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Abstract There is a rooted tree. A person selects a vertex except the root, hides in it and stays there. 
The searcher is at the root and then examines each vertex until he finds the hider. traveling along edges 
of the tree. Associated with the examination are a traveling cost dependent on the distance from the last 
vertex examined and a fixed examination cost. The searcher wishes to minimize t.he expected cost of finding 
the hider, whereas the hider wishes to maximize it. The problem is formulated as a two-person zero-sum 
game and it is solved. 

1. Introduction 

The purpose of this paper is to analyse search problems on a finite graph. These problems 
occur, in a system which can be regarded as a network, when we must find some parts which 
cause the breakdown of the system, or in a building, when we must patrol and find someone 
which threatens the security. 

In this paper the graph is a rooted tree. The hider (called HO) chooses one of all vertices 
except the root and stays there. At the beginning the searcher (called SR) is at the root. After 
SR chooses an ordering of the vertices except the root, SR examines each vertex in that order 
until SR finds HO, traveling along edges. It costs an amount when SR moves from a vertex to 
an adjacent one and also when SR checks a vertex. While HO wishes to maximize t.he sum of 
the traveling costs and the examination costs which are required to find HO, SR wishes to 
minimize it. We have a two-person zero-sum game and solve it. HO has a unique optimal 
strategy. An optimal strategy for SR is to mix orderings which correspond to traveling­
salesman pathes. 

Gluss[5] found a Bayes solution approximately when the graph is linear and the rex)t is a 
terminal point. Kikuta[7] found a maximin solution in the same graph. The model in this note 
is a generalization of that in [7]. Arguments in [7] are applicable for solving the game. But in 
the process of doing so, we must need to show a new kind of inefficiency of some strategies of 
SR, under which SR goes to other branches of the tree before SR examines a branch throughly. 
It is not trivial to show it since those strategies may be optimal in cases where we consider 
Bayes solutions (See Kikuta[6]) and since the non-sequential formulation of strategies of SR 
makes it difficult to apply the Bellman's principle of optimality (See Bellman[2] and also 
Ferguson[3], KikutaJ Ruckle[8]). In order to show it we find properties of the probability 
distribution which is the unique optimal strategy for HO (See (3.1), (3.2) and Property 3.1 
below). It seems that these, in turn, reveal important things in the model and also make the 
prcx)fs simpler than those in [7](For example, compare Lemma 6.7 below with Lemma 8 of [7]). 

Gal[4] analysed a maximm solution in which only traveling costs are taken into 
consideration. If the examination costs of all vertices are positive HO's optimal strategy will 
distribute positive probabilities on all vertices. If the examination costs of all vertices converge 
to zero, it converges to the strategy given in [4]. Theorem 5.1 is a generalization of the result 
by Gal in this point. Lossner/Wegener[9] analysed a Bayes solution in a very general model 
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and they gave critical numbers and conditions in order to check what is the next point to be 
examined. Ruckle[12] analysed a maximin solution in which only traveling costs are taken into 
consideration and the root is not specified. Ahlswedc/Wegener[I] states models with tmveling 
costs. Nakai[IO] is a survey on the search theory and Ruckle[13] states search games with 
overlooking probabilities while we do not a<;sume the overlooking probabilities. [11] is a special 
issue on the search theory. 

2. The Model and Notation. 
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A graph (or undirected graph) G is an ordered pair (V,E) in which V '" {0,I,2, ... ,n} is a 
finite set of vertices, and E is a finite set of pairs of different vertices, (i,j), called edges. If 

(i,j)EE, we say i and j are adjacent. A path between Vertices io and is is a finite sequence of 
distinct edges of the form (io,it),(i l,i2), ... ,(is-I,is). This path is denoted as (io,i (, ... ,is). If io = is 
then this path is called a cycle. A simple path betwem i and j is a path between i and j with no 

repeated vertices. G is said to be connected if for any i,jEV, there is a path between i and j. 

Throughout this paper we assum~ a graph G == (V,E) is a rooted tree, i.e., it is connected, 

it has n edges, it has no cycle, and Vertex 0 is designated the root. For i,jEV such that i ~ j, i is 
called an ancestor of j if there is a simple path between 0 and j such that (i,k) is an edge on this 

path for some kEY. j is called a descendant of i if i is an ancestor of j. j is called a child of i if j is 

a descendant of and adjacent to i. For iEV, let Di, Ki, and Ai for i~ be the sets of all 

descendants, all children and all ancestors of i respectively. We let 0", Do. Define the set of 

leaves by L '" {iEV:Ki = 0}. For any jED, there is uniquely iEAj such thatjEKi. So we let i '" 

a(j) and write a<; e(j) '" (a(j),j)EE. Let Vi'" {i}UOj. For Y ~ Ki, Let e(Y) '" UjEy{e(j)} and Vy 

'" UjEyVj- Clearly E = e(D). For iEV and Y ~ Di, define D(i;Y) '" YU{jEOj:jEAy for some 

yEY}. Define a tree with i as its root by G(i;Y) '" (D(i;y)U{i },e(D(i,Y)). In this paper for a 

nonnegative-valued function g on 0, we let g(Y) '" LiEy g(i), where Y ~ D. We let g(Y) = 0 if Y 
= 0. For a finite set X, IXI is the eardinality of X. The following is a relation between G(i;Dj) and 
G(i;V

j
), the proof of which is easy and omitted. 

Each edge e(j) (jED) is associated with a positive number d(j), called the weight of e(j). 

The length of a path is the sum of the weight'> of all the edges in the path. For i,jEV, we define 

d(i,j) by the length of the simple path between i and J. Clearly d(a(j),j) = d(j) for jED. 
Define a game on G. Player I (the hider, abbreviated as HO) hides among one of all 

vertices in 0, and stays there. Player:2 (the searcher, abbreviated as SR) examines each vertex 
until SR finds HO, traveling along edges. It is assumed that at the beginning of the search SR is 

at 0, and that SR travels along the simple path between i and j when (i,j)~E and SR examines i 

after having examinedj. Associated with the examination of iED is the examination cost that 
consists of two parts: (I) a tmveling cost d(j,i) > 0 of I~xamining i after having examined j, and (Il) 
an examination cost c(i) > O. There is not a probability of overlooking HO, given that the right 

vertex is searched. For convenience, we let d(i,i) = () for all iED. Before searching (hiding 
resp.), SR (HO resp.) must determine a strategy so as to make the cost of finding HO as small 
(large resp.) as poSSible. 

A (pure) strategy for HO is expressed by an element, say i, of 0, which means HO 
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determines on hiding in i. D is the set of all strategies for HD. For Y ~ D, let keY) be the set of 

aJl pennutations on Y. A strategy for SR is an element in k "'~(D). Thus under oE~(D), SR 

examines Vertices 0(1),0(2), ... ,o(n) in this order. This is often expressed as 0= [0( 1), ... ,o(n»). 

