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Abstract This paper presents a new method with trust region technique for solving the nonlinear least 
squares problem with linear inequality constraints. The method proposed in this paper stems from the one 
presented in a recent paper by the authors. The method successively constructs trust region constraints, 
which are ellipsoids centered at the iterative points, in such a way that they lie in the relative interior of 
the feasible region. Thus the method belongs to the class of interior point met.hods, and hence we may 
expect that the generated sequence approaches a solution smoothly without the combinatorial complications 
inherent to traditional active set methods. 'Ye establish a convergence t.heorem for the proposed method 
and show its practical efficiency by numerical experimenl.s. 

1. Introduction 
In [16]' we have proposed an algorithm for solving nonlinear least squares problems with 
simple bounds. The purpose of this paper is to generalize the results of [16] to problems with 
linear constraints. Although the constrained linear least squares problem has extensively 
been studied [1, 2, 3, 6, 8, 12, 17], less attention has been paid on the constrained nonlinear 
least squares problem. Holt and Fletcher [9] consider the nonlinear least squares problem 
with simple bounds and monotonicity constraints on the variables. Wright and Holt [20] 
extend the results of [9] to general linearly constrained problems by utilizing the structure of 
the sum of squares objective function. For the problem with nonlinear equality constraints, 
Knoth [11] gives a generalized Gauss-Newton method with stepsize strategy based on an 
exact penalty function. Mahdavi-Amiri and Bartels [13] consider an exact penalty method 
to solve the problem with nonlinear constraints and use quasi-Newton updates that take 
into account the structure of nonlinear least squares Hessians. Schittkowski [18] considers 
SQP methods to solve nonlinearly constrained least squares problems. 

In this paper, we consider the following nonlinear least squares problem with linear 
inequality constraints: 

minimize ! t F;(x? 
2 ;=1 

(1.1 ) 

subject to AT x :::; b, x ~ 0, 

where x E Rn, bERm, A E Rnxm and Fi : ~ --. R, i = 1,···, i, are continuously differen­
tiable. We define the functions F : Rn --+ Ri and f : Rn --+ R by F(x) = (F1(x),···, Ft(x)f 
and f( x) = ~ 11 F( x) 112, respectively, where 11 . 11 denotes the Euclidean norm. 
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56 N. Sagara & M. Fukushima 

Using slack variables yE Rm, we may rewrite problem (1.1) as 

minimize f(x) 
subject to AT x + y = b, 

x;::: 0, y;::: o. 

(1.2) 

The method proposed in this paper stems from the one presented in [16]. Specifically, 
the method constructs trust region constraints, which are ellipsoids centered at the iterative 
points, in such a way that they lie in the relative interior {(x, y) I AT X + y = 0, x > 0, y > o} 
of the feasible region of (1.2). Thus the method belongs to the class of interior point methods. 
However, since solutions of the problem are usually on the boundary of the feasible region, 
the trust region ellipsoids may become extremely thin, which causes numerical instability. 
To avoid this difficulty, we incorporate an active set strategy into the method. With such 
a modification, we may still expect that the method retains the advantage of the interior 
point method, as observed in [16] for the case of problems with simple bound constraints 
on the variables. 

The paper is organized as follows. Section 2 presents motivation and description of the 
algorithm. In Section 3, we establish a global convergence theorem. Finally, in Section 
4, we report some computational results with the proposed algorithm compared with the 
successive quadratic programming method. 

2. Algorithm 
First, we describe a basic idea of the algorithm. Suppose that (x, y) is a relative interior 
point of the feasible region of (1.2), i.e., AT x + y = b, x > 0, y > O. Let p and q denote 
the vectors which determine the next points (x+, y+) from the current point (x, y), that is 
x+ = X + p and y+ = Y + q. We consider the following Gauss-Newton type subproblem with 
an additional trust region constraint: 

minimizep,q 
1 211 F(x) + V'F(x)Tp 112 

subject to ATp+q = 0, 

11 D(x)p 112 +IID(y)qI12 ::; ~2, 

where D(x) = diag(l/xi), D(y) = diag(I/Yi) and ~ is a constant such that 0 < ~ < l. 
This problem can be rewritten as 

