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Abstract There is a rooted tree. A person selects a vertex except the root, hides in it and stays there.
The searcher is at the root and then examines each vertex until he finds the hider, traveling along edges
of the tree. Associated with the examination are a traveling cost dependent on the distance from the last
vertex examined and a fixed examination cost. The searcher wishes to minimize the expected cost of finding
the hider, whereas the hider wishes to maximize it. The problem is formulated as a two-person zero-sum
game and it is solved.

1. Introduction

The purpose of this paper is to analyse search problems on a finite graph. Thesc problems
occur, in a system which can be regarded as a network, when we must {ind some parts which
cause the breakdown of the system, or in a building, when we must patrol and find someone
which threatens the security.

In this paper the graph is a rooted tree. The hider (called HD) chooses one of all vertices
except the root and stays there. At the beginning the scarcher (called SR) is at the root. After
SR chooses an ordering of the vertices except the root, SR examines each vertex in that order
until SR finds HD, traveling along edges. It costs an amount when SR moves {rom a vertex to
an adjacent one and also when SR checks a vertex. While HD wishes to maximize the sum of
the traveling costs and the examination costs which are required to find HD, SR wishes to
minimize it. We have a two-person zero-sum game and solve it. HD has a unique optimal
strategy. An optimal strategy for SR is to mix orderings which correspond to traveling-
salesman pathes.

Gluss[5] found a Bayes solution approximately when the graph is linear and the root is a
terminal point. Kikuta[7] found a maximin solution in the same graph. The model in this note
is a generalization of that in [7]. Arguments in [7] are applicable for solving the game. But in
the process of doing so, we must need to show a new kind of inefficiency of some strategies of
SR, under which SR goes to other branches of the tree before SR examines a branch throughly.
It is not trivial to show it since those strategics may be optimal in cases where we consider
Bayes solutions (See Kikuta[6]) and since the non-sequential formulation of strategies of SR
makes it difficult to apply the Bellman's principle of optimality (See Bellman[2] and also
Ferguson[3], Kikuta/ Ruckle[8]). In order to show it we find properties of the probability
distribution which is the unique optimal strategy for HD (See (3.1), (3.2) and Property 3.1
below). It seems that these, in turn, reveal important things in the model and also make the
proofs simpler than those in [7](For example, compare Lemma 6.7 below with Lemma 8 of [7]).

Gal[4] analysed a maximin solution in which only traveling costs are taken into
consideration. If the examination costs of all vertices are positive HD's optimal strategy will
distribute positive probabilities on all vertices. If the examination costs of all vertices converge
to zero, it converges to the strategy given in [4]. Theorem 5.1 is a generalization of the result
by Gal in this point. Lossner/Wegener[9] analysed a Bayes solution in a very general model
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A Search Game on a Rooted Tree 71

and they gave critical numbers and conditions in order to check what is the next point to be
examined. Ruckle[12] analysed a maximin solution in which only traveling costs are taken into
consideration and the root is not specified. Ahlswede/Wegener[1] states models with traveling
costs. Nakai[10] is a survey on the scarch theory and Rucklef13] states search games with
overlooking probabilities while we do not assume the overlooking probabilities. [11] is a special
issue on the search theory.

2. The Model and Notation.

A graph (or undirected graph) G is an ordered pair (V,E) in which V= {0,1,2,...,n} is a
finite set of vertices, and E is a finite set of pairs of different vertices, (1,)), called edges. If
(i,))E€E, we say i and j are adjacent. A path between Vertices ig and ig is a finite sequence of
distinct edges of the form (ig,i1),(i1,12),...,(is-1,1s). This path is denoted as (ig,11,...,1s). If g =1
then this path is called a cycle. A simple path between i and j is a path between 1 and j with no
repeated vertices. G is said to be connected if for any 1,JEV, there is a path between i and j.

Throughout this paper we assume a graph G = (V,E) is a rooted tree, i.e., it is connected,
it has n edges, it has no cycle, and Vertex O is designated the root. For 1,JEV such thati#j,iis
called an ancestor of j if there is a simple path between O and j such that (i,k) is an edge on this
path for some k& V. j is called a descendant of i if i is an ancestor of j. j is called a child of 1 1f j is
a descendant of and adjacent to 1. Fori€V, let D, Kj, and A; for 10 be the sets of all
descendants, all children and all ancestors of i respectively. We let D = Dg. Define the set of
leaves by L = {iEV:K; = ¢}. For any JED, there is uniquely i€A; such that JEK;. So weleti =
a(j) and write as e(j) = (a(j),j))EE. Let Vi = {i}UD;. For Y C K|, Lete(Y) = UjEY{e(j)} and Vy
= UjEYVj- Clearly E = ¢(D). Fori€V andY C D;j, define Dg;y) = YU{JED;:;jEAy for some
yEY}. Define a tree with i as its root by Gi:y)y = (Di;v)U{i}.e(Dg,y))). In this paper for a
nonnegative-valued function g on D, we let g(Y) = 2.y g(1), where Y € D. Weletg(Y)=0if Y
=@. For a finite set X, IXl is the cardinality of X. The following is a refation between Gg;;p,) and
G(i;Vj y the proof of which is easy and omitted.

Property 2.1. Dj= Vg, = UjEKiVj’ e(V;) = e(D)U{e(j)} and e(Dy) = UjEKie(Vj)-

Each edge e(j) JED) is associated with a positive number d(j), called the weight of e(j).
The length of a path is the sum of the weights of all the edges in the path. Fori,jEV, we define
d(i,j) by the length of the simple path between i and j. Clearly d(a(j).j) = d(j) for JED.

Define a game on G. Player 1 (the hider, abbreviated as HD) hides among one of all
vertices in D, and stays there. Player 2 (the searcher, abbreviated as SR) examines each vertex
until SR finds HD, traveling along edges. It is assumed that at the beginning of the search SR 1s
at 0, and that SR travels along the simple path between i and j when (i,))&E and SR cxamines i
after having examined j. Associated with the examination of i€D is the examination cost that
consists of two parts:(I) a traveling cost d(j,i) > 0 of examining i after having examined j, and (II)
an examination cost ¢(i) > 0. There is not a probability of overlooking HD, given that the right
vertex is searched. For convenience, we let d(i,i) = O for all i€D. Before searching (hiding
resp.), SR (HD resp.) must determine a strategy so as to make the cost of finding HD as small
(large resp.) as possible.