For convenience we let o(n+ 1) = 0(0) = O. 

For a strategy pair (i,o)EDx~, the cost of finding HD, written as f(i,o), is : 

0-1(i) 
(2.1) f(i,o) = }: {d(o(x),o(x-l» + c(o(x»}. 

x=1 

Letting payoffs for HD and SR be f(i,o) and -f(i,o) respectively, we have a finite, two-person 

zero-sum game, denoted by (f;D,~). We see that the payoff matrix of this game does not always 
have a saddle point, by checking the case of n = 2. So let (f;P,Q) be the mixed extension of 
(f;D,k) and we call it a game G just as we denote the graph. The elements of P and Q are called 

(mixed) strategies, and expressed as p = (P(l), ... ,p(n»EP and q = {q(o)}EQ, where P(i) is the 

probability that HD chooses iED, and q(o) is the probability that SR chooses oE~. Thus 

(2.2) p(D) = 1, P(i) ~ 0 for all iED, and q(~) = 1, q(o) ~ 0 for all oE~. 

For a strategy pair (p,q)EPXQ, f(p,q) is the expected cost of finding HD. In the same way we 

can define a game on G(i;Y) (iEV, Y~ Di), in which at the beginning of the search SR is at i, and 
Y is the set of pure strategies of HD. Call the mixed extension of this game a game G(i;Y)' Our 
problem is to solve the game G. For jED, we write as 

(2.3) w(j) '" 2d(j) + c(j). 

w(j) is the cost of the return trip which starts at a(j) and examines j. For iEV and Y ~ Di, we let 

w(i;Y) '" w(Y)+2d(D(i;Y)\Y). This is the cost of the most efficient return trip which starts at i and 

examines all vertices in Y. For iEL, let Vi '" d(i)+c(i). This is the value of the game on a tree 
({a(j),j},{e(j)}) with a(j) as its root. Define inductively by, 

(2.4) 
. . w(Di)V~ . 

Vi '" d(l)+c(l) + c(i)+w(Di) for lED 

where v~ '" 0 (if iEL), and, for Y ~ Ki, iEV, 

(2.5) 

Property 2.2. vy < w(Vy) for Y (;to) ~ Ki, iEV\L. 

Proof: If Vj < w(Vj) for all jEY, then by (2.5), 

VY<-(~ )}:w(Vj){w(Vj)+ I W(VIJ}<~(~) (Vy)2= w(Vy). 
w Y jEY k(<j)EY w Y 
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In particular, VK < w(Dj). Then by (2.4), 
I 

. \\!(Dj)w(Dj) 0 

Vj < W(I) + c(i)+w(Dj) < w(!) + w(Dj) = w(Vj). 

If jEL then Vj = d(j)+cU) < w(j) = w(Vj). Since the graph G is finite we can start at every i such 

that Kj ~ L and apply the above argument inductively. After a finite number of steps we arrive at 

o. Then we have the desired result. • 

3. A Strategy for the Hider 
In this section we define a strategy for HO and analyse its properties in the game G == 

(f;P,Q). 

Define p*EP inductively as follows: For jED\Ko, let 

(3.1 ) 

For j, kEKo, let 

(3.2) 
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Suppose SR is at i. The left hand side of (3.1) is the probability per unit cost when he examines i, 
while the right hand side is the probability per unit cost when he returns to i after examining all 

vertices in Vj- By (2.2), (3.1) and (3.2), p*EP is defined completely and uniquely (See 

Appendix). It is easy to sec p*(i) --+ lIn for all iED if c(j) --+ +00 for all jED, and p*(i) --+ 0 for 

all iED\L if c(j) --+ 0 for all jED. 
The following proposition gives basic properties of p*, which are used in the proof of 

Theorem 5.1. Property 3.I(v) is a generalization of Property 3.I(iv). But Property 3.1(iv) is 
interesting since it sUltes that HO should distribute more probabilities to vertices which locate more 
far from the root. 

. . p*(i) p*(Dj) 
Property 3.1. (I) FOflED, c(i) = w(Dj) . 

(
00) F ·EK *(V 0 w(Vj) 
11 or I 0, P j) = weD) . 

(

0 •• ) F °ED\Ko p*(a(i» p*(i) 
III or I , c(a(i» < c(i) . 

(iv) For iEV, let Y~; Dj and suppose D(j;Y) = Y. Then 

p*(YU{i}) ::;; p*(Vj) ifi 7: 0, and p*(Y) :::; p*(Dj). 
w(YU{i}) w(Vl ) w(Y) ",,(01) 

(v) For iEV, let Y ~ Dj. Then 
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p*(YU{i}) p*(V) p*(Y) p*(Dj) 
::; (V 1) if i et:- 0 and (' Y) ::; W(Dl')' w(a(i);YU{i}) w i ' W I; 

Proof:(i) From (3,1), p*(i)/c(i) = p*(Vj)/w(Vj) for alljEKj. From this, p*(i)/c(i) 
= }: p*(Vj)/ }: w(Vj) = p*(Dj)/w(Dj). 

jEKj jEKi 

(ii) (3.2) and }: p*(Vj) = 1. 
jEKo 

("') B Pr 3 1(') (p*(aU»)/ p*O») - 2dU)/ V' I ' , D' - V'\{j} 111 Y opcrty , I, c(aO» (cO) - I - w( J) < , Slllce J - J . 

(iv) Since p* is defined inductively in (3.1) and (3.2), and because of inductive relation expressed 

in Property 2.1, we can use the induction. First supP9se Kj S;;;; L. By (3.1) p*O)/wU) = p*(i)/c(i) 

for alljEKi (= Dj), This implies p*(Y)/w(Y) = p*(Dj)/w(Dj) for all Y S;;;; Kj. Further, 

p*(Vi)W(YU{i} )-p*(YU{i})W(Vi) = (p*(Dj)+p*(i»(w(Y)+w(i» 
-(p*(Y )+p*( i»( w(Dj)+w( i» 

= w(Y)p*(i)+w(i)p*(Dj)-w(Dj)p*(i)-w(i)p*(Y) 
= c(i)p*(Y)+w(i)p*(Dj)-c(i)p*(Dj)-w(i)p*(Y) 
= (w(i)-c(i»(p*(Dj)-p*(Y» <?: 0 

by (3,1) and Property 3.I(i). Hence the property holds if Kj S;;;; L. Next, assume for any jEKj, 

the property holds for all Y such that YS;;;; Dj- Then suppose Y S;;;; Dj, If Y nVj et:- 0, (Y nVj 