minimize p,q 

subject to 

1 
g(x)Tp + 2PTH(x)p 

ATp+ q = 0, 

IID(x)pIl2 + IID(y)qI12 ::; ~2, 

(2.1) 

where H(x) = V' F(x)V' F(xf and g(x) = V' F(x)F(x). Note that if (p, q) satisfies AT p+q = 
0, then (x+,y+) = (x,y) + (p,q) also satisfies ATx+ + y+ = b. Also, if (p,q) satisfies 
IID(x)pI12 + IID(y)qI12 ::; ~2, then x+ and y+ remain in the relative interior of the feasible 
region, i.e., x+ > 0 and y+ > o. In fact, if xt ::; 0 for some k, then it follows that 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Hybrid Method for Least Squares Problem 57 

This implies that 

IID{x)pI12 + IID{y)qIl2 = ~ (::) 2 + ~ (::) 2 

> (Pk)2 2: 1, 
,Xk 

contradicting IID(x)pI12 + IID(y)qI12 :::; 6.2 < L Hence, x+ > 0 must hold, In a similar 
manner, we can show y+ > O. To guarantee convergence of the method, we control the size 
6, of the trust region according to the ratio of the actual and predicted reductions caused 
by the step (p, q) chosen to determine the next iterate. 

The trust region constraint IID{x)pI12 + IID(y)qI12 :::; 6,2 in (2.1) represents an ellipsoid, 
which is centered at the current point (x, y) and strictly contained in the nonnegative orthant 
{(x, y) I x 2: 0, y 2: O}. However, when the current point is close to the boundary of the 
nonnegative orthant, the trust region ellipsoid becomes thin and solution of (2.1) suffers 
from numerical instability. To overcome this dHficulty, we modify (2.1) using the idea of 
active set strategy [5] in constrained optimization. 

For the current point (x, y), we define the sets of indices 

I={ilxi2: Ed, J:={jIYi2: E1}, (2.2) 

where El is a sufficiently small positive constant. We also denote 1 = {I, 2" .. ,n} - I and 
J = {I, 2, .. " m} - J. According to the above definition, we partition vectors and matrices 
as 

() [ 
9I(X) ] 

9 X = .fJI(x) , 

By adding the extra constraints PJ = 0 and 'lJ = 0 to (2.1), we get the following problem: 

minimizepI •v 9I(xf PI + ~pf HII(x)PI 

subject to A;JPI = 0, 

AfJPI + qJ = 0, 

IIDI(X)PIII2 + IIDJ(y)qJI12 :::; 6,2, 

(2.3-a) 

(2.3-b) 

(2.3-c) 

(2.3-d) 

where DI(X) and DJ(y) are the diagonal submatrices of D(x) and D(y) with elements l/xi, 
i E I, and l/Yi' j E J, respectively. Note tha.t by the definition (2.2) of I and J, the 
following inequalities are always satisfied: 

Thus any (Ph qJ) satisfying 
11 PI 112 + 11 qJ 112:::; E~6,2 

also satisfies the inequality (2.3-d). This fact implies that the ellipsoid determined by (2.3-
d) contains the sphere with radius E1d. So the ellipsoid never becomes thin as long as the 
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58 N. Sagara & M. Fukushima 

value of ~ does not approach zero. (The latter property will be shown to hold in the proof 
of Theorem 3.1.) 

Now, as qJ = -AJJpr by (2.3-c), from (2.3-d) we have 

P; Dr(x)2PI + qr DJ(y)2 qJ = P; (DI(X)2 + AIJDAy)2 A;J) PI ~ ~2. 

Thus, we can rewrite (2.3) as 

where E( x) is defined by 

minimizep1 gr(xf Pr + ~P; HII(X)pr 

subject to AJ]pr = 0, pr E(x)Pr ~ ~2, 

E(x) = Dr(x)2 + AIJDJ(y)2 A;J 

= Dr(x)2 + AIJDAb - AT X)2 ArJ' 

(2.4) 

(2.5) 

where the last equation follows from the fact that (x, y) is feasible to (1.2). In the remainder 
of the paper, we suppose that the following two conditions are always satisfied: 

rankAr] = 111, 
ZT HII(X)Z is positive definite, 

(2.6) 

(2.7) 

where Z is a I I I x(III - 111) matrix whose columns span the null space of AJ]" Note that 
(2.6) is satisfied when (1.2) enjoys the primal nondegeneracy condition, provided that El is 
chosen sufficiently small. 