A (pure) strategy for HD is cxpressed by an clement, say i, of D, which means HD
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72 K. Kikuta

determines on hiding ini. D is the set of all strategics for HD. For Y € D, let Z(Y) be the set of
all permutations on Y. A strategy for SR is an element in 2 =2(D). Thus under o€Z(D), SR
examines Vertices o(1),0(2),...,0(n) in this order. This is often expressed as o = [o( 1),...,0(n)].
For convenience we let o(n+1) = o(0) = 0.

For a strategy pair (i,0)€DXZ, the cost of finding HD, written as £(i,0), is :

ol
2.1 fi,oy= ¥ {d(o(x),0(x-1)) + c(o(x)) } .

x=1

Letting payoffs for HD and SR be {(i,0) and -f(i,0) respectively, we have a finite, two-person
zero-sum game, denoted by (f;D,X). We see that the payoff matrix of this game does not always
have a saddle point, by checking the case of n=2. So let (f;P,Q) be the mixed extension of
(f;D,X) and we call it a game G just as we denote the graph. The elements of P and Q are called
(mixed) strategies, and expressed as p = (p(1),...,p(n))EP and q = {q(0)}&Q, where p(i) is the
probability that HD chooses i€=D, and q(o) is the probability that SR chooses 0€EZ. Thus

(2.2) p(D) = 1, p(i) = 0 for all i€D, and q(Z) = 1, q(0) = 0 for all ocEZ.

For a strategy pair (p,Q)€EPXQ, {(p,q) is the expected cost of finding HD. In the same way we

can define a game on Gg;y) (I€V, YC Dj), in which at the beginning of the search SR is at 1, and
Y is the set of pure strategies of HD. Call the mixed extension of this game a game Gj;y). Our
problem is to solve the game G. For jED, we write as

(2.3) w(j) = 2d(j) + <(j).

w(j) is the cost of the return trip which starts at a(j) and examines j. Fori€VandY C D;, we let
w(i;Y) = w(Y)+2d(Dg:y)\Y). This is the cost of the most efficient return trip which starts at i and

examines all verticesin Y.  For i€L, let vi = d(i)+c(i). This is the value of the game on a tree
({a@),j}.{e(G)}) with a(j) as its root. Define inductively by,

.. w(Dyvg, .
(2.4) v; = d(i)+c() + Ty forieD
where vK; = 0 (if iI€L), and, forY C K|, i€V,

2.5) vy = ;V—(i\,;); ZIOD0+ 3 W)

Property 2.2.vy <w(Vy)forY (z¢) C Kj, iEV\L.
Proof: If vj < w(V;) for all JEY, then by (2.5),

L 1
vy < w(vY)jEEYW(VJ){W(Vj) + k((%eg(\’k)} < ;V—(—V—Y)W(VY)2 = w(Vy).
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In particular, VK; < w(D;j). Then by (2.4),

w(Dpw(D;)

Vi <wi) + T RTDy)

< w() + w(Dj) = w(V;).

If JEL then vj = d()+c(j) < w(j) = w(Vj). Since the graph G is finite we can start at every i such
that K; € L and apply the above argument inductively. After a finite number of steps we arrive at
0. Then we have the desired result. ¢

3. A Strategy for the Hider

In this section we define a strategy for HD and analyse its properties in the game G =
(f:P.Q).

Define p*€P inductively as follows: For JED\K, let

B_Q_)_
3.1 @) "

For j, k€K, let

3.2) PAVY) _ pH(VI)
' AR/

Suppose SR is ati. The left hand side of (3.1) is the probability per unit cost when he examines i,
while the right hand side is the probability per unit cost when he returns to 1 after examining all

vertices in Vj. By (2.2), (3.1) and (3.2), p*€P is defined completely and uniquely (See
Appendix). Itis easy to see p*(i) — 1/nfor all i€D if ¢(j) — + for all €D, and p*(i1) — O for
all iIED\L if c(j) — O for all jED.

The following proposition gives basic properties of p*, which are used in the proof of
Theorem 5.1. Property 3.1(v) is a generalization of Property 3.1(iv). But Property 3.1(iv) is
interesting since it states that HD should distribute more probabilities to vertices which locate more
far from the root.

, .~ P*@) _ p*(Dp)
Property 3.1. (i) Fori€D, c)  w(Dy)’

(ii) For i€Ko, p*(Vi) = _VVVV((‘S))_

*@()) _ p*Q)
(ii1) For i €D\Kg, PEW RCW

(iv) For i€V, let Y € Dj and supposc Dg.y) =Y. Then

PHYULD | p*(V) | pPH(Y) _p*(D)
wYUty) S wvy 110 and Gy STy

(v) ForieV,letY € D;. Then
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74 K. Kikuta

POYUGD  _ pH(V)

p*(Y) _ p*Dp
wia();YUgiy) — WV

wY) = w(Dp)”

if i #0, and

Proof:(i) From (3.1), p*(i)/c(i) = p*(Vp/iw(Vj)) for all JEK;. From this, p*(i)/e(i)
= 3 PVl S w(V)) = p*(Dp)w(Dy).
JEKj JEK|
(i) B.2)and 3 p*(V;) = L.
ieKp
(iii) By Property 3.1(i), ( c(gg%;))/(ig‘()')) = 1 - 2d(j)W(V}) < 1, since Dj = Vj\{j}.
(iv) Since p* is defined inductively in (3.1) and (3.2), and because of inductive relation expressed
in Property 2.1, we can use the induction. First suppose K; € L. By (3.1) p*(§)/w(j) = p*(i)/c(1)

for all jEK; (= Dj). This implies p*(Y)/w(Y) = p*(D;)/w(D;) forall Y C K;. Further,

p*(Vw(Y U{i})-p*(Y U{ihw(Vj) = (p*(D)+p* ()(W(Y)+w(1))
-(P*(Y)+p* () (W(Dy+w(1))
= w(Y)p*(D)+w(i)p*(Dy)-w(Dy)p*(i)-w(i)p*(Y)
= c(Dp*(Y)+w(i)p*(Dy)-c()p*(Dy)-w(Dp*(Y)
= (w(i)-c())(p*(Dy)-p*(Y)) 2 0

by (3.1) and Property 3.1(i). Hence the property holds if K; € L. Next, assume for any jEK;,
the property holds for all Y such that YC Dj. Then suppose Y C Dj. If YNVj 2@, (YNV;
,6(YND)) is a rooted tree with j as its root. By the induction hypothesis, we have
P*(YNV/w(YNVj) < p*(V;)/w(Vj). From this, p*(YNVj) < p*(Vj)w(YNV))/w(Vj). Add these
together for JEK; with YNV; # @, noting that p*(V;)/w(V;) = p*(Dj)/w(D;) for all JEK;. Then
P*(Y) < p*(Dpw(Y)w(Dy). This, combined with Property 3.1(i) implies p*(YU{i}) /p*(V;) <
(W(Y)+c(i)y/(w(Dj)+c(i)) since D; = Vi\{i}. The right hand side of this is less than or equal to
w(YU{i)/w(V;) since YU{i} € V;. Hence the property holds. Since the graph G is finitc we
can start at every i such that K; € L. and apply the above argument inductively. After a finite
number of steps we arrive at 0.

