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Abstract The present paper deals with an optimal stopping problem with several possible search areas in 
which travel costs are assumed among the areas. In terms of the future availability of an offer once obtained 
and passed up, the following two cases are considered: (1) it becomes instant.ly and forever unavailable and 
(2) it remains forever available, called a no recall model and a recall model. respect.ively. The main results 
obtained here are as follows: 1. Bot.h models have a reservation value property, and the reservation vallles are 
non decreasing in the number of periods, t, remaining up to deadline and converge as t -+ 00; 2. Their limits 
in both models do not always become the same, which coincide in conventional optimal stopping problems; 
3. In the recall model, there may exist double critical points w. and w' (w. < w') in terms of the present 
offer w in the sense that, if w < w., then the opt.imal next search area is i, if w. :s tu :s w', then j i= i, and 
if w' < w, then again i; and 4. Suppose the travel cost is independent. of the start.ing search area. Then, in 
the recall model, t.he reservat.ion value is independent. of both the remaining periods and the current search 
area. Furthermore, in this case, the reservation values in both models converge to the same value as t -+ 00. 

1. Introduction 
Suppose that a piece of land must be disposed of by a certain day in the future (dead­

line) [5]. In order to find buyers in a different city every day, some cost (search cost) must 
be paid. Offers for the land vary with the buyer, and these offers are assumed to be mutu­
ally independent random variables having a known distribution function (offer distribution 
function). Now postulate that all offers up to the day before the deadline are not sufficiently 
large and the deadline has come without the asset being sold. Then it must be sold for the 
amount offered by a buyer that will appear at the deadline, however small it may be, so 
that this situation must be said to be quite risky. Taking the avoidance of such risk in the 
deadline into consideration, the owner of the land must determine a decision rule to sell the 
asset for as high a price as possible up to the deadline. 

The reasonable decision rule will have the following structure. Now suppose a buyer has 
just appeared and offered a price w on a certain day before the deadline. Then, it must be 
determined whether to sell the asset to him at that price, or not to sell and continue the 
search for another buyer by paying the search cost. The decision can be characterized by a 
critical price such that, if the price is greater than it, sell the asset, if not, then don't sell. 
Usually the critical price is called a reservation value. Of course, the critical price depends 
on the number of days t that remain up to the deadline. Then, the objective here is to find 
the sequence of t-dependent critical prices so as to maximize the expected net profit, the 
expected selling price minus the total expected search costs. 

Many different models of these types of stochastic sequential decision processes [1-16], 
usually called an optimal stopping problem or a search problem, have been posed and 
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investigated so far; however, in all of them, only one search area in which offerers* are 
searched for has been assumed. In the present paper, we will present a model with several 
possible search areas and examine the properties of its optimal decision rule. In this model, it 
goes without saying that travel costs are assumed between two cities, so the optimal decision 
rule must be prescribed with taking into consideration the travel costs accumulated every 
time the searcher moves from a certain search area to another. 

2. Model 
Consider the following discrete-time optimal stopping problem with a finite planning 

horizon. First, for convenience, let points in time be numbered backward from the final 
point in time of the planning horizon as 0,1, ... and so on, equally spaced, where an interval 
between two successive points in time, say time t and time t -1, is called a period t. Suppose 
there exist N 2: 1 possible search areas, and let the set of them be S = {I, 2, ... ,N}. When 
the searcher moves from search area i to j, a travel cost dij 2: 0 is incurred with dii = o. If 
paying Si 2: 0 in search area i, then an offer can be obtained. Below, for all i, j E S, define 

C;j = dij + Sj, (3.1) 

called a travel and search cost. An offer W obtained in search area j is a random variable 
having a known distribution Fj(w) with a finite expectation J-tj where, for 0 < aJ < bj < 00, 

let Fj(w) = 0 for w < aj, 0 < Fj(w) < 1 for aj ::; w < bj , and Fj(w) = 1 for bj ::; 
w. Sequentially obtained offers w, w','" are assumed to be stochastically independent. 
Here postulate that one of the offers obtained during the given planning horizon must be 
necessarily accepted. Throughout the paper, let us introduce a per-period discount factor 
!3 E (0,1] and assume 

!3J-tj - C;j > 0 (3.2) 

for all i, j E S, the natural assumption implying that, provided that it has been decided 
to travel from a certain search area i to j and make the search there, the expected present 
value f3J-tj of an offer obtained in search area j at least recovers the travel and search cost 
C;j paid. 

The objective here is to maximize the expected present discounted net value, the ex­
pected offer accepted minus the total expected travel and search cost. In this case, the 
optimal decision rule achieving the objective consists of the following two rules: optimal 
stopping rule, prescribing how to stop the search by accepting an offer and optimal selection 
rule, stating, if continuing the search, whether or not to conduct the search by staying in 
the current search area or, if not, which search area to move to. 

In the present paper, we will also investigate the specialized case that travel cost dij is 
independent of the starting search area i E S. Now, when considering an optimal stopping 
problem, the following three cases are usually discussed in terms of future availability of an 
offer once obtained and passed up: (1) it becomes instantly and forever unavailable, (2) it 
remains forever available, and (3) it will be stochastically unavailable in the future, called a 
no recall model, a recall model, and an uncertain recall model [3,7,9] , respectively. In the 
present paper, only the first two models will be examined. 

3. Examples 
Below, let us give three concrete examples to which the model in the previous section 

will be well applied. 

*In general, a person who offers price w is referred to as offerer and the price w as offer w. 
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• Asset selling pTOblem 
Consider again the asset selling problem stated in the previous section. The land owner 

travels to find a buyer among the cities starting from his city of residence. The search 
cost in each city may depend on its area, population, and so on; the travel costs may be 
proportional to the distance between two cities, and the distribution function of amounts 
offered by buyers may vary with the economic power of each city. In this case, the following 
two points must be decided each day over the whole planning horizon. First, seeing the 
amount offered by a buyer that has just appeared in a city, whether to stop the search by 
accepting it or to continue the search, and second, if continuing, whether to make the search 
in the current city or to move on to another city, and if moving, which city to go to. 

