. Each 
v E B+ - a+ lvI (v E B- - a- lvI) is called a source (sink) vertex. 

For each v E v" we define a basic operation Relabel( v) for our procedure Refine. 

Relabel( v): Applicability: v E V' and for any a E A6 with a+ a = v we have C6,p( a) ~ 0; 
Action: Put p(v) .~ p(v) - E. 

We can easily see the following. 

Lemma 7.1: The relabeling operation keeps the E-optimality of ~ = (B+, lvI, B-) with re­
spect to the updated potential p. 0 

A directed path of N6 starting from a source vertex and consisting of only admissible 
arcs is called an admissible path. We consider the following three types of admissible path 
P. We denote by (v ---+ tu) a path consisting of a single arc (v, tu) and by (v ---+ w ---+ u) a 
path of arcs (v, tu) and (tu, u ). 

Type 1: P = (v ---+ tu) such that (v, w) E AB+ and p(tu) = max {p(u) I (v, u) E A H+}. 
Type 2: P = (v ---+ w) such that v E B+ - a+M and tu E B-. 
Type 3: P = (v ---+ W ---+ u) such that (tu, u) E A B - and p(u) = max {p(z) I (tu, z) E A B -}. 

Three types of push operations are defined for our procedure Refine. Push operations 
are performed on admissible paths of the above three types. 

Push1(P); Applicability: P = (v ---+ w) is an admissible path of Type 1. 
Action: Put B+ +-- B+ + w - v. 
Push2(P): Applicability: P = (v ---+ tu) is an admissible path of Type 2. 
Action: Put M +-- M + (v,w) - {a E Atl a-a:= tu}. 
Push3(P): Applicability: P = (v ---+ w ---+ u) is an admissible path of Type 3. 
Action: Put B- +-- B- + w - u and M f- M + (v,tu) - {a E M I a-a = u}. 

Lemma 7.2: All three types of pushes maintain conditions (5.1 )rv( 5.3) and the E-optimality 
of ~ = (B+, M, B-) with respect to the current potential p. 

Proof: It is easily verified that ~ satisfies conditions (5.1)rv(5.3) after the push operations. 
We prove that t.he E-optimality is also maintained. Suppose that by Push1(P) the action 
Bt f- B+ + w - v yields a new arc (u, z) E A B+' From Lemma 4.3 we have 

1 

(i) v=zor(v,z)EAB +, 

(ii) u = w or (u, tu) E A B+. 

(i), (ii) and the E-optimality imply that p( v) - p(z) ~ -E and p( u) - p( tu) ~ -E. If l' f. z, 
then the selection of w implies p(z) .:::; pew). Hence, p(u) - p(z) ~ p(tt) - pew) ~ --E. If 
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v = z, then 
(7.1 ) pelt) - p(z) = p(lI) - p(v) 2': p(w) - p(o) - E > -E, 

where note that p( w) - p( v) > 0 due to the admissibility of arc (1', w). 
For Push2(P), the only new arc introduced is (w,v). Since (v,w) is admissible before 

the push, we have c(w, v) + p(w) - p(v) > 0 > -E. 

The case of Push3(P) can be verified similarly. 0 

The first subprocedure of procedure Refine is Auction. The basic operations in procedure 
Auction are Relabelings and Pushes. In procedure Auction, the number of Relabelings 
on each source vertex is not more than L + 4. The size of A1 is enlarged through push 
operations. If L is selected large enough, procedure Auction will terminate with all E-optimal 
independent assignment (see Lemma 8.5). Procedure Auction is described as follows. 

Procedure Auction(E, L,p) 
Input: Land p such that there exists a 4E-optimal independent assignment with respect 
to p. 
Output: A potential p and an E-optimal independent partial assignment 6 = (B+, M, B-) 
with respect to p. 
Step 1: Put M = 0 and p( v) +-- p( v) - 4E for any v E V-. Find a base B+ of M+ such 
that 
(7.2) 

and B- of M - such that 
(7.3) p(B-) = min p(B). 