(V) IT'Y = Dy;y) it reduces to Property 3.1(iv). Suppose Y # Dg;y). By Property 3.1(iv),
P*(Dg;v)U{i1}/p*(Vi) < w(Dg.yv)U{i})/w(Vj), from which,

p*(YU{i}) WDeULIY  p*(Dgy)\Y)
p*(Vl) = w(Vi) P*(Vl) )

3.3)
Further,

wiyrw()  WOENWID p*OgnY), _ prOEnY) DY)
w(Vj) w(Vj) p*Vi) 7T p*(VY) w(Vj)

QPHVi),

1 .
= RV 1y 0 Ty

(3.4)

Here, for jED(i;Y)\Y,
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p*(Vy) _p*1) _p*()
(3.5) WiV = ) = o)

by (3.1), the relation of JED;, and Property 3.1(iii). (3.3), (3.4) and (3.5) imply the first
inequality. The second inequality follows in the same way. ¢

The next lemma follows from Property 3.1 and it is used in the next section.

Lemma 3.2. (i) Leti€V; for JEK(. Under o € X, suppose SR passes through i and then
comes back to i again after checked all vertices in Y (C Dj). Suppose X (€ D) is the set of
vertices which he passes through in this trip. Assume YNA; =¢. Then

PAY)  _p*()
w(Y)+2d(X) = c(1) -

(ii) Leti, JEKo. LetY C Dj and yEVj. Then

PPY)  _ PYULD _ pry)
wO:YU{i})-c(i) ~ wOYu{iy) ~ <’

Proof: (i) Case I. Assume Y C D;. Then w(Y)+2d(X) = w(i;Y). By Property 3.1(1) and the
second inequality of Property 3.1(v), we have the desired resullt.

Case 2. Assume Y ¢ Djand Y # D;. By the definition of Y, YND; = @. There is k (#1)EV;j such
that YU{i} C Dy and w(Y)+2d(X) = w(k;Y) +2d(k,i). 1jsince Y & Dj. Alsoi #k by the
definition of k. Since k€EA;, we have k&Y. Applying Case ! with Property 3.1(ii1),

p*a)  p* _ p*Y) p*Y)
ci)y = ok = wkY) = wk;Y)+2dk,i)

(i1) By Property 3.1(v), (3.2), (3.1), and Property 3.1(ii1),

prYVL _ p*(Vi) _p*(V) _ P*Q) . P*Y
wO:yu{iy) — WV Tw(Vy) T oeq) T oey)

Further, by Property 3.1(v) and Property 3.1(1),

PYULY)  pxY)
w(OYU{i}) w(OY U{i})-c(i)

= B{p*()W(;Y)-c()p*(Y)+p*()(W(i)-c(i)) }

2 Bp*(i)(w(i)-c(i)) 2 0,
where B = 1/{w(O;Y U{iPD)(w(0;YU{i})-c(i))}. ¢

4. Construction of a Strategy for the Searcher
In this section we define a strategy of SR. A part of this kind of strategy has been already
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76 K. Kikuta

discussed in [8] in which a strong assumption is imposed on a game.

Leti€D and jEK|. By any o€X(D;), Vj is partitioned into D(j,1),...,Do(j.1j), where
Dy(j,h) is the set of vertices which SR examines in his Ath visit to the branch V;  Of course, he
may examine vertices which are not in V; before he examines vertices in Do(j, 1), depending on o.
We call 0€EX(D;) partially distance-efficient (abbreviated as PDE) if for jEK;, and for y = 1,....1j,
SR examines each vertex in Dg(j,y) when he passes by it for the first time in his yth visit to
G(j;Dj y ZpDE(Dj) is the set of all PDE-strategies 0&€2(D;). We call c€Z(D;j) sub-distance-
efficient (abbreviated as SDE) if for j€EK|, and for y = 2,...,rj, Dg(j,y) includes no ancestor of
vertices in Dg(j,1)U...UDg(j,y-1). Zspg(D;) is the set of all SDE-strategies o€2(D;). We say
that o€2(D;) is distance-efficient (abbreviated as DE) if SR travels along cach edge in E at most
twice under 0. Tpg(D;) is the set of all DE-strategies 0&€XZ(D;). Zpe((Dj) € Zspr(Dy). If
o€EZpE(D;), SR visits GG;Dj) only once for all JEK;. Unless otherwise specified, ZspE, ZPDE,
Zpg mean Zgpe(D), Lppr(D). Zpp(D) respectively. Next we define sets of permutations
inductively as follows. LetY = {y1,...,ym} & D where y; <...< ym. Firstlet Z(y},y2) =
{ly1,y2):ly2,y1]}. Assuming 2(yy,...,ym-1) is defined, define Z(y1,...,ym-1,Ym) =
{lym,o(yD),..-,0o(ym-D): 0€Z(y1,....Ym-1} Y{[(y1), --..,0(¥Ym-1),Yml: OEZ(y1,....Ym-1) }-
Then Z(y1,...,ym) © Z(Y). In particular if Y = K;j, i€V, we write as Z; = Z(y1,...,Ym). Next,
define for h = 2,....m,

ieyhay " WVyp) + Vyy
WVt mynd)

(yp>) = i and r(yp<) = 1-1(yp>).

For i€V, suppose Kj = {y1,...,ym} where y1 <...< ym. Then define for c€Z;,

o) = [T yr) [T ryns).
olyn <o lyn) o lgn1)>o lyn)

Next, for i€ED\L, 1(i<) means that SR examines i first and then examines all vertices in D;. (i>)
means that SR examines all vertices in D; and then examines i. Define for iED\L, £{i,D;} =
{™(i<),r(i>)}. Fori€D\L let

) Vi-VK;-d(1) . )
r((i<)) = 0 and r(t(1>)) = 1-r(t(i<)).