Let a solution pj of (2.4) be obtained. Suppose that Ilpill 2 E2 is satisfied, where E2 

is a predetermined positive number significantly smaller than El. If the value I(x + p*) is 
sufficiently smaller than 1(3.~), then we accept p. to determine the next point. Otherwise, 
we halve ~ and solve subproblem (2.4) again. More precisely, let 0 < 11- < TJ < 1, 'Y > 1 and 
o < ~ma., < 1 be given constants. Compute the ratio 

_ I(x + p*) - I(x) 
P = 1f;(x,p*) , (2.8) 

where 1jJ(x,p) = g(xfp + ~pT H(x)p. If p < 11-, then put x+ := x and ~ + := ~~; if 
11- ~ P < TJ, then put x+ := x + p* and ~ + := ~; if P 2 TJ, then put x+ := x + p* and 
~+ := minCt~, ~ma.,). When x is updated, i.e., x+ = x + p*, we compute y+ := y + q* 2 
0, where qj = -AIJT pi and qj- = o. With the next iterative point (x+, y+), we update the 
index sets I and J by (2.2). As a result, we have problem (2.4) corresponding to the new 
index sets I and J. In this manner, we repeatedly solve subproblems (2.4) while updating 
the index sets I and J as long as Ilpi 11 2 E2 holds. 

On the other hand, if Ilpill < 102 is satisfied, then we may regard the current point x as 
an approximate optimal solution of the problem 

minimize I ( x ) 

subject to AT x + y = b, 

Xy = O,Y] = O. 

(2.9) 

This can be verified as follows. When pi is small, so is qj = -A;JPi by (2.3-c). Since the 
ellipsoid determined by (2.3-d) contains the sphere with radius E1~ as noted earlier, we may 
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think that the constraint (2.3-d) is inactive at the solution (pj, qj) of problem (2.3), when 
~ is not too small. (Recall that E2 was chosen significantly smaller than Ed Therefore, 
(pj, qj) satisfies the following optimality condition for problem (2.3) with constraint (2.3-d) 
being ignored: 

gI(X) + HII(X)PI + AIJ;\:J+ AIJAJ 0, (2.1O-a) 

AJ 0, (2.10-b) 

A;JPI 0, (2.10-c) 

AiJPI + qJ 0, (2.10-d) 

where A is the Lagrange multiplier vector and (AJ, AJ) is the partition of A corresponding 
to the index set J defined by (2.2). If (pj,qj) satisfying (2.10) is sufficiently small, then the 
point x may be considered to approximately satisfy 

(2.11) 

which is actually the optimality condition for problem (2.9). 
So in the case where 11 pi 11 < E2 is satisfied, we have to further examine optimality of 

the point x for the original problem (1.2). Namely, we compute Lagrange multipliers AJ by 
solving the equation 

A;JArJAY = -A;JgI(X) 

and check if Ay satisfies the inequalities 

gy(X) + AIJAy:::· -E3e, 

Ay::: -E3e, 

(2.12) 

(2.13) 

(2.14) 

where E3 is a sufficiently small positive constant and e is a vector of appropriate dimension 
whose components are all unity. Note that, by assumption (2.6), equation (2.12) ha.., the 
unique solution AT' If (2.13) and (2.14) hold, then we terminate the iteration, since the 
definition of I and J implies that (x, y) satisfies approximate optimality conditions for 
problem (1.1), which depend on 101,102 and E3. 