,e(ynDj» is a rooted tree with j as its root. By the induction hypothesis, we have 

p*(YnVj)/w(YnVj)::; p*(Vj)/w(Vj)' From this, p*(ynVj)::; p*(Vj)w(ynVj)/w(Vj). Add these 

together for jEKj with ynVj et:- 0, noting that p*(Vj)/w(Vj) = p*(Dj)/w(Dj) for all jEKi' Then 

p*(Y)::; p*(Dj)w(Y)/w(Dj). This, combined with Property 3.1(i) implies p*(YU{i}) ip*(Vj) ::; 
(w(Y)+c(i»/(w(Dj)+c(i» since Dj = Vj\{i}. The right hand side of this is less than or equal to 

w(YU{i})/w(Vj) since YU{i} ~ Vj. Hence the property holds. Since the graph G is finite we 

can start at every i such that Kj S;;;; L and apply the above argument inductively. After a finite 
number of steps we arrive at O. 
(v) If Y = D(j;Y) it reduces to Property 3.1(iv). Suppose Y et:- D(j;Y). By Property 3,1 (iv), 
p*(D(j;y)U{i})/p*(Vj)::; w(D(j;y)U{i})/w(Vj), from which, 

(3.3) 
p*(YU{i}) < w~D(j;y)U{i}) _ p*(DCj:Y)\Y) 

p*(Vj) - w(Vj) p*(Vj) 

Further, 

(3.4) 
w(i;Y)+w(i) _ {W(D(j;'nU{i}) _ p*(DCj:Y)\Y)} _ p*(DCj:Y)\Y) _ c(DCj:Y)\Y) 

w(Vj) w(Vj) p*(Vj) - p*(Vj) w(Vj) 

__ 1_ ' *' c(j)p*(Vj) 
- p*(Vi) ~JED(I;Y)\Y {p 0) - w(Vj) }. 

Here, for jED(i;Y)W, 
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(3.5) 

by (3.1), the relation of jEOj, and Property 3.1(iii). (3.3), (3.4) and (3.5) imply the first 

inequality. The second inequality follows in the same way. • 

The next lemma follows from Property 3.1 and it is used in the next section. 

Lemma 3.2. (i) Let iEVj for jEKo. Under (} E I. suppose SR passes through i and then 

comes back to i again after checked all yertices in Y (~Dj). Suppose X (~ D) is the set of 

vertices which he passes through in this trip. Assume ynAj = 0. Then 

--.E(Y) p*(i) 
w(Y)+2d(X) ::; c(i) . 

(ii) Let i,jEKo. Let Y ~ Dj and yEVj. Then 

p*(Y) p*(YU{i}) p*(y) 

w(O;YU{i})-c(i) ::; w(O;YU{i}) ::; c(y)' 

Proof: (i) Case 1. Assume Y ~ Dj. Then w(Y)+2d(X) = w(i;Y). By Property 3.1(i) and the 
second inequality of Property 3.l(v), we have the desired result. 
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Case 2. Assume Y <t Dj and Y ~ Dj. By the definition of Y, ynOj = 0. There is k (~i)EVj such 

that YU{i} ~ Db; and w(Y)+2d(X) = w(k;Y) +2d(k,i). i ~ j since yet Dj. Also i ~ k by the 

definition of k. Since kEAj, we have kEtY. Applying Case 1 with Property 3.l(iii), 

p*(i) p*(k).E.Q:J... p*(Y) 
c(i) ~ c(k) ~ w(k;Y) ~ w(k;Y)+2d(k,i)" 

(ii) By Property 3.1(v), (3.2), (3.1), and Property 3.1(iii), 

p*(YU{i}) <: p*(Vj) = p*(Vj) <: 12*9) <: r:ill 
w(O;YU{i}) - w(Vj) w(Vj) - c(j) - c(y) , 

Further, by Property 3.1(v) and Property 3.1 (i), 

p*(YU{i}) p*(Y) 
..!.....:'--...:.....::.~ - = B{p*(i)w(i;Y)-c(i)p*(Y)+p*(i)(w(i)-c(i»} 
w(O;YU{i}) w(O;YU{i})-c(i) 

~ Bp*(i)(w(i)-c(i» ~ 0, 

where B '" 1/{w(O;YU{i})(w(O;YU{i})-c(i»} .• 

4. Construction of a Strategy for the Searcher 
In this section we define a stmtegy of SR. A part of this kind of strategy has been already 
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discussed in [8] in which a strong assumption is imposed on a game. 
Let iED andjEKi. By any aEI(Di), Vj is partitioned into Da(j, 1 ), ... ,Da(j,rj), where 

Da(j,h) is the set of vertices which SR examines in his hth visit to the branch Vj. Of course, he 
may examine vertices which arc not in Vj before he examines vertices in Da(j,l), depending on a. 

We call aEI(Dj) partially distance-efficient (abbreviated as PDE) iffor jEKj, and for Y = l, ... ,rj, 
SR examines each vertex in DaU,y) when he passes by it for the first time in his yth visit to 
G(j;D

j
). IpDE(Dj) is the set of all PDE-strategies aEI(Dj). We call uEI(Dj) sub-distance-

efficient (abbreviated as SDE) if for jEKj, and for y = 2, ... ,rj, Da(j,y) includes no ancestor of 

vertices in DaU,l)U ... UDa(j,y-l). ISDE(Dj) is the set of all SDE-strategies oEI(Dj). We say 

that oEI(Dj) is distance-efficient (abbreviated as DE) if SR travels along each edge in E at most 

twice under o. IDE(Dj) is the set of all DE-strategies oEI(Dj). IDE(Dj) ~ ISDE(Dj). If 

oEIDE(Dj), SR visits G(j;D
j
} only once for alljEKj. Unless otherwise specified, ISflE, IpDb 

IDE mean ISDE(D), IpDE(D), IDE(D) respectively. Next we define sets of permutations 

inductively as follows. Let Y == {n, ... ,Ym} ~ D where Yl < ... < Ym· First let I(Yl,Y2) == 

{[Y l,Y2],[Y2,Y I]}' Assuming I(YI, .. · ,Ym-l) is defined, define I(Yl, ... ,Ym-l,Ym} == 

([Ym,o(Yl), .. ·,o(Ym-l)]: oEI(Yl, .. ·,Ym-l)} U{[o(Yl), .. ·,o(Ym-l),ymJ: oEI(Yl, .. ·,Ym-l)}. 