• Fishing grounds selection problem 
Suppose several promising fishing grounds have been found in the North Pacific by means 

of satellite observation, and a captain of a fishing fleet, provided that he is now in one of 
them, is considering which of these places would prove best. The moving costs from each 
fishing ground to the others are known. After conducting a trial catch at a place for a 
certain cost, the future catch that is expected if a full-scale catch is made there is revealed 
after a short time and let the future expected catch be assumed to be a random variable 
having a known distribution function, varying from place to place. Then, the captain must 
decide the following two points. First, knowing the future expected catch at a certain fishing 
ground, whether to conduct full-scale fishing at the fishing ground or not, and second, if 
not, which fishing ground to move to. If taking into consideration the unexpected movement 
of each fishing ground itself and the change of the future expected catch there due to the 
ever-changing marine conditions such as the current, the water temperature, the volume 
of plankton, and so on, the decision that must be made will become more challenging and 
difficult. 

• Technology selection problem 
Another example is the technology selection problem [16]. Suppose the research depart­

ment of a certain production company has been assigned the task of finding a new and less 
expensive production process to produce some product. Several substitutable technologies 
are being considered for this. The long-run profits that will be yielded by a production 
process for each technology are uncertain and will not be known until development work, 
that will spend money, is completed. The long-·run profits that will be revealed after de­
velopment work is a random variable having a known distribution function, depending on 
the technology. If it was judged that a production process for a certain technology will not 
yield a sufficiently large long-run profit, then development work must be shifted to another 
technology. Then, a shifting cost is incurred, which may depend on the current technology 
and the one that is shifted to. It goes without saying that the technologies correspond to 
the search areas in our model. What must be decided in this problem are the following two 
points. First, knowing the long-run profit of the production process for a certain technology, 
whether to employ it or not, and second, if not, to which technology the development work 
should be shifted. 

4. Preliminaries 
For any real number x and any i,j E S, define 

Kij(x) = /3 looo max{w,x}dFj(w) - x - etj 

= /3 looo max{w - x, O}dFj(w) - (1 - /3)x - etj 

(4.1) 

(4.2) 
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J(il(X) 

J(;2(X) 

where 

Figure 1 
Relationship of Kij(Y) and hij 

Therefore, it follows that 

s. lkuta 

(j* = 3) 

__ -+ ________ ~~~~~=_X 

Figure 2 
Relationship of Kj(Y) and hJ 

if f3 < 1, 

if f3 = 1. 

(4.3) 

(4.4) 

(4.5) 

Let the minimum solution of the equation Kij(X) = 0, if it exists, be denoted by f4j (Fig­
ure 1), the maximum of all hij for j E S by hi, and the i maximizing hi on S by i*, and let 
h* = h; •. That is, 

f4j = min{x I Kij(X) = O}, h* = maxhiJ" 
• jES ' 

h* = h*. = maxh*. 
• iES' 

(4.6) 

Lemma 1 
(a) Kij(X) is nonincreasing in x and strictly decreasing in x < bj . 
(b) Kij(X) + x is nondecreasing in x, 
(c) hij exists for all i, j when~ bj ~ hij ~ f3J.Lj - Cij > 0 for all i and j. 
(d) 1. If (1 - (3)2 + C;j f. 0, then hij is the unique solution of Kij(X) = 0 and 0 < hij < bj. 

2. If (1 - (3)2 + C;j = 0, then hij = bj 
(e) IKij(Y) + Y - Kj(x) - xl ::; f3ly - xl for any x and y, 

Proof: The inequalities below will be used in this proof. For any x and Y 

Kij(X) = f3l'o (w - x)dFj(w) - (1 - (3)x - Cij 

~ f31°O (w - x)dFj(w) - (1 - (3)x - Cij, 
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by use of which we can get 

Kij(Y) - Kij(x) :::; ((3 hoo 

(w - y)dF.;(w) - (1 - (3)y - Cij) 

Similarly we have 

-((31
00 

(w - x)dFj(w) - (1 - (3)x - Cij) 

= (31
00 

(x - y)dF(w) + (1 - (3)(x - y) 

= (3(x - y)(l - F(y)) + (1 - (3)(x - y) 

= (y - x) «(3F(y) - 1) ... (1*). 

Kij(Y) - Kij(X) ~ (y - x)((3F(x) - 1) ... (2*). 
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(a) The nonincreasingness is clear from (4.2). For any x < Y < bj , we have Kij(Y) -
Kij(X) < 0 from (1*). Hence, it follows that Kij(X) is strictly decreasing in x < bj. 

(b) Obvious from (4.1). 
(c) The existence of hij is clear from (a), (4.4), and (4.5). It is obvious from Kij(bj ) :::; 0 

that hij :::; bj. Since 

o = Kij(~j) ~ (3 J wdFj(w) - hij - Cij = (3JLj - hij - Cij, 

we get hij ~ (3JLj _. Cij· 
(d1) If (3 < 1, then, as easily seen from (4.2), Kij(X) is strictly decreasing in x with 

Kij(X) --+ 00 (-00) as x --+ -00 (00); hence, ~j uniquely exists. If (3 = 1, then Cij > 0 from 
(1 - (3)2 + etj > 0 and we see that Kij(X) is strictly decreasing in x < bj with Kij(X) ---+ 00 
as x --+ -00 and Kij(bj ) = -Cij < 0; hence, hij uniquely exists. The inequality 0 < hij < bj 
is immediately obtained from Kij(bj ) < 0 and Kij(O) = (3JLj - Cij > 0 due to the assumption 
(3.2). 