) V10t " Vn V1e-Yud = V- Yh1)

Property 4.1. (i) r(yp>) = and r(yp<) =
W(Viy1rayn)) w(Vy)
(iNFori€V, Y 1(i;0) = 1, and 1(i;0) > 0 for all 6EZ;.
oE&Z

() 0 <r(t(i<)) < 1.
(iv) For i€V and JEK;], S w(Vk) 1(i;,0) = VK, - Vj.

keK;\j} oeZj0-l(k) <o)
Proof:(i) By (2.5) for Y = {y1,...,yn} and Y = {y1,...,Vh-1 } respectively, we have
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A Search Game on a Rooted Tree 77

V{Y1,~-~,yh}w(v{)’1 ve¥p P " v{)’1»--»,yh_l}w(v{h»--~-Yh.1}) = w(Vyh){Vyh + W(V{h ~~~~~ yh_1})}'

From this, we have the desired result, using w( Vv oy PV Vy ) = wlViy oy

(11) By Property 2.2, r(i;0) > 0. WeletK; = {y(,....ym}and y; <... < yp. Whenm =2,
r(i;ly1,y2]) = r(y2>) and 1(i;[y2,y1]) = r(y2<). Hence it holds. Assume it holds for i,...,m-1. Let
2' = {oEZ;:o(y1) = ym} and 2" = {0EZ;:0(yy) = Ymy- Then Zj =Z'UZ".

Srio)= YIrio)+ I 1(0)
OEZ; o=z oex"

= 1(ym<) Y 1(i;0) + r(ym>) Y 1(i;,0) =rym<) +1(ym>) =1
o€ (y1..-»¥m-1) OEZ(Y15---»¥Ym-1)
by the induction hypothesis.
(ii1) By (2.3) and (2.4), vi-vK)-d(i) = c(i)-c(i)vKi/(c(i)+w(Di)) < ¢(i), which implies r(t(i<)) < 1.
By Property 2.2, vk; < w(Dj), which implies c(i)- c(i)vk,/(c(i)+w(Dj)) > 0. Hence r(x(i<)) > 0.

¥ 1(i;0) =r(k<), and if j > k then

(1v) Suppose j < k. Then by Propert 4.1(ii), >
oEXi0” 1‘(k)<0‘1(j)

F r(i;o) =r1(>). Hence
L S>Hen (k)<0'1(j)

Y w(Vi) F o) = 3 wiVprk<)+ ¥ w(VIG>)
kEKiMjrki  oeziolk<o 1) keK;\{j} k>j keKi\{jrk<

= VK Vikksi}HV{keksj}Vj = VK; - Vi ¢
We consider an element in ZDE such that :

(I:Search in Ga();v;)) Suppose SR is at a(i) and iZL.. When he examines Vj, he examines in the
order of an element in 2{i,D;}. ILe., either he examines i first and then examines D; throughly or
he examines D; throughly and then examines i.

(II:Search in G(i;Di » Suppose SR is at i and i¢L.. When he examines Dj, he examines {V; }jEKi in
the order of an element in Z;, where he examines each Vj throughly before moving to other
branches.

It is easy to see any element in Z that satisfy (I) for all iED\L and (II) for all i€ VAL belongs to
IpE Solet £* = Z*(D) be the set of all elements in Zpg that satisfy (1) for all i€ED\L and (1) for
all iEV\L. In the same way we can define £*(D;) (1€ V\L) and Z*(V;) (iED\L). Each element in
2* can be specified by selecting one in 2{i,D;} at each iI€ED\L and one in X; at each iEV\L.
Hence express c€3* as

o=00 [] (i),
iED\L
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where g;EZX; and t;&€X{i,Dj}. If IKgl> 1 then

o=0p [I 1 (oit) = oo H Tjol
j€Ko  iEVjLL

whereal = [Joi  []w € Z¥D;j). IfKgl=1,1let Ko={1}. Then
IEVjL.  iED)L

o=oyt1 [} (G.T»i) = o7 []yal
1€ED}'L JEKy

Define g*€Q as follows.

q¥(o) = [ w01 [] r(w) if o€Z*, and q*(o) = 0 if ogZ*,
iIEVL i€ED\L

Property 4.2. g*(Z*)=1.

Proof: If Ko C L then q*(o) = 1(0;0) for all 0€Z*. By Property 4.1(ii) Property 4.2 holds.
Next, if Kg ={1} and K; € L then cE€Z* is expressed as o = 110 where vy€Z{1,D} and
01€Z1. Then g*(2*) = r(x(1<))Zr(1;01)+1(t(1>)Z1(1;01) = r((1<))+r(x(1>)) = 1 by Property
4.1(ii) and definition. Suppose IKol > 1 and assume the property holds for any game G(O',VJ-)
where jEKo. Then

q*(0) =1(0s00) [] [1 (GioDr(r) = 1(0;00) [T q*(ad),
1€Ko IEVJ\L i€Ko

where aiEZ*(Vj) and q*(al) means the distribution in the game G(o;\/j y Hence

g*(E*)= Ir000) [] q*(cd) = T r(O;p) 1 9*(cd)
oEx* JEKo PEZ0 0€2*2¢00=P j€Ko

= 30 [ .3 qph= 3 aop)=1,
P20 i€Ko  pEZX(V;) P20

by the assumption. If [Kol = 1, let Ko = {1}. Assume the property holds for the game G(1,p,).
Then

q*(Z¥*) = 2 r(t1) II 1(i;01)  [1r(w) = r(x(1<)) p) o) ] r(w)
€Vi\L €D\ oEX*r1=t(l<) i1EV;\L 1€D1\L
+ r(7(1>)) b I1 r(l,q) H (%)
oEZ*t1=t(l>) 1EV]\L <D \L

= r(«(1 ‘ 1 i50; i
(1<) 622(])1) leE[lr(l :01) egﬁ(,t‘) +1(d >))0622(D1)iel:ll\r1(,] i) ie{)]l\rétn)

=1(y(1<)) + 1(w(1>)) = 1,
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by the assumption and definitions. Since the graph G is finite we can start at every i such that K;
C L and apply the above argument inductively. After a finite number of steps we arrive at 0. ¢

Remark 4.3. In this section we have constructed a strategy for SR, and it is based on a fixed
order of vertices, i.c., 1,2,...,n. This is seen in the definition of X; = Z(yy,...,ym) where iEV
and y; <...< yp. Suppose t€Z(Kj). Clearly we can define Z(t(y1),...,¥(ym)) which is different

from X; unless vis the identity permutation. So formally we can consider [ IK;!! strategics for
1IEVL
SR.