BEB-

Step 2: If there exists no source vertex v which is relabeled less than L+4 times, then the 
procedure terminates and let the current 6 = (B+, M, B-) and p be the output. Otherwise, 
find a source vertex v relabeled less than L + 4 times. 
Step 3: If for each a E AA with [)+ a = v we have CA,p( a) 2': 0, then perform Relabel( v) and 
go to Step 2. Otherwise go to Step 4. 
Step 4: Let V( v) = {1I I (u, 11) E AA and is admissible} (V( v) is not empty within this 
step ). 
(4-1) Applicability: V(v) n 11- ::j:. 0. 
Find 11 E V(v) n B-. Perform Push2(v -+ 11) and Relabel(lI), and go to Step 2. 
(4-2) Applicability: V(v) n 11- = 0 and V(v) n (V- - B-) ::j:. 0. 
Find 11 E V(v) n (V- - B-). If for each a E AA with [)+a = 11 we have cA,p(a) 2': 0, then 
perform Relabel( 11) and go to Step 2. Otherwise find w E B- such that P = (t, ....... lL -+ w) 
is an admissible path of TYPE' 3. Perform Push3(P) and Relabel( 11), and go to Step 2. 
(4-3) Applicability: V(v) n V- = 0 and V(v) n (V+ - B+) ::j:. 0. 
Find w E V+ - B+ such that P = (v -+ w) is an admissible path of Type 1; perform 
Push1(P), Relabel(v) and go to Step 2. 
(End) 

Lemma 7.3: The relabeling operations in procedure Auction are performed only when they 
are applicable. 
Proof: The relabeling operation in Step 3 and the first one in Step (4-2) are obviously 
valid. For the relabeling operation in Step (4-1) and the second one in Step (4-2), note that 
there is only one arc (11, v) going out from 1L after the corresponding push operation. Before 
the push, (v, 11) is an admissible arc, which implies c( u, v) + p( 11) - p( v) > o. Therefore, such 
relabeling operations are applicable. For the relabeling operation in Step (4-3), since all the 
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arcs going out from v are from v to V- and not admissible in this step. So the relabeling 
operation is valid. 0 

We can easily see that the independent partial assignment .6. = (B+, AI, B-) defined 
in Step 1 of procedure Auction is O-optimal. Because of Lemmas 7.1,,-,7.3, we get an 10-

optimal indepelldellt partial assignment and the corresponding potential p at the end of 
procedure Auction. Starting with them, we perform procedure Successive Shortest Path de­
scribed below. We get a 2f-optimal independent assignment at the termination of procedure 
SuccessiveShortestPath. In procedure Successive Shortest Path, the cost function c and the 
potential p obtained at the end of procedure Auction are modified into c and p such that 
the initial independent partial assignment in procedure SuccessiveShortestPath is O-optimal 
with respect to c and p, and then the size of the independent partial assignment is enlarged 
one by one through successive shortest path augmentation steps. The augmentation step is 
essentially the same as that of hi and Tomizawa [l1J. 
Procedure SuccessiveShortestPath( f, p,.6. = (B+, M, B-)) 
Input: A potential p and an f-optimal independent partial assignment .6. = (B+, M, 
B-) with respect to p. 
Output: A potential p and a 2f-optimal independent assignment .6. = (B+, NI, B-) with 
respect to p. 
Step 1: Put 

(7.4) 

and 

(7.5) 

-( v) = { p( v) - f 
P p(v) 

for v E (1/+ - B+ ) U B­
for v E (V- -B-)UB+ 

_ { p(a-a) - p(a+a) 
ca = () max{p(a-a) - p(a+a), c(a)} 

for a EM 
for a E A-M. 

Similarly as (5.7) we define CA : AA -T R in terms of c instead of c. 
Step 2: For each a E AA let l( a) = CA( a) + p( a+ a) - p( a-a) be the length of arc a. For each 
v E V· let p( v) be the length of a shortest path from the source vertex set S+ = B+ - a+ M 
to vertex v in NA . If there exists some sink vertex 11 E B- - a-}VI which is not reachable 
from S+, stop (there is no 1'-independent matching in N). Otherwise go to Step 3. 
Step 3: Choose a fixed sink vertex u' and find a shortest directed path P in Nt::" from S+ 
to w; if there are more than one such path, choose one which consistfi of the fewest number 
of arcs. Denote the arc set of P by Ap. Put 

(7.6) B+ <-. (B+ - {a+ a I a E Ap n AB+ } ) U {a- a I a E Ap n AB+ }, 

(7.7) B- <-. (B- U {a+a I a E Ap nAB"}) - {a-a I a E Ap n AB-}, 

(7.8) M <-. (MU(ApnA))-{al aEAp ni'1}, 

(7.9) p <-. p+p. 