(d2) In this case, clearly Kij(X) > Kij(bj ) == 0 for x < bj and Kij(hij ) = 0 for x ~ bj 
form (4.3); hence, it follows by definition that h,j = bj • 

(e) From (1*) and (2*) we get 

(3(y - x)Fj(x) :::; Kij(Y) + Y - K'ij(X) - x:::; (3(y - x)Fj(y), 

hence it follows that 

IKij(Y) + y - Kij(X) - xl 
:::; max{I(3(y - x)Fj(y) I, 1(3(y - x)Fj(x)l} 

= f31y - xl max{Fj(y) , Fj(x)} 

:::; f31y - xl· • 

The following is clear from the fact that Kij(X) is nonincreasing in x (Figure 1): 

{
:::; 0 if x ~ h;, 

Ifeag'Kij(X) ~O ifx:::;hi, 
hence 

(4.7) 

(4.8) 
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• Case that dij is independent of i 
In this case, since Cij becomes independent of i, so also are Kij(X) and hij ; therefore, 

let Kj(x) = Kij(X) and hj == hij . Then, let the smallest solution of equation Kj(x) = ° be 
denoted by hj, and the j maximizing hj on S by j* (Figure 2) where h* = hj . That is, 

h* = hJ·• = max hJ
o. 

jE! 
(4.9) 

Remark 1 (See Figure 2) The j* coincides with the j attaining the maximum of the 
left hand side of 

maxKo(h*) = 0. 
jES J 

5. No Recall Model 
Let Ut(w, i) denote the maximum expected present discounted net value starting from 

time t, in search area i, with a current offer w. Then, clearly uo(w, i) = w, and we have 

Ut(w,i) = max{w,Ut(i)}, t 2': 1, (5.1) 

where Ut(i) is the maximum expected present discounted net value when continuing the 
search, expressed as 

(5.2) 

where ~ is the value of an after that will be obtained at the next point in time. Substituting 
(5.1) into (5.2) yields 

(5.3) 

where 

(5.4) 

Here we shall denote the j attaining the maximums of the right hand sides of (5.3) and 
(5.4) by Vt(i). Then, supposing an offer w has been obtained at time t in search area i, we 
can prescribe the optimal decision rules as follows: 

Optimal Stopping Rule If w > Ut(i), then stop the search by accepting the offer, or 
else continue the search, hence the Ut (i) is a reservation value in the model. 

Optimal Selection Rule If it is decided to continue the search, then the optimal search 
area of the next point in time is Vt(i). Hence, if Vt(i) = i, then it is optimal to continue the 
search by staying in the current search area i. 

Let kn(t, i) denote an optimal search area at time n = 0,1, ... ,t, starting from time t in 
search area i. Then 

kn(t, i) = Vn+l (kn+l (t, i)), n = 0,1"", t - 1, (5.5) 

where kt(t, i) = i. 

Theorem 1 
(a) Ut(i) ::; h* « 00) for all t and i, 
(b) Ut (i) is nondecreasing in t and converges as t -+ 00 to the limit U (i), satisfying 

(5.6) 
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(c) U(i) 2:: hii' 
(d) If /3 < 1, then U(i) is the unique solution of the equation (5.6). 

Proof: (a) It is immediate from (5.4) and Lemma l(c) that 

U1 (i) :::; max
s 

hij = h; :::; h*. 
JE 

Suppose Ut - 1 (i) :::; h*. Then, since h* 2:: h:, we have from (5.3), Lemma l(b), and (4.7) 

(b) The monotonicity of Ut(i) in t can be easily proven by induction starting with 

due to Ul(~,j) 2:: ~ for all ~ from (5.1). The convergency is obvious from this and (a). (5.6) 
is immediately obtained from (5.3). 

(c) Rearranging (5.6) by transposing U(i) from the left hand side to the right yields 

I) = max{Kii(U(i», m!}X{Kij(U(j» + U(j) - U(i)}}, 
1-1-0 

from which it must follow that Kii(U(i» :::; 0, implying h;i :::; U(i). 
(d) Suppose equation (5.6) has another finite solution V(i), i.e., 

V(i) = I~Eagc{Kij(V(j» + V(j)}. 

Let .::1 = m~EslU(i) - V(i)! where ° < .::1 < 00. Then, using the general formula 

! m?J( a(j) - m?J( b(j)! :::; m?J( ! a(j) - b(j)!, 
J J J 

from (5.6), (5.7), and Lemma l(e), we can immediately see 

!U(i) - V(i)! = ! ~Eagc{Kij(U(j» + U(j)}- ~Eagc{Kij(V(j» + V(j)}! 

:::; II;1ax
s 

!{Kij(U(j» + U(j)}-{Kij(V(j» + V(j)}! 
JE 

:::; /3max
s 

!U(j) - V(j)! 
lE 

= /3.::1, 

(5.7) 

hence we have .::1 ~; /3.::1, yielding the contradiction 1 :::; /3. Consequently, the solution U(i) 
must be unique. _ 

By v(i) we shall denote the j that maximizes the right hand side of (5.6) . 

• Case that dij is independent of i 
In this case, Cij, Ut(i), vt(i), kn(t, i), U(i), and v(i) are all also independent of i, so that 

let us denote them by Cj, Ut, Vt, kn(t), U, and v, respectively. Then, Ut satisfies 

Ut = Ut- 1 + ~Ea.sxKj(Ut-l)' t 2:: 1, 

where U1 = maxj{;JJlj - Cj}. 

(5.8) 
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Corollary 1 U = h* and v = j* . 

Proof: From Theorem l(a,c) we have ~ SUS h* for all i, hence h* SUS h*, so that 
U = h*. If t --> 00 in (5.8), then we have maxj Kj(h*) = 0, hence the optimal search area v 
of the next point in time is given by j maximizing Kj(h*) on S, Le., j* (Rema.rk 1), hence 
v = j* • 

Thus, if an infinite planning horizon is permitted, then the optimal stopping and selection 
rule can be described as follows: 

Opti7nal Stopping and Selection Rule Continue the search in search area j* till an 
offer w ~ h* appears. 