To see this, note that the Kuhn-Tucker conditions for problem (1.2) are given by 

which imply 

g(X) + AA:::: 0, x:::: 0, xT(g(x) + AA) = 0, 

A :::: 0, y:::: 0, )7 y = 0, 

9Jo(X) + AloJoAJo = 0, 

f/[o(x) + AloJoAJo :::: 0, 
AJo = 0, 

AJo :::: 0, 

Xlo :::: 0, 

X10 = 0, 

YJo :::: 0, 

YJo = 0, 

(2.15-a) 

(2.15-b) 

(2.15-c) 

(2.15-d) 

for some partitions (Io,lo) and (Jo, Jo) of {1, 2"", n} and {1, 2"", m}, respectively. In 
view of the definition (2.2) of I and J, we see that (2.13) and (2.14) are relaxations of 
conditions (2.15-b) and (2.15-d), respectively. Moreover, (2.15-a) and (2.15-c) correspond 
to (2.10-a) and (2.10-b), which approximately represent condition (2.11) when (pj, qj) is 
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sufficiently small. In the following, conditions (2.13) and (2.14) will simply be referred to 
as E-optimality conditions for problem (1.1), with E = (El,E2,E3)' 

When any of the conditions (2.13) and (2.14) is violated, we try to improve the current 
solution by solving subproblem (2.4), in which the index set I or J is modified. Specifically, 
if (2.13) is violated, we let the currently active variable Xi' be inactive, where index i* is 
determined by 

i* := arg max{ I (gy(x) + AIJAY}i I I (gy(x) + AIJAY}i < -E3, i E I}, 
namely, we let 

1:= 1- {i*}, 1:= I U {i*}. 

Similarly, if (2.14) is violated, we let the currently active variable Yj* be inactive, where 
index j* is determined by 

j* ::= arg max { IAjl1 Aj < -E3, j E J}, 
namely, we let 

J := J - {j*}, J:= J U {j*}. 

By means of this manipulation, we may expect to improve the current solution by solving 
subproblem (2.4) with the revised active sets. In fact, let the condition (2.13) be violated 
and the index set I be augmented by i*. To be precise, we denote j = I U {i*}. Then, since 
IIpill is small, the current solution X approximately satisfies (2.11), i.e., 

(2.16) 

and i* is such that 
(2.17) 

Now suppose that, on the next iteration, the solution x fails to be improved by solving (2.4) 
with the revised active set i. Then we must have IIpill ~ 0 again for the current solution x, 
so that x approximately satisfies 

for some '\y, i.e., we have approximately 

gI(X) + AiJ,\Y 

gi* (x) + AioJ,\y 

0, 

o. 
(2.18) 

(2.19) 

However, since AIJ has full column rank, (2.16) and (2.18) imply that the vector '\Y is 
approximately equal to Ay, which contradicts (2.17) and (2.19). So when (2.13) is violated, 
an improvement will be obtained on the next iteration. The case where the condition (2.14) 
is violated can be argued similarly. 

We are now ready to state an algorithm for finding an E-optimal solution of (1.1). An 
outline of the algorithm is shown in Figure 1. 
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r----.-----------IL---_----r-__ 1---------1 A u gme n t I ~ 
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Figure 1: Flowchart of the algorithm 
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Algorithm 

Initialize: Choose sufficiently small positive constants Ei, i = 1,2,3, and parameters 
/-L, /, ~ma., and TJ such that 0 < /-L < TJ < 1, / > 1 and 0 < ~ma., < 1. Choose an 
initial point (x,y) such that ATx + y = b,x > O,y > 0, and an initial trust region 
radius ~ E (0,1). Let J and J be the index sets defined by (2.2). 
Comment. The complements of [ and J will always be denoted by 1 and J, respec­
tively. 

while (x, y) is not E-optimal do 

begin 

while IIpjll ~ E2 do 

begin 
Solve subproblem (2.4) with 1 and J to find pj; 
on!. '- O· Y['- , 

compute p using (2.8) 
if p ~ J.L then 

begin 
x:= x +p* 
if p ~ TJ then 
~:= min(J~, ~ma.,) 

endif 
end 
[ := [ - {i E [Ix; < Ed; 
J := J - {j E JIYi < El} 

else 
A ._ 1. A 
.u. .- 2.u. 

endif 
end 

endwhile 

if (2.13) is violated then 

begin 
i* := arg max { I (gy(x) + AIJAy); I I (gy{x) + AIJAy); < -E3, i El}; 
[ := [U {i*} 
end 

elseif (2.14) is violated then 

begin 
j* := arg max {IAill Aj < -E3, j E J}; 
J:= J U {j*} 

endif 

end 

endwhile 

end 
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3. Convergence 
In this section, we prove that the proposed algorithm finitely obtains an E-optimal solution 
of problem (1.1) under appropriate conditions. In particular, we shall assume throughout 
this section that the level set {x I f(x) s f(xO)} of function f is bounded, where XO is an 
initial point of the algorithm. 