Then I(Yl, ... ,Ym) ~ I(Y). In particular if Y = Kj, iEV, we write as Ij == I(Yl, ... ,Ym). Next, 
define for h = 2, ... ,m, 

v{y } - w(V ) + v 
r(Yh» = I, .. ·,yh -I Yh Yh and r(Yh<) = l-r(Yh». 

w(V {Yl, ... ,Yh}) 

For iEV, suppose Kj = {Yl, ... ,Ym} where Yl < ... < Ym. Then define for oEIj, 

r(i;a) == n r(Yh» n r(Yh<). 
a-l(Yh_I)<a-l(Yh) a-l(Yh_l »a-l(Yh) 

Next, for iED\L, 't"(i<) means that SR examines i first and then examines all vertices in Dj. 't"{i» 

means that SR examines all vertices in Dj and then examines i. Define for iED\L, I{i,Dj} == 

{'t"(i<),'t"{i>)}. For iED\Llet 

vi-vK;-d(i) 
r('t"(i<» == c(i) and r('t"{i>)) == l-r('t"(i<». 

v{y\ '''',Yh} - v Yh v {y\ .... ,Yh} - v {YI r"'Yh-l} 
Property 4.1. (i) r(Yh» = and r(Yh<) = --------

w(V {Ylr ... Yh-l}) w(V Yh) 

(ii)For iEV, L r(i;o) = 1, and r(i;o) > 0 for all oEIj. 
a~j 

(iii) 0 < r('t"(i<» < 1. 

(iv) For iEV andjEKj, L W(Vk) )' r(i;o) = VK - vj-
kEK.j\{j} a~j:a-f(k) <a-l(j) 1 

Proof:(i) By (2.5) for Y = {Yl, ... ,Yh} and Y = {Yl, ... ,Yh-d respectively, we have 
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V{' , }w(V{, }) - V{, }w(V{, }) = w(V ){v + w(V{ })} Yl,"',)h y],"',Yh )l,"',Yh-] )],"',Yh-l Yh Yh Yl""'Yh-]' 

From this, we have the desired result, using w(V {Ylo""Yh_\})+w(Vyh ) = w(V {Y\ ,,,.,yh})' 

(ii) By Property 2.2, r(i;o) > O. We let Kj = {n, ... ,Ym} and Yl < ... < Ym' When m = 2, 
r(i;[n,Y2]) = r(yz» ,md r(i;[Y2,y!l) = r(Y2<). Hence it holds. Assume it holds for i, ... ,m-1. Let 

I' == {oEIj:<-J(n) = YIll} and I" == {oEIj:o(YIll) = )Ill}' Then Ij = I' UI". 

}: r(i;o) = L r(i;a) + }: r(i;a) 
aEl:j af~' aEL" 

= r(Ym<) }: r(i;o) + r(Ym» }: r(i;a) = r(YIll<) + r(Ym» = 1 
aEL(Yl,,,·,Ym-\) aEL(Yl,,,,,Ym-l) 

by the induction hYJX)thesis. 

(iii) By (2.3) and (2.4), Vj-VK(j)-d(i) = c(i)-c(i)vKj/(c(i)+w(Dj» < c(i), which implies r(l:(i<» < 1. 

By Property 2.2, vKj < w(Dj), which implies c(i)- c(i)vKj/(c(i)+w(Dj» > O. Hence r(T(i<» > O. 

(iv) Suppose j < k. Then by Propert 4.1(ii), ~t: r(i;a) = r(k<), and if j > k then 
aELj:a- (k)<a-i(j) 

Y r(i;a) = r(j». Hence 
aELj :o-t(k)<a-1(j) 

= }: w(Vk)r(k<) + }: W(Vk)r(j» 
kEKjl{j}k>j kEKj\{j}:k<j 

We consider an element in IDE such that: 

(I:Search in G(a(j);Vi» Suppose SR is at a(i) and i$L. When he examines Vj, he examines in the 

order of an element in I{i,Dj}. I.e., either he examines i first and then examines Dj throughly or 
he examines Dj throughly and then examines i. 

(Il:Search in G(j;Di» Suppose SR is at i and i$L. When he examines Dj, he examines {Vj}jEKi in 

the order of an element in Ij, where he examines each Vj throughly before moving to other 
branches. 

It is easy to see any element in I that satisfy (I) for all iED\L and (Il) for all iEV\L belongs to 

IDEo So let I* == I*(D) be the set of all elements in :EDE that satisfy (I) for all iED\L and (Il) for 

all iEV\L. In the same way we can define I*(Dj) (iEV\L) and I*(Vj) (iED\L). Each element in 

I* can be specified by selecting one in I{i,Dj} at each iED\L and one in Ij at each iEV\L. 

Hence express aEI* as 

o = 00 n ( C1il:i), 
iED\L 
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\-vhere OjE~i and 'tiE~{i,Oi}. If IKol > 1 then 

II = CfO n n (OJ'ti) = 00 n 't·oi, 
jEKo iEVj\L jEKo J 

where oi '" n OJ n'tj E ~*(Oj). If IKoI = 1, let Ko = {I}. Then 
iEVj\L iEDj\L 

II = 01'tl n (Ojl1) = 01'tl n'tjoi. 
iEDIIL jEK] 

Define q*EQ as follows. 

q*( 0) = n r(i;oi) n r('ti) if oE~*, and q*( 0) = () if 0Et:~*. 
iEV\L iEDIL 

Property 4.2. q*(~ *) = I. 

Proof: If Ko ~ L then q*(o) = r(O;o) for all oE~*. By Property 4.I(ii) Property 4.2 holds. 

Next, if Ko ={l} and KI k L then oE~* is expressed as 0 = 'tlOI where 'tIE~{l,O I} and 

aIE~l. Then q*(~*) = r('t(l<»~r(1;ol)+r('t(l>))~r(l;Ol) = r('t(l<»+r('t(l») = 1 by Property 
4.1(ii) and definition. Suppose IKoI > 1 and assume the property holds for any game G(O;Vj) 

where jEKo. Then 

q*( 0) = r(O;oo) n n (r(i;oj)r(l1» = r(O;oo) n q*( oi), 
jEKo iEVJ\L jEKo 

where oiEI*(Vj) and q*(oi) means the distribution in the game G(O;V/ Hence 

q*(~*) = Lr(O;oO) n q*(oi) = L r(O;p) t n q*(oi) 
oEI* jEKo p8:o oEI :OO=P jEKo 

= L r(O;p) n . L q*(p.i) = L r(O;p) = I, 
p8:o jEKo plEI*(Vj) p8:o 

by the assumption. If IKol = I, let Ko = {I}. Assume the property holds for the game G(l;Dl>­

Then 

= r('t(I<» + r('t(I>)) =: I, 
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by the assumption and definitions. Since the grdph G is finite we can start at every i such that Kj 
~ L and apply the above argument inductively. After a finite number of steps we arrive at O .• 

Remark 4.3. In this section we have constructed a strategy for SR, and it is based on a fixed 
order of vertices, i.e., 1,2, ... ,n. This is seen in the definition of kj == k(Yl, ... ,Ym) where iEV 

and Yl < ... < Ym' Suppose TEk(Kj). Clearly we can define k(T(Yl), ... ,T(Ym» which is different 

from kj unless T is the identity permutation. So fonnally we can consider IT IKjl! strategies for 
jEVIL 

SR. 