6. Recall Model 
Let Ut(Y, i) denote the maximum expected present discounted net value, starting from 

time t, in search area i, with the best offer Y so far. Then, clearly uo(Y, i) = y, and we have 

Ut(Y, i) = max{y, Ut(y, i)}, t ~ 1, (6.1) 

in which Ut(y, i) is the ma.ximum expected present discounted net value when continuing 
the search, expressed by 

Ut(y,i) = II.J.ax{,B (OO Ut_l(max{~,y},j)dFj(~) - Cij}, t ~ 2, 
1ES Jo (6.2) 

where 

(6.3) 

Here we shall denote the j maximizing the right hand sides of (6.2) and (6.3) by Vt(Y, i). 
Then, supposing the searcher is in search area i at time t with the best offer Y so far, we 
can prescribe the optimal decision rules as follows. 

Opti7nal Stopping Rule If Y > Ut(y, i), then stop the search by accepting the best 
offer y, or else continue the search. 

Opti7nal Selection Rule If it is decided to continue the search, then the optimal search 
area of the next point in time is Vt(y, i). 

Now let Yi(jli) be a set of Y for Y in which the right hand sides of (6.2) and (6.3) 
are maximized by the search area j = j; this is the optimal next search area,. It will be 
demonstrated in a numerical example in Section 7 that the set may be given by the union 
of exclusive intervals. 

Let kn(t, y, i) denote the optimal search areas at times n = 0,1,···, t, starting from 
time t in search area i where y = (Yl, Y2, ... , Yt) is the vector of the best offers Yn at 
times n = 1,2,·", t with Yt = Y where Yt S Yt-l S ... S Yl. Then 

kn(t, y,i) == Vn+1(Yn+1, kn+1(t, y,i)), n = 0,1"", t - 1, 

where kt(t, y, i) = i. 

Lemma 2 

(6.4) 

(a) For all t ~ 1, Ut(y, i) - Y is nonincreasing in y, diverges to 00 as y --> -00, and becomes 
nonpositive for a sufficiently large y, hence the equation Ut(y, i) - Y = ° ha,s a positive 
solution. 
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(b) Ut(y, i) is nondecreasing in t for all Y and i with the upper-bound max{y, h*}; hence, it 
converges as t ~ 00 to a limit U(y, i) for all y and i, satisfying 

U(y,i) = max{,B (oo u(max{~,y},j)dFj(~) - Cij}. 
JES lo (6.5) 

Proof: (a) First, it is clear that Ul(y, i) -- y (= maxjKij(y)) is nonincreasing in y 
from Lemma l(a), diverges to 00 as y ~ -00 from (4.4), and becomes nonpositive for any 
sufficiently large 11 from (4.3). Next, assume that the assertions hold for Ut-l(y, i) - y; 
hence, Ut-l(y, i) - Y (= max{O, Ut(y, i) - y}) is also nonincreasing in y and becomes 0 for 
any sufficiently large y. Then, rearranging Ut(y, i) - y by substituting 

Ut_l(max{~,y},j) = max{~,y} + (Ut_l(max{~,y},j) - max{~,y}), 

we have 

Ut(y, i) - y = ryE8f{,B loo max{~, y}dFj(~) - y - Cij 

+,B loo (Ut-l (ma){{~, y}, j) - max{~, y} )dFj(~)} 

= max{Kij(Y) +,B {oo (Ut-l(max{~, y},j) - max{~, y} )dFj(~)}. 
JES lo 

The terms inside the braces, Kij(Y) and 

,B loo (Ut-l(max{~, y}, j)- max{~, y} )dFj(~), 
are both nonincreasing in y and becomes nonpositive for any sufficiently large y from 
Lemma l(a) and the induction hypothesis; hence, so also is Ut(y, i) - y. In addition to 
this, since Kij(Y) diverges to 00 as y ~ -00, so also is Ut(y, i) - y. Thus, it follows that 
Ut(y, i) - Y = 0 has a solution for all t ~ 1, which is positive because of 

Ut(O, i) - 0 = max{,B (oo Ut_l(~)dFj(~) - Cij} 
IES lo 

~ max{,B (oo ~dP.(~) - Ci.} 
IES lo J J 

= max{,Bf,L' - Ci·} > O. 
iES J J 

(b) First, the monotonicity of Ut(y,i) in t can be easily verified by induction starting 
with 

U2 (y,i) ~ max{,B (oo max{~,y}dFj(~) - Cij} 
JES lo 

= ryEa.sX Kij (y) + y 

= U1(y,i) 

due to ul(max{~, y},j) ~ max{~, y} from (6.1). Next, let us show that it has an upper­
bound in y and i. If y ::; hi, then 

Ul (y, i) ::; maxs K;j(h:) + h: = h: 
JE 

from Lemma l(b) and (4.8). If y ~ hi, then U1(y,i) ::; y from (6.3) and (4.7). Hence, for 
any y we have U1(y,i)::; max{y, hi} ::; max{y,h*}. Assume that Ut-1(y,i) ::; max{y,h*}. 
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Then, since Ut_l(max{~, y}, j) :s: max{max{~, y}, max{y, h*}} = max{~, max{y, h*}} for all 
~,y and j, we have for any y 

Ut(y, i) :s: Jl.lax{,8 roe max{~, max{y, h*} }dFj(~) - Cij} 
]ES io 

= ryEBf{Kij(max{y, h*}) + max{y, h*}} 

= ryEBfKij(max{y, h*}) + max{y, h*} 

:s: max{y, h*}. 

from (4.7) because of max{y, h*} ~ h* ~ hi for all y. Thus, it follows by induction that 
Ut(y, i) has an upper-bound max{y, h*}; hence, it converges to the limit U(y, i) as t ~ 00 

for all y and i. (6.5) is immediately obtained from (6.2). • 

By v(y, i) we shall denote the j that attains the maximum of the right hand side of (6.5). 