5. Solution of the Game

In this section we state that strategies defined in Sections 3 and 4 are optimal and give
some numerical examples which illustrates optimal strategies. The proof of the theorem is in
Section 6.

Theorem 5.1. The value of the game G = (f;P,Q) is vk,,. p* is the unique optimal strategy for
HD. g* is an optimal strategy for SR.

Example 5.21. Lct V= {0,12,...9} and E = {(0,1),(1,2),(1,3),(3,4).(3.5),(0,6), (6,7)
(6,8),(6,9)}.

Figure 2.
By (3.1), (3.2) and Property 3.1 we have

p*(D) _p*(2) _p*(3.4.5) p*©) _p*(D _p*®) _p*©9)
o) T w(2) T wB3,4,5 c(6) T w(l) ~ w(8B) ~ w(9)’

p*(1,2,3,4,5) _p*(6,7.8,9) ., p*Q3) _p*d _p*O)
w(1,2.3.4,5) ~ w(6,7,8,9)° 2" @) T w(@d T w5

From these and (2.3) we can calculate the optimal strategy for HD. An optimal strategy for SR is

as follows:

2D +w(5)-2(5) o(3)+wW(45)-v(45) 2(2)+w(345)-v(345)

r(3;[4.5]) = w(45) , 1("3<)) = cR)+w(ds) r(1;[23) = w(2345) S
_ c(1)+w(2345)-v(2345) _ c(6)+w(789)-v(789) . _
(1) === yiw@aas) WD =" g@rwre) (16D =

v(12345)+w(6789)-v(6789)
w(D)
the same way. If c(i) — O forall i, then p*(i) — O fori =1, 3, and 6. If c(i) — +o0 forall i then

, and r(6;[7,8,9]), 1(6;{8,7,9]), 1(6;[9,7.8]), r(6;[9,8,7]) are given in

1p+¢2,3,4) and w(2,3,4) stand for p*({2,3,4}) and w({2,3,4}) respectively.
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p*(1) — 1/9forall i.

Example 5.3. Suppose G is m-ary and complete and its height is n (See pp.273-5 of [14]).
Then G has 1 + m +m2 + . . . + mM verticesand m + m2 + . . . + mN edges. Assume c(i) = ¢ >0
for all i and d(i,j) = 1 for all (i,)EE. By the symmetry of the tree we can assume HD assigns the
same probabilities p(i) to the vertices in the ith level. By (2.3), mp(1) + m2p(2) + ... 4+ mip(n)
= 1. From this and (3.1), (3.2). we have, after elementary caluculations,

n . n-i
_ b -1 E]) _ . 1-b \
p(n) = { hl;ll (Mt s b)) and = hl;ll(l 1+m+m2+...+mbh-1"

where i =1,..,n-1 and b = ¢/(2+c). When m = 1, this coincides with (3.2) at p.367 of [7].

6. Proof of the Theorem.
In this section we prove Theorem 5.1.

Lemma 6.1. f(i,q*) = VK, for all iI€D.
Proof: Let(ig=0,i1,...,im,im+1=i) be the simple path between O and i. By considering the
definition of g* and the search procedures, (I) and (II), we have

Y o O g N gq*(0)
f(i,9*) = d(0,i)+c(i)+w(Dpr(i>)) 2z —
oES*gi=t(i>) T(H(1>))

m .
+ ¥ c(ipr(w(in<)) 3 q .(0)
h=1 062*:17ih:|:(ih<) (ip<))

m ) q*(o)
+2o WOV > Hinw ,
h=0 jEKihij¢lh+] l‘ezihili_l(i)<l’-_l(ih+l) oEXx O, = r(ip;0)
. . - m . . m
= i)+ e W DY)+ 3 MO 3 (VKiyVig, )

= d(i)+c(i)+vKO-vi+w(Di)r(r(i>)) = VK,
by (2.4) and Property 4.1(iv).

Lemma 6.2. Forany o€E2pg,. [(p*,0) = VK,
Proof: Assume Ko & L. Then by Property 3.1(ii), p*(i) = w(i)/w(D) for all i€D. So [(p*,0) =

Ziep p*()I(1,0) = (1/w(D)) Zigp w(a){w({a(1),...,0l-)}+d(ot))+e(oli) } = VK, by (2.5).
Next assume Kol = 1 and let Kg = {1}. Assume the lemma holds for the game G(l;Dl)- p*(1)

+p*(D1) = 1 and p*(1)/c(1) = p*(D1)w(Dy), by (2.2) and Property 3.1(1). From thesc we have

_ c(1)
(6.1) P*() =D ey
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Let Ky = {2,...,u}. Without loss of generality, suppose ¢ checks in the order of G(1;v.,),
<GV 1,6y -Gy, Since o € ZpE, o 1(1) = Val+...+1Vil+1. Further,

k
f(p*,0) = p*(D{d(D+c(1)+ 3 W(Vp)} + 2 P*O{fG,0)-d(1)+d(1)}
h=2 o Miy<o (1)

+ T p*O{fG,0)-d(D-c(1)+d(D)+c(D) }
G‘](i)>u'1(1)

k
= d(1)+c(Dp*(D+c()p*{i:ol(i)>oI( 1)})+P*(1)h§ZW(Vh)+(l-P*(l))VK1,

since

p*() . *(1) ) _
- {f(l,G)'d(l)} + E —L_ {f(l,(T)-d(l)-c(l)} =VK,,
oLy i) P D o liyortad P !

by the assumption. Hence, by (3.1), Property 3.1(i), (6.1), and (2.4),
u k
f(p*,0) = d( 1)+C(1)P*(1)+p*(1)h % lW(Vh)-"P*(I)hEZW(Vh)+(1-P’"(1))V1<l
=K+ =

= d(D)+c(1)p*(D+w(D)p*(D+(1-p*(1)) vk,
= d(D+c(1)p*(D)+c(1)p*(D)+(1-p*(1))vg, = V1 = VK,