5. Solution of the Game 
In this section we state that strategies defined in Sections 3 and 4 are optimal and give 

some numerical examples which illustrates optimal strategies. The proof of the theorem is in 
Section 6. 

Theorem 5.1. The value of the game G == (f;P,Q) is vKo' p* is the unique optimal strategy for 

HD. q* is an optimal strategy for SR. 

Example 5.21• Let V = {0,1,2, ... ,9} and E = {(0,1),(l,2),(l,3),(3,4),(3,5),(0,6), (6,7) 
,(6,8),(6,9) }. 

Figure 2. 
By (3.1), (3.2) and Property 3.1 we have 

~_ p*(:Q._ p*(3,4,S) p*(6) _ p*(7) _ p*(8) _ p*(9) 
c( 1) - w(2) - w(3,4,S)' c(6) - w(7) - w(8) - w(9) , 

p*( 1 ,2,3,4,5) 
w(1,2,3,4,5) 

p*(6,7,8,9) and p*(3) = E~(4) = p*(S) 
w(6,7,8,9)' c(3) w(4) w(S)' 

From these and (2.3) we can calculate the optimal strategy for HO. An optimal strategy for SR is 
as follows: 

(3'[4 S]) - z(4)+w(S)-z(S) (...i3» - c(3)+w(4S)-v(4S) (1'[23]) _ z(2)+w(34S)-v(34S). 
r " - w(4S) , r "\ < - c(3)+w(4S) , r ,,- w(234S) , 

(..11 » - c(1)+w(234S)-v(234S) (..16<» - c(6)+w(789)-v(789) (0'[16]) -
r ,,< - c(l)+w(234S) , r " - c(6)+w(789) , r " -
v(1234S)+w(6789)··v(6789) . . 

w(O) , and r(6;[7,8,9]), r(6;[8,7,9]), r(6;[9,7,8]), r(6;[9,8,7]) are gIven III 

the same way. If c(i) -+ 0 for all i, then p*(i) -+ 0 for i = 1,3, and 6. If c(i) -+ +00 for all i then 

Ip*(2,3,4) and w(2,3,4) stand for p*({2,3,4}) and w({2,3,4}) respectively. 
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p*(i) -+ 1/9 for all i. 

Example 5.3. Suppose G is m-ary and complete and its height is n (See pp.273-5 of [14]). 
Then G has 1 + m + m2 + ... + mn vertices and m + m2 + ... + mn edges. Assume c(i) = c > 0 

for all i and d(i,j) = 1 for all (i,j)EE. By the symmetry of the tree we can assume HD assigns the 
same probabilities P(i) to the vertices in the ith level. By (2.3), mp( 1) + m2p(2) + ... + mnp(n) 
= 1. From this and (3.1), (3.2)., we have, after elementary caluculations, 

n b nli) n-l 1 b 
p(n)-{D(m+ )}-land~-D(l- - ) 

- h=1 1+m+m2+ ... +mh-l ' pen) - h=1 l+m+m2+ ... +mh-l ' 

where i = I,oo.,n-I and b", C/(2+c). When m = I, this coincides with (3.2) at p.367 of [7]. 

6. Proof of the Theorem. 
In this section we prove Theorem 5.1. 

Lemma 6.1. f(i,q*) = vKo for all iED. 

Proof: Let (io=O,il,oo.,im,im+l=i) be the simple path between 0 and i. By considering the 
definition of q* and the search procedures, (I) and (11), we have 

q*(o) 
f(i,q*) = d(O,i)+c(i)+w(Di)r('t(i») }; 

08:*:'q=t(i» r('t(i») 

m 
+ }; c(ib)r('t(ih<» }; 

h=l oEI*:'tjh =t(ih<) 

q*(o) 

r('t(ih<» 

m m 
= d(O,im)+d(i)+c(i)+w(Dj)r('t(i>))+ }; c(ih)r('t(ih<»+ }: (VKjh -Vjh+[) 

h=l h=O 
= d(i)+c(i)+vKo-Vj+w(Dj)r('t(i») = vKo 

by (2.4) and Property 4.1(iv). • 

Lemma 6.2. For any oE~DE, f(p* ,0) = vKo' 

Proof: Assume Ko ~ L. Then by Property 3.1(ii), p*(i) = w(i)/w(D) for all iED. So f(p* ,0) = 

~jED p*(i)f(i,o) = (l/w(D» ~jED w(o(i»{w( {o( 1 Loo. ,o(i-l)})+d(o(i»+c(o(i»} = vKo by (2.5). 
Next assume IKoI = 1 and let Ko = {I}. Assume the lemma holds for the game G(I;D[). p*(l) 

+p*(D) = 1 and p*(l)/c(l) = p*(Dl)/w(Dl), by (2.2) and Property 3.1(i). From these we have 

(6.1) * _ c(l) 
p (1) - w(Dl)+c(l)' 
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Let KI = {2, ... ,u}. Without loss of generality, suppose 0' checks in the order of G(I;Vz), 

... ,G(l;Vk), 1 ,G(l ;Vk+),··· ,G(l;V u>. Since (J E ~Db 0-1(1) = IV21+ ... +IVkl+ 1. Further, 

k 
f(p*,a) = p*(l){d(l)+c(I)+}; w(VtJ} + }; p*(i){f(i,a)-d(l)+d(1)} 

h=2 u-l(i)<o-l(l) 

+ }; p*(i){f(i,a)-d(1)-c(I)+d( l)+c(1)} 
0-1 (i»u-1(1) 

k 
= d(1)+c(l)p*(1)+c(1)p*( {i:o-l(i»o-l(1)} )+p*(1) }; W(Vh)+(1-P*(l»VKI' 

h=2 

since 

by the assumption. Hence, by (3.1), Property 3.1(i), (6.1), and (2.4), 

u k 
f(p*,a) = d(I)+c(1)p*(1)+p*(1) }; W(Vh)+P*(1)}; w(VtJ+(1-P*(1»VK1 h=k+1 h=2 

= d(1)+c( l)p*(l)+W(OI)P*(1)+(l-p*( 1»VK) 

= d(l)+c(1)p*(l)+e(l)p*(OI)+(I-p*(1»VK) = VI = vKo. 