Theorem 2 
(a) There exists the minimum solution Zt(i) of Ut(y, i) - y = 0, which is positive, i.e., 

Zt(i) = min{z I Ut(z, i) - Z = O}. 

(b) zt(i) is nondecreasing in t and converges as t ~ 00 to a finite number z(i), 
(c) Ut(y, i) = Ut(y, i) > Y for Y < Zt(i) and Ut(y, i) = y ~ Ut(y, i) for zt(i) :s: y, 
(d) Zl(i) = hi and hi :s: Zt(i) :s: h* for all t,i, hence Zt(i*) = h* for all t, 

Proof: (a) Obvious from Lemma 2(a). 

(6.6) 

(b) The monotonicity of Zt(i) in t is clear from the fact that Ut(y, i) - y is nondecreasing 
in t from Lemma 2(b). That Zt(i) is upper-bounded in t is also evident from the fact that 
Ut(y, i) is upper-bounded int from Lemma 2(b); hence, Zt(i) converges as t ~ 00. 

(c) Immediate from Lemma 2(a). 
(d) That zl(i) is given by hi is clear from (6.3) and (4.7). Assume the assertion 

in the theorem is true for t - 1. Here note that Ut(y, i) ~ maxj Kij(Y) + y due to 
Ut-l(max{~,y},j) ~ max{~,y}, hence Ut(y, i) ~ y for y:S: hi from (4.7). Thus we have 

Since max{e, h*} ~ h* ~ Zt-l(j) for all ~ and j by the assumption, we have 

Ut-l(max{~, h*},j) = max{~, h*} 

for all e from (c). Therefore, from (6.2) we have Ut(h*, i) = maxj Kij(h*) + h* ::;: h* due to 
(4.7). Thus we have 

Ut(h*, i) - h* :s: o· .. (2*). 

Accordingly, it follows from (1*), (2*), and Lemma 2(a) that hi :s: Zt(i) ~; h* (Fig­
ure 3). • 

It follows from Theorem 2(c) that the optimal stopping rule can be restated as follows. 

Optimal Stopping Rule Ify ~ Zt(i), then stop the search by accepting the current best 
offer y, or else continue the search, hence the zt(i) is a reservation value in the model. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimal Stopping Problem 99 

--~r-----~------~~~--~~--y 
hi 

Figure 3 
Ut(hi,i) - hi ~ 0 and Ut(h·,i) - h* ~ 0 

• Case that dij is independent of i 
In this case, C;j, Ut(y, i), Ut(Y, i), Zt(i), Vt(Y, i)., kn(t, y, i), U(y, i), v(y, i), and yt(jli) are 

all also independent of i, so let us represent them by Cj, Ut(y), Ut(Y), Zt, Vt(Y), kn(t, y), 
U(y), v(y), and Yi(j), respectively, where 

U(y) = II:1ax{,B (OO u(max{~,y})dFj(~) -Cj} (6.7) 
)ES Jo 

Corollary 2 
(a) Zt = h* for all t. 
(b) Ut(Y) = Ut(y) > Y if Y < h*, and Ut(y) = Y 2:: Ut(y) if h* ~ y. 
(c) u(y) = U(y) > 11 ify < hO, and u(y) = y 2:: U(y) ifh* ~ y. 

Proof: (a) Clear because of h* = maxi hi ~ Zt ~ h* from Theorem 2(d). (b) Evident 
from (a) and Theorem 2(c). (c) Obvious from (b). • 

Now, note that (6.7) can be expressed as 

U(y) = II:1ax{t1 (oo(u(max{~,Y})I(h* 2::~) +-u(max{~,y})I(~ > h*))dFj(~) - Cj} 
)ES Jo 

where 1(·) is the indicator function, i.e., I(S) = 1 if the statement S is true, or else I(S) := O. 
Then, from Corollary 2(c), if y ~ hO, then u(max{~, y}) = max{~, y} = ~ for ~ 2:: h*, hence, 
the above expression becomes 

U(y) = max{,8 {OO (U(max{~, y} )1(h* 2:: ~) +- O(~ > h*))dFj(~) - Cj}, Y ~ h*. (6.8) 
JES .10 

Theorem 3 If,B < 1, then U(y) = h* and v(y) = j* for y ~ h*. 

Proof: It will suffice to prove the following two points: (1) If the right hand side of (6.8) 
is rearranged by substituting U (y) = h*, y ~ h*, then the resultant expression becomes 
equal to h* and (2) equation (6.7) has an unique solution. First, let us prove (1). Suppose 
y ~ h*. Then 
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r.h.s. of (6.8) == max{,6 {CO (h*/(h* ;:::~) + ~/(~;::: h*))dFj(~) - Cj} 
JES io 

== max{,6 (CO max{~, h*}dFj(~) - Cj} 
JES io 

== ryE~Kj(h*) + h* = h*. (6.9) 

Next, let us prove (2). Suppose equation (6.7) has another finite solution V(y), y ~ h* such 
that V(y) > y for y < h* and V(y) ~ y for h* ~ y. Then 

V(y) = max{,6 {CO (V(max{~, y} )/(h* ;::: ~) + ~/(~ > h*))dFj(~) - Cj}, y ~ h*. (6.10) 
,ES io 

Let L1 = sup<h.IU(y) - V(y)1 where 0 < ..::1 < 00. Then, using the same method as in the 
proof of Theorem l(d), we immediately obtain from (6.8) and (6.10) 

IU(y) - V(y)1 ~ ,6maxs (COIU(max{~,y}) - V(max{~,y})I/(h*;::: ~)dPj(~) 
JE io 

= ,6max (h'lU(max{~,y}) - V(maxU,y})ldFj(~) 
JES Jo 

~ ,66 Il.laxs Fj(h*) 
lE 

~ ,66, 

from which we have ..::1 ~ ,66, yielding the contradiction 1 ~ ,6. Thus (6.7) must have an 
unique solution. 