Step 4: If IMI = r, then put p +- p and stop. Otherwise go to Step 2. 
(End) 

For simplifying our argument we assume in Step 3 that every v E V" is reachable from 
S+ = B+ - a+M. 

Lemma 7.4: If procedure SuccessiveShortestPath stops at Step 2, then there is no r-independent 
matching in N. 0 

The proof of this lemma will be given in Section 8. 
The remaining of this section is the proof of the validity of procedure SuccessiveShort­

estPath. The argument is similar to that of hi and Tomizawa [11 J. 
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It is straightforward to see that in Step 1 of procedure SuccessiveShortestPath 6. = 
(B+, M, B-) is a a-optimal independent partial assignment with respect to p and c. 

Lemma 7.5: In Step 2, 6. = (B+, M, B-) is a-optimal independent partial assignment with 
respect to the potential p + p and cost function c. 
Proof: By the definition of p we have pea-a) ::; p(a+a) + lea) for each a E AA, i.e., 
cA(a) + p(a+a) + j5(a+a) - (p(a-a) + pea-a)) ~ a. 0 

Lemma 7.6: After an execution of Step 36. = (B+, M, B-) satisfies conditions (5.1 )"-'( 5.3). 
Proof: We begin by verifying condition (5.2). From the definition of P we have for any 
a E Ap pea-a) = p(a+a) + lea). It follows that 

(7.10) 

Denote 6. = (B+, M, B-) obtained at the beginning of Step 3 by 6. 1 = (Bt, M I, Bll 
Suppose that the arc set AI' n AB+ is given by {al,"" aq } with ai = (Ui, Vi) (i = 1," . ,q). 

I 

Since cA(a) = a for a E Ap nAB+, we have j5(Ui) = P(Vi) (i = 1",' ,q) from (7.10). Also by 
I 

definition, at the end of Step 3 

(7.11) 

Without loss of generality, let Uj'S and Vi'S be numbered in such a way that 

(7.12) 

and that if PC Ui) == p( Vi) = j5(Uj) = j5( Vj) (i < j), then aj lies nearer to V than aj along P. 
From these assumptions it is seen that there exists no arc (u;, Vj) in AB+ with 1 ::; i < j S; q 

I 

due to the a-optimality and the way of selecting P. Hence, by Lemma 4.2 B+ is a base of 
M+. By a similar reasoning, we can show that B- is also a base of M-. The verification 
of conditions (5.1) and (5.3) on 6. = (B+,M,B-) is easy. 0 

Lemma 7.7: After an execution of Step 36.= (B+,M,B-) is a O-optimal 'independent 
partial assignment with respect to the current potential p and cost function c. 
Proof: The notations are the same as in the proof of Lemma 7.6. We prove that for each 
a E AA - AAI we have cA(a) + p(a+a) - pea-a) ~ a. Here, 

(7.13) 

For any a E NI -NIl we have a E ApnA. From (7.10) we get cA(a)+p(a+a)-j5(a-a) = O. 
Next, consider the arcs in AB+ - A B+. Define 

I 

(7.14) 

and ID = Bt. Then, from Lemma 4.2 I rn = Irn-I - Urn + Vrn is a base of Nt+ for each 
m == 1,"', q. Note that Iq == B+. We prove by induction on rn == a"", q that for each 
rn == O,···,q and a E AIm we have p(a+a) - pea-a) ~ a. This is true for m = a due 
to Lemma 7.5. Suppose that it is true for m == k - 1 (1 ::; k ::; q). For rn = k, let 
a == (w, z) E AIm - AIm_I' From Lemma 4.3 we have 
(i) Urn == Z or (unnZ) E A Im __ I , 

(ii) vrn == w or (w, vrn) E AIm_I' 
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Therefore, p( um ) ~~ p( z) and p( 10) ~ p(vm ). It follows that p(w) ~ p(:;) since p( urn) = p( vm ). 