In particular if KI !: L the lemma holds. Assume 1KOI > 1 and let Ko = {l, ... ,m}. Assume a E 

~DE examines in the order of G(O;V 1), ... ,G(O;Vrn>- Then by the assumption and Property 3.1(ii), 

for x = 1, ... ,m, 

w(V:J x-I 
}; p*(z)f(z,a) = w(O) { }; w(VtJ+ vx}· 

1EVx h=l 

Adding these together for x = 1, ... ,m, we have, by (2.5) and Property 2.1, 

1 m x-I 
f(p* ,a) = weD) }; w(Vx) { }; w(VtJ+vx} = vKo· 

x=I h=I 

Since the graph G is finite we can start at every i such that Ki !: L and apply the above argument 

inductively. After a finite number of steps we arrive at o. • 

From Lemmas 6.1 and 6.2 it suffices to prove that f(p* ,0) ~ vKo for all oE~, in order to show 

that p* is an optimal strategy for HO. Lemmas 6.3,6.4,6.5 and Corollary 6.6 are devoted to 
doing it. Lemma 6.7 proves that p* is an unique optimal strategy. 

81 
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Lemma 6.3. Let iEDj (jEKo). Under aEl:, suppose SR passes through i, examines all vertices 

in Y (~ Dj) and then comes back to i again and examine it. Assume Y nAj = 0. Change the order 
of examination of i so that he examines it just before he examines Y. Let the resulting strategy be 
"to Then f(p* ,a) ~ f(p* ,"t). 
Proof: Suppose X is the set of vertices which he passes through in this trip. First assume the 
path defined by"t is the same as the path defined by a. Then f(p* ,a)-f(p* ,"t) ~ p*(i){w(Y)+ 

2d(X) }-c(i)p*(Y) ~ 0 by Lemma 3.2(i). Next assume the path defined bY"t is not the same. Then 

the tmveling cost decreases by d(y,i)+d(i,k)-d(y,k) by the change from a to"t, where yEY, cr1(y) 

= cr1(i)-I, and cr1(k) = cr1(i)+1. Thus, f(p*,a)-f(p*,"t) ~ p*(i){w(Y)+2d(X)}-c(i)p*(Y)+(d(y,i) 

+d(i,k)-d(y,k»p*(Z) ~ 0, where Z = {jEV:crl(j) > crl(i)}. • 

Let B(a) 55 {(i,Y):as in Lemma 6.3}. It is easy to see IB(a)1 is finite and I B("t) I ~ IB(a)l-l (See 

Lemma A.2 in Appendix). Hence from Lemma 6.3, we see that for any aEl: there is some 0# 

such that f(p* ,a) ~ f(p* ,0#) and IB( 0#)1=0, by changing the order of examination step by step and 

getting a sequence of pennutations from a to 0#. Then aUEl:pDE. 

Example S.2 (Continued). Let cfJ = [2,4,l,3,7,8,5,6,9]El:\l:PDE. First apply Lemma 6.3 by 

letting Y = {4}, X = {3}, and i = 1. Then apply Lemma 6.3 twice. We have a l = [1,2,3,4,7,8 

,5,6,9]El:PDE. Noting p*(l)/c(l) = p*(2)/w(2) and p*(3)/c(3) = p*(4)/w(4) we have f(p* ,cfJ)­

f(p* ,aI ) = -c(1)p*(4)+(2d(3)+w(4»p*(1)+2d(3)p*(3,7,8,5,6,9) > 0 by Lemma 3.2(i). 

Suppose Y = {o(k),o(k+ l), ... ,o(k+k')} ~ V for aEl:. Define by s(Y;a) the cost of 

checking vertices in Y under a, starting at o(k) and tenninating at o(k+k'), and including the 

examination costs of a(k) and o(k+k'). Let i = o(k) and j = o(k+k'). Define s(ij ;a) 55 s(Y;a) = 
k+k'-I 

c(Y) + }: d(o(h),o(h+l». For Y, Z ~ V, let Y = {o(k), ... ,o(k+k')} and Z = {o(l), ... , 
h=k 

o(l+l')}. Suppose ynz = 0. Then define do(Y,Z) 55 d(o(k+k'),o(l». For iEV\y, Ictda(i,Y) 55 

d(i,o(k» and do(Y,i) 55 d(o(k+k'),i). For convenience, for any Z ~ V and x,yEV\z, we let 

do(x,Z) + s(Z;a) + da(Z,y) = d(x,y) whenever Z = 0. 

Lemma 6.4. Suppose aEl:PDE. Suppose i,jEVI, lEKo, iEDo(1,u) (u ~ 2), andjEDo(l,I). 

Suppose jEKj. Change the order of examination of i, and transfer a to"t so that .l(i) = .1(j)-I. 

Then f(p* ,a) ~ f(p* ,"t). 

Proof: Suppose Do(1,l) = SU{j}UT where Sand T are subsets of V which are examined before 

and after j under a respectively. Suppose W is the set of all vertices which are examined before 
vertices in Do( l, 1) are done, and suppose X is the set of all vertices which are examined between 
vertices in Do(l,l) and Do(l,u). Suppose Y ~ Do(1,u) is the set of all vertices which are 

examined before i. Thus SR examines in the order of WS{j}TXY {i} ... We can suppose DjnS 

= 0 and Y nDi = 0 since aEl:pDE. Then under a, SR will examine j after examined S and passed 

through i. After examined j and before examines i he will pass through 0 at least twice. Hence 

(6.2) f(i,a) - f(i,"t) ~ w(O;X) + w(O;{j}UTUY). 
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Next let kE{j}UTUXUY. Then under a and 'T SR will travel along the same path before he 
examines k. Hence 

(6.3) f(k,a) - f(k;t) = -c(i). 

Suppose (ll(k) > crl(i). Then in the same way, 

(6.4) f(k,a)-f(k,'T) = do(Y ,i)+d(i,k})-d'T(Y,k}) ~ 0 (if Yet:. 0), 

do(X,i)+d(i,k})-d.(X,kI) ~ 0 (if Y = 0). 

Here (ll(k!) = (l1(i)+1. By (6.2), (6.3), and (6.4), 

f(p* ,0) - f(p* ,'T) ~ p*(i)w(O;{j}UfUY) - c(i)p*( {j}UfUY)+p*(i)w(O;X) - c(i)p*(X). 