In particular if K1 € L the lemma holds. Assume Kol > 1 and let Kg = {1,....m}. Assume o €
Zpg examines in the order of G,v,),.- -, Go:v,,) Then by the assumption and Property 3.1(ii),
for x = 1,...,m,

x-1
S pHOf0) = S 3 WV v

7V,

Adding these together for x = 1,...,m, we have, by (2.5) and Property 2.1,
« 1 m x-1
f(p*,0) = szl w(Vx) {hglw(vh)+vx} = VK,

Since the graph G is finite we can start at every i such that K; C L and apply the above argument
inductively. After a finite number of steps we arrive at 0. ¢

From Lemmas 6.1 and 6.2 it suffices to prove that f(p*,0) > VK, for all o€Z, in order to show

that p* is an optimal strategy for HD. Lemmas 6.3,6.4,6.5 and Corollary 6.6 are devoted to
doing it. Lemma 6.7 proves that p¥* is an unique optimal strategy.
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Lemma 6.3. Leti€D; (J€K(). Under oE€Z, suppose SR passes through i, examines all vertices
inY (C Dj) and then comes back to 1 again and examine it. Assume Y NA; = @. Change the order
of examination of i so that he examines it just before he examines Y. Let the resulting strategy be
T. Then {(p*,0) = f(p*,1).

Proof: Suppose X is the set of vertices which he passes through in this trip. First assume the
path defined by T is the same as the path defined by o. Then f(p*,0)-{(p*,t) = p*(){w(Y)+
2d(X)}-c(i)p*(Y) = 0 by Lemma 3.2(i). Next assume the path defined by T is not the same. Then
the traveling cost decreases by d(y,i)+d(i,k)-d(y k) by the change from o to T, where yEY, ol(y)
= o'l(i)-1, and o1(k) = o 1(i)+1. Thus, f(p*,0)-f(p*,7) = p*(i){W(Y)+2d(X) }-c(i)p*(Y)+(d(v.i)
+d(i,k)-d(y,k)p*(Z) 2 0, where Z = {JEV:a1(j) > o 1(i)}. ¢

Let B(o) = {(i,Y):as in Lemma 6.3}. Itis easy to see IB(0)! is finite and IB(T)! < IB(0)l-1 (Sec
Lemma A.2 in Appendix). Hence from Lemma 6.3, we see that for any o€ZX there is some o#
such that f(p*,0) = f{(p*,0#) and IB(o#)|=0, by changing the order of examination step by step and
getting a sequence of permutations from o to o#. Then #EZ, ..

Example 5.2 (Continued). Let o0 =[24,13,78,569EXZppE. First apply Lemma 6.3 by
letting Y = {4}, X = {3}, and i = 1. Then apply Lemma 6.3 twice. We have ! = [1,2,3.4,7.8

,5,6,91€2ppE. Noting p*(1)/c(1) = p*(2)/w(2) and p*(3)/c(3) = p*(4)/w(4) we have f(p*,a0)-

f(p*,0!) = -c()p*(4)+(2d(3)+w(4))p*(1)+2d(3)p*(3.,7.8,5.6,9) > 0 by Lemma 3.2(i).

Suppose Y = {o(k),a(k+1),...,0(k+k")} € V for o€Z. Define by s(Y;0) the cost of
checking vertices in Y under o, starting at o(k) and terminating at o(k+k"), and including the
examination costs of a(k) and o(k+k"). Let i = o(k) and j = o(k+k'). Define s(i,j:0) = s(Y;0) =

k+k'-1
c(Y)+ Y d(o(h),o(h+1)). ForY,ZC V,letY = {o(k),...,ok+k")} and Z = {o(1),...,

h=k
o(1+1")}. Suppose YNZ = @. Then define dg(Y,Z) = d(o(k+k"),o(l)). ForiEWY, letdy(i,Y) =
d(i,o(k)) and d(Y ,i) = d(o(k+k"),i). For convenience, for any Z C V and x,yEV\Z, we let
do(X,Z) + 8(Z;0) + do(Z,y) = d(x,y) whenever Z = g.

Lemma 6.4. Suppose o€EZppg. Suppose i,jEV), 1EK(, i€EDG(1,u) (u = 2), and JEDH(1,1).
Suppose jJEK;. Change the order of examination of i, and transfer o to T so that v1(i) = v1(j)- 1.
Then f(p*,0) = f(p*,7).

Proof: Suppose Dg(1,1) = SU{j}UT where S and T are subsets of V which are examined before
and after j under o respectively. Suppose W is the set of all vertices which are examined before
vertices in Dg(1,1) are done, and suppose X is the set of all vertices which are examined between
vertices in Dg(1,1) and Dg(1,u). Suppose Y C Dg(1,u) is the set of all vertices which are
examined before i. Thus SR examines in the order of WS{j}TXY {i} ... We can suppose D;jNS
=gand YND; = & since OEZPDE. Then under o, SR will examine j after examined S and passed
through i. After examined j and before examines i he will pass through O at least twice. Hence

(6.2) f(1,0) - f(i,¥) = w(0;X) + w(0;{j}UTUY).
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Next let ke{j}UTUXUY. Then under o and € SR will travel along the same path before he
examines k. Hence

(6.3) f(k,0) - f(k,T) = -c(1).
Suppose o-1(k) > or1(i). Then in the same way,

6.4) f(k,0)-f(k,t) = d(Y,)+d(i,k1)-de(Y k1) =00 Y = @),
ds(X,)+d(i,k)-d(X k1) =20 (i Y = @).

Here ol(ki) = o’ l(i)+1. By (6.2), (6.3), and (6.4),
f(p*,0) - f(p*,x) 2 p*(HW(0; {jFUTUY) - c()p*({j }UTUY )+p*(1))w(0;X) - c(i)p*(X).
If 1&{j}UTUY,

pri) _ p*() _ p*{JUTUY) . p*({j}UTUY)
M = e = w(L:{jJUTUY) ~ w(0:{j}UTUY) ’

(6.5)

by Property 3.1(iii) and Lemma 3.2(i). If 1€{j}UTUY, then as the second line of the proof of
Lemma 3.2(ii), we have the same. On the other hand, for y €Kg let Xy j is the set of vertices
that SR examines in his yth visit to Vy in the search of X. Thus XNVy = Uy Xy . Then

do(0,X)+5(X;0)+d(X,0) = EEKO % {do(0,Xy w)+s(Xy n:0) +do(Xy,n,0)} and
y

do(0.Xy W) +8(Xy h:0)+da(Xy,h,0) =2 w(0;Xy 1) for all hand y€Ko, and, by Lemma 3.2(ii)

p*() > p*(Xy h) > p*(Xyh)
e = WlOXyh) T dy(0,Xy p)+8(Xy hi0)+do(Xy,h0)

for y€Kq. This and (6.5) imply f(p*,0) - f(p*,t) = 0. ¢

In Lemma 6.4 if t¢£2ZppE, then after applying the operation of Lemma 6.3 to T some times, we
get p such that IB(u)l=0. This operation does not generate a new couple (i,j) as in Lemma 6.4,
since YU{i} C Dj, j€Kpin Lemma 6.3. So from [Lemmas 6.3 and 6.4 we sce that for any

0E€X, there is some G#EZg 1 NZp)yp; such that f(p*,0) = f(p*,0#), by changing the order of
cxammatlon step by step, applying Lemmas 6.3 and 6.4, alternately if necessary, and getting a
sequence of permutations starting at o and arriving at o#.