Thus the induction assumption is true for m = k, which is the required conclusion. 
For a E A 8 - - A 8 -, the proof is similar. 0 

1 

From Lemma '7.7, the arc length l( a) defined in Step 2 is nonnegative for each a Eo A 6 . 

Consequently, jJ( v) is well defined and can be computed efficiently by Dijkstra's algorithm. 

Lemma 7.8: The output ~ = (B+,M,B-) of procedure SttccessiveShortestPath is a 2E­
optimal independent assignment with respect to the corresponding p and c. 

Proof: From (7.5) we have 1 C6 (a) - C6 (a)1 ~ 2~ for all a E A6 . Hence, the present lemma 
follows from Lemma 7.7. 0 

8. The Complexity of the Algorithm 
In the algorithm we assume an oracle, called an independence oracle, for testing whether a 
given set is independent. Clearly, in our algorithm procedure Refine is executed O(log(rC)) 
times. Procedure Refine is divided into procedures Auction and SuccessiveShortestPath. 
We first analyze procedure Auction. 

Lemma 8.1: Dming an execution of procedure Auction each vertex in V* can be relabeled 
at most L + 4 times and thus the total number of relabeling operations is at most (L + 4) 1 V* I. 
Proof: For each v E V+ we relabel v only when it is relabeledless than L+4 times. So, it 
is relabeled at most L + 4 times. For each u E V-, at the moment of the last relabeling on 
u, there exists v E V+ such that (v, u) is admissible. Thus we have p( v) - p( u) + c( v, u) < O. 
Denote the potential obtained at the end of Step 1 by p. Then, ~ = (B+, M, B-) in Step 
1 is a O-optimal independent partial assignment associated with p. Since (v, u) E A,~, we 
have ]5(v) - p( u) -I- c( v, u) ~ O. Hence, 

(8.1 ) p( u) - p( u) > p( v) + c( U, It) - jj( v) - c( v, u) ~ - (L + 4 lE. 

Therefore, u can be relabeled at most L + 4 times. o 
Lemma 8.2: The total number of push operations during an execution of procedure Auction 
is at most (L + 4)1\/*1. 
Proof: Since each push operation is followed by a relabeling operation, the present lemma 
follows from Lemma 8.1. 0 

Each push or relabeling operation requires 0(1\/*1) time for searching an arc. Hence, we 
have 

Theorem 8.3: The complexity of procedure ku.ction is 0(LI\/*12). o 
The efficiency of our algorithm depends on the size of the finallvf obtained by procedure 

Auction which can be controlled by the choice of L. A relation between L and the size of 
M will be given in Lemma 8.5. 

Assume that the outputs of procedure Auction are ~ = (B+, .~1, B-) and p, and the 
input is PI. Let ~Il = (Bt, NIt, BI ) be a 4E-optimal independent a')signment with respect 
to PI. If B+ - Bt is not empty, suppose B+ - Bt = {vt,··· ,vi} and put ct = C+(BtlvtJ 
(i = 1, ... , t). Also define 

(8.2) 

Apply Lemma 4.4 to these two families {ct 1 i = 1,"" t} and {T/ 1 i = 1"", t}, let 
{ut, ... , ut} (= Bt - B+) be the common transversal of them. (It may be noted here that 
obtaining a transversal of each of the two families is enough for the present argument, but 
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we use Lemma 4.4 that appeared in the original version of this paper.) Then, for a bijection 
f from {l, ... , t} to itself we have ut E Cti) n T/ for each i = 1,···, t, i.e., (vt, 'Ut) EAt> 
and (ut, vj(i)) E At>] for each i = 1,···, t. Similarly, if Bl - B- is not empty, suppose 
Bl - B- = {vI' ... , v;} and let {tlj,·· . , u;} (= B- - Bl ) be the common transversal of 
C; = C-(B-Ivil (i = 1,··· , s) and 

(8.3) 

There exists a bijection 9 from {I, ... , s} to itself such that (v;, 'Ui) E At> and (ui, V~ i») E 
At>] for each i = 1,· .. , s. 