Proposition 3.1 Let x be an arbitrary point in the level set {x I f(x) s f(xO)}. Suppose 
that assumptions (2.6) and (2.7) are satisfied. Let pj be a solution of (2.4) and let p* = 
(pj,O). If IIpjll ~ E2, then there are some constants", > 0 and fJ > 0, independent of x and 
p*, such that the following inequality is satisfied: 

-1/I(x,p*) ~ ~ '" min{~, ",jfJ}, (3.1) 

where 1/I(x,p) = g(;c)Tp + ~pT H(x)p is the objective function of (2.1). 

Proof. Recall that any PI satisfying AfJPI == 0 can be expressed as PI = ZPI for some 

PI E RIII-IJI, where Z is a III x (111- r:m matrix whose columns span the null space of A;J' 
Thus, problem (2.4) may be rewritten as 

1 
minimizepIERIIHJI gI(X)T ZPI + "2 (ZPIf HIJ(X)ZPI, 

su b ject to pr zT E (x) Z PI s ~ 2 • 

Furthermore, there exists a nonsingular matrix C( x) E R(III-IJI)x (I I I-IJI) , which depends on 
x, such that 

ZT E(x)Z = C(xfC(x). 

Therefore, (2.4) may be rewritten as 

. . . , ( )T' 1 'TH' ( )' mlmmlzeplERllHJI 91 x PI + "2 PI IJ X PI 

subject to IIC(:C)PIII S ~, 

where 9I(X) = ZT 9I(X) E RIII-IJI and ifIJ(x) = ZT HIJ(x)Z E R(III-IJI)x (III-IJI). 

We define ,(f : RIII-IJI -+ R by 

.7.(,) '()T ' 1 ,T if ( )' r PI = gI X PI + "2 PI IJ X PI, 

and then, using this function, we define the function <jJ : R -+ R by 

, ( -1 u(x) ) 
<jJ(r) = 1/1 -rC(x) Ilu(x)11 ' 

where u(x) = (C(xt1)T9I(X) and r E R. Then 

(3.2) 

(3.3) 

(3.4) 

r T 1 r2 1 ( 1 )T' 1 ( ) 
<jJ(r) = -Mx)11 9I(X) C(xt u(x) + 2n;,(x)1I 2 C(xt u(x) HIJ(x)C(xt u .x 

r2 
= -rllu(x)11 + 2e 

= ~ (r - IIU~X)llr (3.5) 
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where ~ = Ilu(~)lldC(x)-lU(x)f HIJ(x)C(X)-lU(X). By assumption (2.7), we have ~ > O. 
Now let T* be the minimizer of cjJ on the interval [0, ~I and let PI denote a solution of 

(3.3). Then, since T*C(x)-ln:f:lll is feasible for (3.3), we have 

cjJ(T*) = ~ (-T*C(X)-lll:~:~II) ~ ~(p;), 
If T* < ~, then (3.4) implies that T* = Ilu(x)II/~ and 

cjJ(T*) = _lIu(x)1I2 
2~ . 