Example 5.2 (Continued). o! = [1,23,478,5,6 9]EZPD}:\ZSDE Let j=7,1=6,D (6.1
= {78}, D;i(6,2) ={69},S=0,T={8},Y=9¢,X = {5}, and W = {1,2,34}. Applying
Lemma 6.4, we have % = [1,2,3,4,6,7.8,5 NEZ N f(P*.0) - f(p*,0?) =

(2d(0,5)+2d(7) +2d(0,8)+c(7.8,5))p*(6)-c(6)p*(7,8,5) = w(7.8)p*(6)-
c(6)p*(7.8)+(2d(0.3)+w(5))p*(6)-c(6)p*(5) > 0 by Lemma 3.2.
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Lemma 6.5. Supposc 0€2¢y N2, Leti€Dand U = UjeKVJ’ where K € K. Suppose

under ¢ SR examines vertices in the order of ... 1 Z U W. Herc Z,W C D. Assume the restriction
of o to U belongs to Zpp;(U). Define TEX so that under t SR examines in the order of ...1 U Z
W. Then TEESDEHEPDE and {(p*,0) = {(p*.7).

Proof: By the definition of U, U C Dj. Further AiNZ = ¢. Hence T€X(:NZpne. Let kKEZ.
Then f(k,0) = ...+d0(i,Z)+s(z,k;0) and f(k,v) = ...+W(U)+d0(i,Z)+s(z,k;o), where 7 1s the first

vertex in Z which is examined under . Hence
(6.6) f(k,0) - f(k,r) = - w(U).

Letk€U. Then f(k,0) = ... +dU(i,Z)+s(Z;o)+dU(Z,i)+d(i,u) +s(u,k;0), and f(k,T) =

...+d(i,u)+s(u,k;0), where u is the first vertex in U which is examined under o. Hence
6.7) f(k,0) - f(k,Tt) = do(i,Z)+s(Z;0)+d0(Z,i).

lLetkeW. Then {(k,0) = ... +d°(i,Z)+s(Z;0)+do(Z,i)+w(U)+do(i,W) +s(w k;0), and f(kx) =
. +w(U)+d 0r(i,Z)+s(Z;0)+d S(Z,w)+s(w k;0), where w is the first vertex in W which is

examined under . Hence

(6.8) f(k,0) - f(k,1) = d_(Z.i)+d_(i,W)-d_(Z,w) = 0.

From (6.6), (6.7), and (6.8), we have

(6.9) f(p*,0)-f(p*,0) = -w(U)p*(Z2)+p*(U)N{d(i,2)+s(Z;0)+d (Z,i)}.

There is t€V\Z such that Z C D; and SR passes through t when he examines Z under 0. Suppose
t= 0. Since O€Zp, N2, applying Lemma 3.2(i) we have

d (1.Z)+S(Z:0)+d (Z,i) = 2d(i,)+d (LZ)}+S(Z;0)+d (Z.1)
K
> d_(tZ+S(Z;0)+d (Z,1) 2 W(tZ) 2 I()f()tc)(t).

From this and (6.9) we have

WPE@e® _ ~ pHU) PO, _ ~P*D)  p*O
f(p*,0) - f(p*,0) 2 - wU)PH(Z) + pHUBEt = cfrs - By = o - By 2 0,

since p*(U)/w(U) = p*(i)/c(i) by (3.1), where C = w(U)p*(Z)c(t)/p*(t). Suppose t =0. Suppose
1IEV, for xEK . LetZ = Z;U...UZg where SR examines in the order of iZ;0Z30...0Z. Here O
means SR goes back to 0. Then do(i,Z)+s(Z;0)+do(Z,i) > do(i,Zl)+s(Z 1;0)+d0(21,i)+
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k k k
Sw(0;Zp), and p*(Z) = Yp*(Zp). Hence f(p*,0)-1(p*.1) = T {-w(U)p*(Zn)+p*(U)w(0;Zp)}-
h:2 h:2

w(U)p*(Zy1) +p*(U){d0(i,Zl) +s(Z ;0)+d0(Zl,i)}. Apply Property 3.1(iii), Lemma 3.2 and the

samc argumentasint= Q. ¢

Example 5.2 (Continued). Let1=3,U={5},Z={4,6,78},and W = {9}. Applying Lemma
6.5, we have &3 = (1,2.3,54,6,7891€Z,,.. f(p* ,02)-f(p*,03) = -w(5)p*(4,6,7,8)+(2d(0,3)
+w(4,6,7.8))p*(5) +(2d(0,3)+2d(6))p*(9) > 0.

Corollary 6.6. Foroc € X
Proof: Lecto € EPDEHZSD
ZpppZgpy; In Which SR examines in the order of sseiDjee. Apply this operation to every i€D

PDEOZSDH’ there exisls o#EZDE such that f(p*,0) = [(p*,o#).
i Leti€Dand D; © L. Applying Lemma 6.5 to every JED;, gett€

such that D; € L. Then consider i€D such that the restriction of the search to D; belongs to
2pE(Dj). Clearly this operation can be continued inductively and at each step the expected cost
does not increase. Since the graph is finite this operation ends after a finite number of steps, when
the resulting strategy, say o#, of SR belongs to Zpg;. ¢

Lemma 6.7. If p&P is optimal, then p = p*.
Proof: Since p is optimal, for any o€Z*, {(p,0) = vK,,- But from Lemma 6.1, f(p.q) = g&
o *

f(p,o) = VK- This implies
(6.10) f(p,0) = VK, for all cEX*.