For each vertex v E V in a directed graph G = (V, A) we define 

(8.4) 

(8.5) 

I{a 1 a E A, a+a = v}l, 
I {a I a E A, a-a = v} I· 

We consider two directed graphs H = (W, F) and HI = (W, Fd that are, respectively, 
subgraphs of Nt> and Nt>] with W = Bt U B+ U Bj U B- and 

(8.6) 

(8.7) 
MI U!VI U (U;=l {(v;, un}) U (Uf=l {(vi-, ui)}), 
ifl U M U (U;=l {(ut, vj(i»)}) U (Uf=l {Cui, V~i»)})· 

Let S+ = B+ - a+ M and S- = B- - a- M. Note that Bt = a+ MI and Bj = D- MI. It is 
easy to verify the following properties of H and HI: 

(8.8) 

(8.9) 

and 

(8.10) 

for v E W - S+ - S-, 

for v E S+ 
for v E S-

for v E S+ 
for v E S-. 

It follows from (8.8)",(8.10) that 

(8.11) 

(8.12) 

the graph H = (W, F) is decomposed into I S+ I (= IS-I) vertex-disjoint 

directed paths from S+ to S- and some vertex-disjoint directed cycles, 

the graph HI = (W,F1) is decomposed into IS-I (= IS+I) vertex-disjoint 

directed paths from S- to S+ and some vertex-disjoint directed cycles. 

Lemma 7.4 follows from (8.11). Furthermore, we have 

(8.13) 

Let l x J be the largest integer not exceeding x and r.T 1 be the smallest integer not less 
than .T. 

Lemma 8.4: The arc set F defined in (8.6) has no less than r(r -IMIlL/51 arcs. 
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Proof: Let ~l = (Bt,Nh,Bl), ~ = (B+,M,B-), PI and p be those appearing above. 
From (8.11) and the E-optimality of ~ = (B+,M,B-) in N"t. we have 

( 8.14) ~= ct.,p(a) = L p(v) - L p(v) + L ct.(a) 2: -IFIE. 
aE,E-' vES+ vES- aEE-' 

On the other hand, from (8.12) and the 4E-optimality of ~I we have 

(8.15 ) 

Note that p(v) = PI (v) - 4E for v E S-, since the potential of sink vertex v decreases by 
4E at the beginning of procedure Auction and then remains unchanged. From the tenlli­
nation condition of procedure Auction, we have p(v) = PI(V) - (L + 4)E for v E S+. Also, 
LaEFl Ct.l (a) = - 2::aEF ct.(a). Hence, from (8.14) and (8.15), 

(8.16) -IFk < L p(v) - L p(v) + 2: ct.(a) 
vES+ vES- aEE-' 

< -(r -IMI)LE + 4IFIIE. 

Consequently, IFI 2~ f(r -IMI)L/5l o 
From Lemma 8.4 we have 

Lemma 8.5: Let L~ = (B+, M, B-) be the output of procedure Auction. Then we have 
IMI2: f(r -IMIlL/51 - 3r. If we choose L 2: 20r, then IMI = r. 
Proof: It easily follows from (8.13) and Lemma 8.4 that IMI 2: f(r -IMI)L/51 - 3r. Let 
L be not less than 20r. If IMI :j:. r, i.e., r -IMI :? 1, then the above inequality would imply 
IMI 2: fL/51 - 3r == 4r - 31' = 1', a contradiction. Therefore, IMI = r. 0 

Next, we turn to analyze procedure SuccessiveShortestPath. In each iteration of Steps 2 
and 3 in procedure SuccessiveShortestPath, M is augmented by one. Therefore, the number 
of such iterations is r -IMJ, where ~ = (B+, M, B-) is the input. The dominating part of 
the computation is Dijkstra's algorithm for finding p( v) and the required shortest directed 
path, which requires 0(JV*12) times. Hence, we get 

Theorem 8.6: The complexity of procedure SuccessiveShortestPath ,is O((r -IMI) 
JV*12) when M is the input. 0 

Finally, we have 

Theorem 8.7: If we choose L = f20vr-51, then the complexity of the optimal independent 
assignment algorithm is O( vrJV* 121og( re)) with the independence oracle. 
Proof: Procedure Refine is executed O(lOg(I'C)) times. From (8.13) and Lemma 8,4 we 
have 31' + IMI 2: f(r -IMI)L/5l When L = f20vr - 51, we have I' - IMI ::; vr. Hence, 
Theorems 8.3 and 8.6 imply the present theorem, 0 
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