Suppose y ~ h*. Then, we have U(y) = maxjES Kj(h*) + h* from (6.9), hence it must 
be v(y) = j* (Remark 1). • 

7. Numerical Examples 
Here consider again the asset selling problem of Section 3 where there are three possible 

cities i = 1(0), 2(@),3(@) which are search areas, i.e., S = {l, 2, 3}, and amounts offered 
by buyers that will appear in each city are random variables having triangle distributions 
such as those in Figure 4. Let the travel costs between two cities be d;j = 1.0 for i =I j and 
dii = 0.0. Let the discount factor ,6 = 0.98. 

7.1 No Recall Model 
Let the search cost in each city be 81 = 3.0, 82 = 5.0, and 83 = 11.0, respecti.vely. Then, 

hi; and h; are obtained as shown in Table 1, hence h* = 54.65 and i* = 2. 
If the search is made in a city i on a day t, then the optimal reservation value Ut(i) and 

the optimal next search city vt(i) are calculated as shown in Table 2 (Figure 5) 

0.0 25.0 100.0 0.0 50.0 100.0 0.0 75.0 100.0 

Figure 4 
Offer distribution functions of three cities 
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L.....I ....... _..&.. ....... &...~, ........ , -'-" t 

Figure 5 
Reservation values of three cities 

o 0 0 0 0 0 0 

Figure 6 
Reservation values Ut 

(Case of travel cost d;] being independent of i) 
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Table 3 shows the path of the optimal search cities, provided that the search starts 
from day t = 10 in each city i = 1,2,3 and amounts offered by buyers that appear on 
days t = 10,9, ... , 1 are all lower than the corresponding reservation values Ut(i). The table 
shows the following three different scenarios: 1. If starting from city 1, then it is optimal to 
stay in the city up to day 4, then go to city 2 staying there up to day 1, and finally go to 
city 3; 2. If city 2, then it is optimal to stay in the city up to day 1 and finally go to city 3; 
3. If city 3, then it is optimal to go to city 2 on the next day staying there up to day 1 and 
finally go to city 3 . 

• Case that dij is independent of i 
For example, let dij = 0 for all i, j and 81 = 2.9, 82 = 5.0, and 83 = 11.0. Then, we have 

hI = 54.89, ~ = 54.65, and h3 = 52.45, hence h* = 54.89 and j* = 1. In this case, the 
optimal reservation value Ut and the optimal next search city Vt are calculated as shown in 
Table 4 (Figure 6). 

7.2 Recall ModE!l 
In this model, for the convenience of numerical calculations, let us transform the price 

distribution functions f(w) into a discrete distribution functions g(wn) as follows. First, the 
interval [0,100) is divided into N = 500 subintervals, equally spaced. Then, let the N + 1 
points Wn = (100/N) x n, n = O,I, ... ,N, and g(wn) = f(wn)/S with S = L,~=of(wn). 
Let the search costs in the three cities be 81 = 30, 82 = 5.0, and 83 = 20.0. In this case, ~j 
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and hi are obtained as shown in Table 5, hence h* = 65.40 and i* = 1. 
Furthermore we obtain Zt(I) = hi = 65.4, Zt(2) = h2 = 61.2, and Zt(3) = h:; = 40.2 for 

t = 1,2,3,4 (Note here that, although Zt(i) is independent of t in this example, it does not 
always become so in other examples.) This means that the optimal city becomes as follows. 
For example, if the search has been made in city i = 1 on day t = 4 and the highest price Y4 
offered by buyers up to the day is greater than z4(1) = 65.4, then it is optimal to stop the 
search by selling the asset to the buyer who offered the highest amount, or else continue the 
search. 

Table 6 shows the set Yi(jli) for y in which a given city j becomes the optimal next search 
city if the search is made in a city i on a day t. It should be remarked in the table that 
there exist double critical points on the highest price Yt in the following sense. For example, 
when the search is made in city i = 1 on day t = 2, if Y2 ::; 34.8 or 42.8 ::; Y2 ::::; 65.4, then 
the optimal next search city is city j = 3, and if 34.8 ::; Y2 ::; 42.8, then it is j = 1. That 
is, we have Y2(312) = [0.0, 34.8] U [42.8,65.4]' the union of the two exclusive intervals. This 
implies the following. Suppose the highest price up to the previous day (Le., day t = 3) 
is Y3 = 30.0. In this case, if the price of day 2 is w = 20.0, then the next optimal search 
city is city 3 due to Y2 = max{Y3,20.0} = 30.0 < 34.8, if w = 35.0, then city 1 due to 
34.8 < Y2 = max{Y3,35.0} = 35.0 < 42.8, and if w = 45.0, then again city 3 due to 
42.8 < Y2 = max{Y3, 45.0} = 45.0 < 65.4. 

From Table 6 we can show all the possible paths of the optimal search cities (Figure 7) 
up to day 0, provided that the search starts from day 4 in city i = 1. For example, the 
following paths of the optimal search cities can be obtained: 

{ 

(40.0, 43.0, 45.0, 50.0), then 1 -+ 2 -+ 2 -+ 2 -+ 3, 
If (Y4,Y3,Y2,Yl) = (41.7,42.0,42.7,60.0), then 1 -+ 1 -+ 1 -+ 1 -+ 3, 

(41.0, 47.0, -, -), then 1 -+ 2 -+ 3 -+ stop . 

• Case that dij is independent of i 
For example, let dij = 0 for all i,j, and let SI = 3.0, S2 = 7.0, and S3 = 15.0. Then, we 

have hI = 54.50, h2 = 50.33, and h3 = 46.56, hence, h* = 54.50 and j* = 1. Accordingly, it 
follows that, if the highest price so far is greater than 54.50, then it is optimal to stop the 
search by selling the asset to the buyer that offered the amount, or else continue the search. 
Table 7 shows the set Yi(j) for Y in which a given city j becomes the optimal next search 
city. 