If IIt:{j}UfUY, 

(6.S) 
p* N. > E.:Q2. > p* ( {j } UfUY) ;. p* ( {j } UTUY) 
C(l) - c(l) - w(l;{j}UTUY) -- w(O;{j}UfUY) , 

by Property 3.1(iii) and Lemma 3.2(i). If lE{j}UTUY, then as the second line of the proof of 

Lemma 3.2(ii), we have the same. On the other hand, for y EKo let Xy,h is the set of vertices 

that SR examines in his yth visit to Vy in the search of X. Thus XnVy = Uh Xy,h. Then 

du(O,X)+s(X;a)+do(X,O) = 2: 2: {do(O,Xy,h)+s(Xy,h;a) +do(Xy,h,O)} and 
yEKo h 

du(O,Xy,h)+S(Xy,h;O)+du(Xy,h,O) ~ w(O;Xy,h) for all hand yEKO, and, by Lemma 3.2(ii) 

p*(i) > p*(Xy,h) ~ p*(Xy,h) 
c(i) - w(O;Xy,h) du(O,Xy,h)+S(Xy,h;a)+da(Xy,h,O) 

for yEKo. This and (6.5) imply f(p* ,0) - f(p* ,'T) ~: O .• 

83 

In Lemma 6.4 if 'Tlf-LPDE. then after applying the operation of Lemma 6.3 to'T some times, we 

get!! such that IB(!!)I=O. This operation does not generate a new couple (ij) as in Lemma 6.4, 

since YU{i} ~ Dj, jEKo in Lemma 6.3. So from Lemmas 6.3 and 6.4 we see that for any 

OELPDE there is some a#ELSDEnLpDE such that f(p* ,u) ~ f(p* ,0#), by changing the order of 

examination step by step, applying Lemmas 6.3 and 6.4, alternately if necessary, and getting a 
sequence of permutations starting at a and arriving at a#. 

Example 5.2 (Continued). a l = [1,2,3,4,7,8,S,6,9]ELpDE'lLSDE' Let j = 7, i = 6, 0 01 (6,1) 

= {7,8}, 0 01 (6,2) = {6,9}, S = 0, T = {8}, Y = 0, X = {S}, and W = {1,2,3,4}. Applying 

Lemma 6.4, we have a2 = [1,2,3,4,6,7,8,5,9]ELSDEnLpDE' f(p*,a1) - f(p*,a2) = 
(2d(0,S)+2d(7) +2d(O,8)+c(7,8,S»p*(6)-c(6)p*(7,8,S) = w(7,8)p*(6)­
c(6)p*(7,8)+(2d(0.3)+w(S»p*(6)-c(6)p*(S) > 0 by Lemma 3.2. 
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Lemma 6.5. Suppose aE~SDEn~p])E' Let iEO and U = UjEK Vj, where K ~ Ki. Suppose 

under (1 SR examines vertices in the order of ... i Z U W. Here Z,W ~ O. Assume the restriction 

of u to U belongs to ~DI:(U). Define TE~ so that under T SR examines in the order of ... i U Z 

W. Then LE~SDEn~PDE and f(p* ,0) ~ f(p* ,T). 

Proof: By the definition of U, U ~ 0i. Further AinZ = \<1. Hence TE~SDEn~PDE' Let kEZ. 

Then f(k,a) = ... +da(i,Z)+s(z,k;a) and f(k,T) = ... +w(U)+da(i,Z)+s(z,k;a), where :to IS the first 

vertex in Z which is examined under o. Hence 

(6.6) f(k,a) - f(k,T) =: - w(U). 

Let kEU. Then f(k,a) = ... +dji,Z)+s(Z;a)+da(Z,i)+d(i,u) +s(u,k;o), and f(k,T) = 
... +d(i,u)+s(u,k;a), where u is the first vertex in U which is examined under a. Hence 

(6.7) f(k,a) - f(k,T) =: da(i,Z)+s(Z;a)+da(Z,i). 

LetkEW. Then f(k,a) = ... +da(i,Z)+s(Z;o)+da(Z,i)+w(U)+da(i,W) +s(w,k;o), and f(k,T) = 
... +w(U)+da(i,Z)+s(Z;a)+da(Z,w)+s(w,k;o), where w is the first vertex in W which is 

examined under a. Hence 

From (6.6), (6.7), and (6.8), we have 

(6.9) f(p* ,a)-f(p* ,T) ~ -w(U)p*(Z)+p*(U){ da(i,Z)+s(Z;a)+da(Z,i)}. 

There is tEV\Z such that Z ~ Ot and SR passes through t when he examines Z under 0. Suppose 

t .. o. Since aE~PDEn~SDE' applying Lemma 3.2(i) we have 

d (i,Z)+s(Z;a)+d (Z,i) = 2d(i,t)+d (t,Z)+s(Z;a)+d (Z,t) a a a a 

p*(Z)c(t) 
~ da(t,Z)+s(Z;o)+da(Z,t) ~ w(t;Z) ~ p*(t) 

From this and (6.9) we have 

f(p* a) - f(p* T) ~ _ w(U)p*(Z) + p*(U)p*(Z)c(t) = C{p*(U) _ p*(t\ = C{p*~i) _ p*(t)} ~ 0 
" p*(t) w(U) c(t) C(l) c(t) , 

since p*(U)/w(U) = p*(i)/c(i) by (3.1), where C '" w(U)p*(Z)c(t)/p*(t). Suppose t = O. Suppose 

iEVx for xEKo. Let Z '" Zl U ... UZk where SR examines in the order of iZlOZ20 ... 0Zk. Here 0 

means SR goes back to O. Then da(i,Z)+s(Z;a)+da(Z,i) ~ da(i,Zt)+s(Zl;a)+da(Zt,i)+ 
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k k k 
'LW(O;ZIJ, and p*(Z) = 'Lp*(ZIJ. 

h=2 h=1 
Hence f(p* ,o)-f(p* ,L) 2: 'L {-w(U)P*(Zh)+P*(U)w(O;ZIJ}­

h=2 

w(U)p*(ZI) +p*(U){do(i,ZJ} +s(Z\;a)+da(ZI,i)}. Apply Property 3.1(iii), Lemma 3.2 and the 

same argument as in t ~ 0 .• 

Example 5.2 (Continued). Let i = 3, U = {S}, Z:= {4,6,7,8}, and W = {9}. Applying Lemma 

6.S, wc have a3 = ! I ,2,3,S,4,6,7,8,91E~DE. f(p* ,(2)-f(p* ,(3) = -w(S)p*(4,6,7,8)+(2d(O,3) 

+w(4,6,7,8»p*(S) +(2d(O,3)+2d(6»p*(9) > O. 

Corollary 6.6. For u E ~PDEn~smi' there exists lJlE~DE such that f(p* ,u) 2: f(p* ,0#). 

Proof: Let 0 E ~PDEn~SDF Let iED and Dj ~ L. Applying Lemma 6.5 to every jEOj, get T E 

~PDEn~SDE in which SR examines in the order of ···iDj··. Apply this operation to every iED 

such that Dj ~ L. Then consider iED such that the restriction of the search to Dj belongs to 

~DE(Dj). Clearly thIS operation can be continued inductively and at each step the expected cost 
does not increase. Since the graph is finite this operation ends after a finite number of steps, when 

the resulting strategy, say 0#, of SR belongs to ~DE. • 

Lemma 6.7. If pE:P is optimal, then p = p*. 