Suppose Ko = {1,...,m} and o&Z* indicates that SR examines G(a(m);vm) last. Suppose
o' EX* is a strategy such that it indicates that SR examines Ga(m);v,,) first and the other parts of
o' are the same as in ¢. Since {(p,0) = {(p,0’) by (6.10), we have

m

(6.11) S 3 p@f(zo)=3 I p@f(z.0).
x=1 7=V 7€V

=V X=
Since f(z,0) = f(z,0)+W(Vp) forall ZEVyy -1} and {(z,0) = {(z,0)-w(V{1,... m-1)) forall
7EV, we have, from (6.11), p(Vg,) = w(Vy)/w(D). But, noting Remark 4.3 and considering
other strategies for SR, consequently we must have

(6.12) p(Vx) = w(Vy)/w(D) for all xEKg.

From this, p(Vx)W(Vy) = p(Vy)W(Vy) for all x,yEKo. Nextlet Kj = {jy....,ju}, I€ED. Applying
the same argument we have

(6.13) PVyw(Vy) = p(Vow(Vy).

Suppose 0EZ* indicates that SR examines all vertices in D; just after he examines i. Let o' €Z*
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be a strategy such that it indicates that SR examines 1 just after he examines all vertices in D; and
the other parts are the same as in . Since f(p,0) = f(p,0") by (6.16), we have

(6.14) p)f(,0) + I p@f(z,0) = pD)i(i,0) + I p(a)f(z,0').
=D rSb

Since f(z,0") = {(z,0)-c(i) for all zED; and {(i,0") = f(i,0)+wW(Dj), we have, from (6.14),

(6.15) w(Dyp(1) = c(Hp(Dy).

Since Dj = Vyj, ... j,»and p(Dj) = p(V, .. j,»- (6.19) and (6.21) imply
(6.16) w(V;j )p(i) = c()p(Vj,).
But, (6.12) and (6.16) coincide with (3.1) and (3.2). Consequently we must have p = p*. ¢

7. Final Remarks.

We have solved a serach game on a rooted tree with traveling costs. The hider has a
unique optimal strategy which is given recursively. The searcher has many optimal strategies if
there are many traveling-salesman pathes. A mixture of any ordering corresponding to traveling-
salesman pathes is an optimal strategy. (3.1), (3.2) and Property 3.1(iii) and (v) were important
to prove the theorem.

A generalization of the model is a game on a graph with cycles. As we see by checking a
game on a circle, the hider's strategy is very different from that in a game on a tree.

(3.1) is a recursive relation on the hider's probability distribution. We could discuss more
on relations between the sequential search and the model in this note, by noting the Bellman's
principle of optimality ([2] , [3] and [8]).

Assume the uniform distribution, p!! € P, on D as an a priori distribution. So consider a
one decision-maker problem: Minimize f(p4,0) subject to o€Z. Let oY be a solution of this

problem. Itis an exercise to show that oM EZpy. If p* = pU then f(pY,cY) is equal to the value
of the game. This is the case only when Vertex O has n children, each of which has no child. If
p* is more different from pY, f(pY,ol) will be smaller than the value of the game. This argument
is a generalization of that at p. 381 of [71].
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Appendix
Proposition A.l. There exists uniquely p*&P that satisfies (2.2), (3.1) and (3.2).
Proof: Define for all i€D,

L C(l) m VV(Vih)
(A.D) p*(l)—w(D) hl;ll w(Dih)+C(ih) ’

where (i0=0,i1,...,im=1) is the simple path between O and i. Take i€D such that K; € L. For any
JEK;, Dj =@ and let (O,iy,...,1,)) is the simple path between O and ). By (A.1)

e mo wlVi) w(g) _w() m w(Viy)
P*0) = (D) (hf}l w(D,-h)+c(ih)) cg) ~w(D) hrzll w(Dy )+c(ip)

From this and (A.1),

N— oo wevp el wCViy)
(A2) 10"‘(V|)—p"‘(l)+j & PO wvoy [ S et

Next suppose for kED, p*(V;) is given by (A.2) for all i€EKk. Let (ip=0,i1,...,im-1 = K, im=i) be
the simple path between O and i. By (A.1) and (A.2), noting w(Dim_1)+c(im_1) = }:iEka(Vi) +

m-2
c(k), we have p*(Vk) = p*(K)+Ziek, p*(Vi) = (W(Vp)/w(D)) g:ll (W(Vi Y (w(Djp )+c(in))),

which means p*(Vy) is also given by (A .2), replacing i by k. So starting at every i such that K; C
L and considering inductively, we have (A.2) for all i€D. In particular if iEK, then m = 1 and
we have p*(V)/w(V)) = /w(D), which implies (3.2). Leti€Kg and (i0=0,i1,...,im-1 = K, im=1)
be the simple path between O and i. By (A.1) for kand (A.2) for i, we have p*(k)/c(k) =
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m-1
P*(VDIw(V) =(1/w(D)) T] (w(\/ih)/(w(Dih)+c(ih))), which is (3.1). By (A.1), p*(i) > O for all
h=1

iED. Further p*(D) = Ziek, P*(Vi) = Ziex, w(Vi)w(D) = 1. Hence we have (2.2).
Conversely suppose p*€P satisfies (2.2), (3.1) and (3.2). Let j€K,; and i€D. By (3.1),

p*(Dj) = p*(i)w(Dy)/c(i) (See the proof of Property 3.1(i)). Hence p*(V;) = p*(i+p*(D;) =

(c(i)+w(D;))p*(i)/c(i). From this, p*(i)/c(i) = p*(V)/(c(i}+w(Dy)), from which, combined with

(3.1), we have

A3) PV _ _pH(V)

) w(Vj) c()+w(Dy)
Suppose (i19g=0,11,...,im=i) is the simple path between 0 and i. Applying (A.3) to each edge on
this path, we have a representation of (A.2). From (A.2) and (3.1), we have (A.1). &

Lemma A.2. IB(7t)l <IB(o)l - 1.

Proof: Assume (1,Z) has been yielded newly by the transformation from o to t in the notation of
Lemma 6.3. This occurs only when the pathes which SR uses have changed. Let o-l(y) = o-1(i)-
1 and o'l(k) = ol(i)+1. So o-(1) > o'}(k). Then (1,Z) has been yielded only when both of the

simple pathes between i and y and between 1 and k do not pass through 1 and the simple path
between y and k does pass through 1. But in this case, there will be a cycle which passes through

iand 1, contradicting G is a tree. ¢
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