Also in this case, we can draw the same tree diagram as shown in Figure 7 and trace the 
paths of the optimal search cities. For example, we have 

If ( ) _ { (10.0, 20.0, 25.0, 45.0), then 3 -+ 1 -+ 2 -+ 1, 
Y4, Y3, Y2, Yl - (10.0, 20.0, 27.0, 30.0), then 3 -+ 1 -+ 1 -+ 2. 

8. Summary of Conclusions 
1. In the no recall model, the reservation value Ut (i) is nondecreasing in t with Ut(i) ::; h* 

for all t,i and converges to It finite number U(i) as t -+ 00 with hii ::; U(i) s h* for all i 
(Theorem l(a,b,c)). If (3 < 1., then the U(i) is given by the unique solution of equation (5.6) 
(Theorem l(d)). In the recall model, the reservation value is given by the minimum solution 
zt(i) of Ut(y, i) - y = 0 with zl(i) = hi and hi ::; zt(i) S h* for all t, i, hence ZtW) = h* for 
all t, i.e., the reservation value of search area i* is independent of time t (Theorem 2(a,d)). 
The reservation value Zt(i) is nondecreasing in t and converges as t -+ 00 to a finite number 
z(i) (Theorem 2(b)). 
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The above conclusions tell us that, in both models, the optimal stopping rule has a 
reservation value property and, if the searcher wants to behave optimally, then the more 
periods that remain up to the deadline, the higher the price he searches for. 

2. In the recall model, it was demonstrated by a numerical example that there may 
exist double critical points w* and w· (w* < w*) in terms of present offer w in the following 
sense. If w < w., then it is optimal to go to search area i, if w* S w S w*, then other search 
area j, and if w* < w, then again search area i. 

3. Suppose the travel cost is independent of the starting search area i. In this case, of 
course, so also are the reservation value and the optimal next search area. Then, in the recall 
model, the reservation value becomes equal to h' for all t, i, that is, the optimal stopping 
rule is time-independent as well as area-independent (Corollary 2(a)). This implies that 
whatever point in time the search process starts from, the optimal stopping rule at that 
point is the same as the one at time 1 when the search process terminates at the next point 
in time. In other words, whatever planning horizon remains, it is optimal to behave, in 
terms of stopping decision, as if there remains only one period of planning horizon. This 
property is usually called a myopic property In the no recall model, as the planning horizon 
tends to infinity, the reservation value and the optimal search area converge to h* and j*. 
This implies that in the limiting planning horizon the optimal decision rule becomes the 
same as the one in the recall model. 

Table 1 
h* = 54.6, i* = 2 

hil hi2 hi3 h! • 
1 54.55 52.40 50.92 54.55 
2 51.31 54.65 50.92 54.65 

3 51.31 52.40 52.45 52.45 

Table 2 
Reservation values Ut(i) and optimal next search cities Vt(i) 

t 10 9 8 7 6 5 4 3 2 1 

Ut(l) 54.27 54.16 54.00 53.77 53.44 52.96 52.28 51.18 49.45 45.17 
lit (1) 1 1 1 1 1 1 2 2 3 3 

Ut(2) 54.60 54.57 54.51 54.40 54.21 53.88 53.28 52.18 50.02 45.17 

lit (2) ~~ 2 2 2 2 2 2 2 2 3 

Ut (3) 5360 53.57 53.51 53.40 53.21 52.88 52.28 51.76 50.45 46.17 

lit (3) !~ 2 2 2 2 2 2 3 3 3 

Table :J 
Optimal search cities kn(t, i), n = 10,9, ... ,0, starting from day t = 10 in city i = 1,2,3 

n 10 9 8 7 6 5 4 3 2 1 0 
starting city 1--. 1--. 1--. 1--. 1 -> 1--. 1--. 2--. 2--. 2--. 3 
starting city 2--. 2--. 2--. 2--. 2 -> 2--. 2--. 2--. 2--. 2--. 3 
starting city 3--. 2--. 2--. 2--. 2 -> 2--. 2--. 2--. 2--. 2--. 3 
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Ut 

lit 

i=1 

t=1 i=2 

i=3 

i=1 

t=2 i=2 

i=3 

i=1 

t=3 i=2 

i=3 

i = 1 

t = 4 i=2 

i=3 

S.Ikuta 

Table 4 
Reservation values Ut 

(Case of travel cost dij being independent of i) 

10 9 8 7 6 5 4 3 2 1 

54.73 54.66 54.57 54.43 54.25 53.94 53.39 52.39 50.45 46.17 

1 1 2 2 2 2 3 3 

Table 5 
h· = 65.4, i· = 1 

~l hi2 hiS h~ , 
1 54.80 57.40 65.40 65.40 

2 46.00 54.80 61.20 61.20 

3 21.20 30.00 40.20 40.20 

Table 6 
Set ¥tUli) for y in which a given city j is the optimal next search city. 

For example, Y3(311) = [0.0, 34.8] U [42.8, 65.4] 

!ll E [0.0, 65.4] ..... j = 3 !ll E [65.4, 00] ..... stop 

!ll E [0.0, 61.2] ..... .i = 3 !ll E [61.2, 00] ..... stop 

!ll E [0.0, 40.2] ..... j = 3 !ll E [40.2, 00] ..... atop 

Y'.l E [0.0, 34.81 ..... j = 3 Y'.l E [34.8, 42.8] ..... j = 1 Y'.l E [42.8, 65.41 ..... j = 3 Y'.l E [65.4, 

Y'.l E [0.0, 46.8) ..... j = 2 Y'.l E [46.8, 61.2) ..... j = 3 Y'.l E [61.2, 00] ..... stop 

Y'.l E [0.0, 40.21 ..... j = 3 Y'.l E [40.2, 00] ..... stop 

!/3 E (0.0, 39.21 ..... j = 2 !l3 E (39.2, 42.8] ..... j = 1 !/3 E \42.8, 65.4\ ..... j = 3 !/3 E \65.4, 