On the other hand, if T* = ~, then we have 

(3.5) 

(3.6) 

1 ~ ~ 
cjJ(T*) = -~lIu(x)1I + 2~2~ ::; -~lIu(x)11 + '2 llu(x)1I = -'2l1u(x)ll, (3.7) 

since T* = ~ implies ~ ::; lIu(x)II/~, that is, lIu(x)11 ~ ~~. 
Consequently it follows from (3.5), (3.6) and (3.7) that 

(3.8) 

From (2.5) and the definition of Dr(x) and DJ(y), the minimum eigenvalue of E(x) is 
bounded away from zero for all x E {x I f(x) ::; f(xO)}, which is bounded by assumption. 
Thus ZT E(x)Z is uniformly positive definite, and hence by the definition of C(x) in (3.2), 
IIC(X)-lll is uniformly bounded. Moreover, Z and HIJ{x) are uniformly bounded under the 
given assumptions. Consequently, we have 

(3.9) 

where f3 is some positive constant independent of x, I and J. 
Next, in order to show that u(x) = (C(x)-l)Tgr(x) is bounded away from zero, we first 

observe that 

IIE{x)1I < max{l/x~) + max(l/y;)IIAIIIIA
T

II 

< 12 (I + IIAIIIIATII), 
El 

since Xi ~ El for i E I and Yj ~ El for j E J. Thus, from (3.2), C(x) is uniformly bounded. 
It then follows from the definition of u( x} that 

1191(X)11 ::; IIC(xfllllu(x)11 ::; 'Yllu(x}ll, (3.10) 

where'Y is a positive constant independent of x, I and J. 
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Under the hypothesis of the proposition, we have 

Ilpjll ~ f~, (:3.11) 

for some constant (~. This implies that 91( x) must satisfy the inequality 

(:3.12) 

where {j is a positive constant independent of x, I and J. Because, if there is a sequence 
{xi} such that 91(:1:i) -t 0, then the corresponding solutions pji of (3.3) have to satisfy 

which contradicts (3.11). Consequently it follows from (3.10) and (3.12) that 

Ilu(x)11 ~ K, (:3.13) 

where K = 8h. 
Finally, using (3.9) and (3.13) to evaluate the right hand side of (3.8), we obtain the 

desired inequality (3.1). 0 

Now we establish the finite termination property of the algorithm. 

Theorem 3.1 Suppose that assumptions (2.6) and (2.7) are satisfied. For any given 10 = 
(lOb 102, 103) > 0, the algorithm obtains an f-optimal solution of (1.1) in a finite number of 
iterations. 

Proof. Note that the algorithm terminates only if Ilpill < 102 holds and, at the same 
time, conditions (2.13) and (2.14) are simultaneously satisfied. Taking a closer look at the 
algorithm, we may therefore deduce that the algorithm fails to terminate only if one of the 
following two cases occurs (see Fig.l): (a) Point x is updated as x:= x+p· infinitely often; 
and (b) Point x stays at the same place after some iteration. 

First consider case (a), which implies that conditions lipj 11 ~ 102 and p 2: 11 simultaneously 
hold infinitely often. By the definitions of D{x) and E(x) given in the previous section, there 
is a constant v > ° independent of x and I such that 

for all PI E Rill. 

On the other hand, for the solution pj of subproblem (2.4) we have 

pjT E(x)pj ~ 602 . 

From (3.14) and (3.15), we get the inequality 

A ~ vlvlipjll. 

(:U4) 

(:U5) 

(:U6) 

On the other hand, if pj satisfies the condition p ~ 11, then it follows from (2.8) and (3.1) 
that 

f(x+p·) ~ f(x) - ~J:tKmin{6o'K/.B}. (:U7) 

Therefore, by (3.16) and (3.17), we have 

f(x+p·) ~ f(x) - ~11~;min{vlvf2'K/.B}, (:U8) 
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whenever Ilpill 2 E2' This inequality implies that the objective function I decreases at least 
by a fixed amount whenever IIpjll ~ E2 and p ~ I-l. However, since I takes non negative 
values by the definition of f, it is obvious that (3.18) can hold only finitely often. Thus, 
case (a) does not occur. 