Proof: Since p is optimal, for any aE~*, f(p,a) 2: v~r But from Lemma 6.1, f(p,q) = ~ 
08:* 

f(p,a) = vKo. This implies 

(6.10) f(p,a) = vKo for all aE~* . 

Suppose Ko = {l, ... ,m} and aE~* indicates that SR examines G(a(m);V
m

) last. Suppose 

a' E~* is a strategy such that it indicates that SR examines G(a(m);V m) first and the other parts of 

a' are the same as in (T. Since f(p,u) = f(p,d) by (6.10), we have 

m m 
(6.11) 'L 'L p(z)f(z,a) = 'L 'L p(z)f(z,o'). 

x=I7J.=Vx x=I7EVx 

Since f(z,o') = f(z,u)+w(V m) for all z EV{I, .... m-J} and f(z,o') = f(z,a)-w(V {I .... ,m-l}) for all 

zEVm, we have, from (6.11), p(Vm) = w(Vm)/w(D). But, noting Remark 4.3 and considering 
other strategies for SR, consequently we must have 

(6.12) P(V x) = w(V x)/w(D) for all xEKO· 

From this, p(Vx)w(Vy) = p(Vy)w(Vx) for all x,yEKo. Next let Kj = {jI, ... ,ju}, iED. Applying 
the same argument wc have 

(6.13) P(Vy)w(Vx) = p(Vx)w(Vy). 

Suppose aE~* indicates that SR examines all vertices in Dj just after he examines i. Let a' E~* 
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be a strategy such that it indicates that SR examines i just after he examines all vertices in Dj and 

the other parts are the same as in 0'. Since f(p,a) = f(p,a') by (6.16), we have 

(6.14) p(i)f(i,a) + }; p(z)f(z,a) = p(i)f(i,a') + }; p(z)f(z,a'). 
7El\ zEDj 

Since f(z,a') = f(z,a)-c(i) for all zEOj and f(i,a') = f(i,a)+w(Dj), we have, from (6.14), 

(6.15) 

(6.16) w(V· )P(i)=c(i)p(V· ). Jx Jx 

But, (6.12) and (6.16) coincide with (3.1) and (3.2). Consequently we must have p:: p* .• 

7. Final Remarks. 
We have solved a serach game on a rooted tree with traveling costs. The hider has a 

unique optimal strategy which is given recursively. The searcher has many optimal strategies if 
there are many traveling-saiesman pathes. A mixture of any ordering corresponding to traveling­
salesman pathes is an optimal strategy. (3.1), (3.2) and Property 3.1(iii) and (v) were important 
to prove the theorem. 

A generalization of the model is a game on a graph with cycles. As we see by checking a 
game on a circle, the hider's strategy is very different from that in a game on a tree. 

(3.1) is a recursive relation on the hider's probability distribution. We could discuss more 
on relations between the sequential search and the model in this note, by noting the Bellman's 
principle of optimality ([2] , [3] and [8]). 

Assume the uniform distribution, pU E P, on D as an a priori distribution. So consider a 

one decision-maker problem: Minimize f(pU,a) subject to aEI. Let aU be a solution of this 

problem. It is an exercise to show that all EIDE. If p* = pU then f(pU,aU) is equal to the value 
of the game. This is the case only when Vertex 0 has n children, each of which ha.', no child. If 

p* is more different from pU, f(pu,all) will be smaller than the value of the game. This argument 
is a generalization of that at p. 381 of [7]. 
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Appendix 
Proposition A.I. There exists uniquely p*EP that satisfies (2.2), (3.1) and (3.2). 

Proof: Define for all iED, 

(A.I) 

87 

where (io=O,i I, ... ,im=i) is the simple path between (I and i. Take iED such that Ki ~ L. For any 

jEKi, Dj =!II and let (O,il, ... ,i,j) is the simple path bt:tween 0 andj. By (A.I) 

From this and (A. 1)., 

(A.2) 
(V·) m-I w(V') 

* V ) - *() *(j) - ~ Ih 
P ( J - P I + }: P - weD) hI}l w(Dih)+c(iW 

jEKJ 

Next suppose for kED, p*(Vi) is given by (A.2) for all iEKk. Let (io=O,il,'" ,im-I = k, im=i) be 

the simple path between 0 and i. By (A.I) and (A.2), noting w(Dim_1)+c(im-I) = l:iEKkW(Vi) + 
m-2 

c(k), we have P*(Vk) = p*(k)+l:iEl<Jc p*(Vi) = (W(Vk)/w(D» n (W(Vih)/(w(Dih)+c(ih))), 
h=1 

which means P*(Vk) is also given by (A.2), replacing i by k. So starting at every i such that Ki ~ 

L and considering inductively, we have (A.2) for all iED. In particular if iEKo, then m = 1 and 

we have p*(Vi)/W(V1) = l/w(D), which implies (3.2). Let iEKk and (io=O,il, ... ,im-I = k, im=i) 
be the simple path b<~tween 0 and i. By (A. I) for k and (A.2) for i, we have p*(k)/c(k) = 
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m-I 
p*(Vj)/W(V) = (1/w(D» n (w(Vjh)/(w(Djh)+c(ih))), which is (3.1). By (A.l), p*(i) > 0 for all 

h",1 

iED. Further p*(D) = ~iEKo p*(Vj) = ~iEKo w(Vj)/w(D) = I. Hence we have (2.2). 

Conversely suppose p*EP satisfies (2.2), (3.1) and (3.2). Let jEKj and iED. By (3.1), 
p*(Dj) = p*(i)w(Dj)/c(i) (See the proof of Property 3.1(i». Hence p*(Vj) = p*(i)+p*(Dj) = 
(c(i)+w(Dj»p*(i)/c(i). From this, p*(i)/c(i) = p*(Vj)/(c(i)+w(Dj», from which, combined with 
(3.1), we have 

(A.3) 

Suppose (io=O,il, ... ,im=i) is the simple path between 0 and i. Applying (A.3) to each edge on 
this path, we have a representation of (A.2). From (A.2) and (3.1), we have (A.I) .• 

Lemma A.2. IB(T)I =s; IB(a)1 - 1. 

Proof: Assume (I,Z) has been yielded newly by the transformation from a to T in the notation of 

Lemma 6.3. This occurs only when the pathes which SR uses have changed. Let (,I(y) = (l1(i)-

1 and (l1(k) = (l1(i)+ 1. So (,1(1) > (l1(k). Then (I,Z) ha., been yielded only when both of the 
simple pathes between i and y and between i and k do not pass through I and the simple path 
between y and k does pass through I. But in this case, there will be a cycle which pa.,ses through 
i and I, contradicting G is a tree. • 
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