!/3 E [0.0, 46.81 ..... j = 2 !l3 E [46.8, 61.21 ..... j = 3 !/3 E [61.2, 00] ..... stop 

!/3 E [0.0, 40.2) ..... j = 3 !l3 E [40,2, 001 ..... stop 

!l4 E [0.0, 41.61 ..... j = 2 !l4 E [41.6, 42.8] ..... j = 1 !l4 E [42.8, 65.4] ..... j = 3 !l4 E [65.4, 

!l4 E [0.0, 46.8) ..... j = 2 !l4 E [46.8, 61.2) ..... j = 3 !l4 E [61.2, 00] ..... stop 

!l4 E [0.0, 40.2) ..... j = 3 !l4 E [40.2, 00) ..... stop 

Table 7 
Set ¥tU) for y in which a given city j is the optimal next city 

(Case of travel cost dij being independent of j) 

00] ..... stop 

00] ..... stop 

00] ..... stop 

t = 1 !ll E [0.0, 19.81 ..... j = 3 !ll E [19.8, 43.21 ..... j = 2 !ll E [43.2, 54.51 ..... j = 1 !ll E [54.5, 00] ..... stop 

t = 2 Y'.l E [0.0, 26.8] ..... j = 2 !l2 E [26.8, 54.5] ..... j = 1 !l2 E [54.5, 001 ..... stop 
t = 3 !l3 E [0.0, 54.51 ..... j = 1 !l3 E [54.5, 001 ..... stop 

t = 4 !l4 E [0.0, 54.5) ..... j = 3 !l4 E [54.5, 00] ..... stop 
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0.0 $ Yl $ 61.2 
:D 0.0 $ Y2 $ 46.8 

2 

61.2 $ Yl 

0.0 $ Yl $ 40.2 
3 

0.0 $ Ya $ 46.8 46.8 $ !/'J $ 61.2 
2 

40.2 $ Yl 

61.2 $ Y2 

0.0 $ Y2 $ 40.2 
-@* 

0.0 $ Y4 $ 41.6 46.8 $ Ya $ 61.2 
2 

40.2 $!/'J 

61.2 $ Ya 

0.0 $ ya $ 39.2 
2) * 

0.0 $ Y2 $ 34.8 
-@* 

0.0 $ Yl $ 65.4 
3 

34.8 $ !/'J $ 42.8 

41.6 $ Y4 $ 42.8 39.2 $ Ya $ 42.8 

65.4 $ Yl 

42.8 $ !/'J $ 65.4 
-@* 

st(~ 65.4 $ Y2 

42.8 $ Y3 $ 65.4 
2)* 

65.4 $ ya 

0.0 $ Ya $ 40.2 
2)* 

42.8 $ Y4 $ 65.4 
3 

40.2 $ Ya 

65.4 $ Y4 

time 4 time 3 time 2 time 1 time 0 

Figure 7 (* the same as above) 

The path of the optimal search cities, provided that the search starts from day t = 4 in city i= 1 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



106 S.lkuta 

References 

[1] Chow, Y.S., Robbins, H., and Siegmund,D.: Great Expectations: The Theory of Op­
timal Stopping, Houghton MilJlin Company, Boston (1971) 

[2] Gilbert, J.P., and Mosteller, F: Recognizing the Maximum of a Sequence, Journal of 
the American Statistical Association, 61, 35-73 (1966) 

[3] Ikuta, S.: Optimal Stopping Problem with Uncertain Recall: Journal of the Operations 
Research Society of Japan, 31, 2, June, 145-170 (1988) 

[4] Ikuta, S.: The Optimal Stopping Problem in Which the Sum of the Accepted Offer's 
Value and the Remaining Search Budget is an Objective Function: Journal of the 
Operations Research Society of Japan, 35, 2, June, 172-193 (1992) 

[5] Karlin, S.: Stochastic Models and Optimal Policy for Selling an Asset, Studies in 
applied probability and management science, Chap. 9, 148-158, Stanford University 
Press, 1962 

[6] Kohn, M.G., and Shavell, S: The Theory of Search, Journal of Economic Theory, 9, 
93-123 (1974) 

[7] Karni, E., and Schwartz, A: Search Theory: The Case of Search with Uncertain Recall, 
Journal of Economic Theory, 16, 38-52 (1977) 

[8] Lippman, S.A., and McCall, J.J.: Job Search in a Dynamic Economy, Journal of 
Economic Theory, 12, 365-390 (1976) 

[9] Landsberger, M., and Peled, D.: Duration of Offers, Price Structure, and the Gain 
from Search, Journal of Economic Theory, 16, 17- 37 (1977) 

[10] McCall, J.J.: The Economics of Information and Optimal Stopping Rules, Journal of 
Business, July, 300-317 (1965) 

[11] Morgan, P., and Manning, R.: Optimal Search, Econometrica, 53, 4, July, 923-944 
(1985) 

[12] Rosenfield, D.B., Shapiro, R.D., and Butler, D.A.: Optimal Strategies for Selling an 
Asset, Management Science, 29, 9, September, 1051-1061 (1983) 

[13] Rothschild, M.: Searching for the Lowest Price When the Distribution of Prices Is 
Unknown, Journal of Political Economy, 82, 4, 689-711 

[14] Sakaguchi, M.: Dynamic: Programming of Some Sequential Sampling Design, Journal 
of Mathematical Analysis and Applications, 2,446-466 (1961) 

[15] Taylor, H.M.: Evaluating a Call Option and Optimal Timing Strategy in the Stock 
Market, Management Science, 14, 1, September, 111-120 (1967) 

[16] Weitzman, M.L.: Optimal Search for the Best Alternative, Econometrica, 47, 3, May, 
641-654 (1979) 

Seizo IKUTA: Institute of Sodo-Economic Planning, 
University of Tsukuba, Tsukuba, baraki, 305, Japan 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