Next, suppose that the algorithm fails to terminate because case (b) occurs. Since x 
remains at the same point, no elements are removed from the index sets I and J. Moreover, 
in this case, it is impossible that IIpjll < E2 and, at the same time, either (2.1:J) or (2.14) 
is violated in an infinite number of iterations, because the number of elements in I or J 
increases one by one every time (2.13) or (2.14) is violated. Therefore, we only need to 
consider the case where conditions IIpill 2 E2 and P < I-l simultaneously hold in an infinite 
number of consecutive iterations. Since 6. tends to zero, (3.1) implies that we eventually 
have 

1 
-t/J(x,p·) ~ 2"K6.. (3.19) 

On the other hand, since I E: C2 and since x and p. = (pi, 0) are bounded by the standing 
assumptions, there exists a constant K > 0, independent of x and p., such that 

1 
I(x + p.) - I(x) - t/J(x,p·) ::; 2" K lip. 112. (3.20) 

Moreover, since IIC(x)pill ::; 6. by the constraint of (3.3) and IIC(X)-lll is uniformly bounded 
to the above as pointed out in the proof of Proposition 3.1, we have 11 pi II ::; u' 6. for some 
constant u' > O. Thus IIp·11 :S u6. for some u > 0, since p. = (pj, 0) and pj = ZPj. Hence, 
from (3.20), we have 

(3.21) 

Consequently, if 6. tends to zero, then it follows from (3.19), (3.21) and the definition (2.8) 
of the ratio p that 

Ip-ll == I/(x+p·)-/(X)-t/J(X,p·)I::; Ku
2
6. 

t/J(x,p·) K 

which implies p -+ 1, i.e., p ;::: I-l is eventually satisfied. This is a contradiction, and hence 
case (b) does not occur. This completes the proof. 0 

4. Numerical results 
We executed the numerical experiments with the algorithm proposed in Section 2. In this 
algorithm, the most time consuming task is to solve sub problem (2.4) at each iteration. 
For solving (2.4), we transform it into the reduced subproblem (3.3) in which matrix Z is 
obtained from QR decomposition of A;J and solve subproblem (3.3) using a modification 
of the trust region technique [14, 15]. For the updating of Z at each iteration, we use the 
technique described in 12.6.2 and 12.6.3 of [7]. The program of the algorithm was coded 
in Fort ran 77. The computation was carried out using double precision arithmetic on a 
FACOM-M382 Computer at the Data Processing Center of Kyoto University. 

To test the efficiency of the proposed method, it is compared with the successive quadratic 
programming (SQP) method, For the latter method, we used the program package given in 
Chapter 7 of [10]. This program uses direction-finding subproblems derived by modifying 
the second-order approximations to both objective and constraint functions of the program 
to avoid the Maratos effect [4]. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Hybrid Method for LeaSI Squares Problem 

Table 1: Comparison of the proposed method and SQP method. 

Proposed method SQP method I 
I Problem (n, m) I obj. fn iters. CPU I obj. fn iters. CPU I 

1 (30, 5) 1782.6 16 277 1783.3 60 1287 
2 (30, 5) 791.8 19 323 791.9 62 1367 
3 (30, 10) 1787.2 23 403 1787.2 68 1612 
4 (30, 10) 829.6 27 454 831.1 53 1348 
5 (50, 10) 3405.2 24 1906 3405.7 84 7965 
6 (50, 10) 1769.9 24 1825 1775.9 73 7264 
7 (50,20) 3823.1 34 2683 3823.6 90 10451 
8 (50, 20) 1945.0 32 2495 1946.1 74 8806 
9 (80, 20) 5465.7 32 10350 5468.4 113 51060 
10 (80, 20) 3419.1 28 9116 3421.5 109 50233 
11 (80, 30) 5576.0 39 12877 5578.4 109 57521 
12 (80, 30) 3495.1 43 14805 3495.7 122 63136 

obj. fn = objective function value at the obtained solution 
iters. = number of iterations 
CPU = CPU time in msec 
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In order to examine performance of the proposed algorithm, we have solved the follow­
ing family of test problems, of which size can be varied by choosing various values of the 
parameters n and m, where n is an even integer such that n 2: 4 and n 2: m: 

minimize (4.1 ) 

subject to AT x :::; b, x 2: 0, 

where f = 3(n - 2), x ERn, bERm, A E Rnxm a.nd the functions Fj : Rn -+ Rare delined 
by 

F6j - 5(X) = 10 (X2j - X~j_l)' 
F6j - 4(X) 1 - X2j--l, 

F6j - 3(X) = 3V1o (X2i+2 - X~j+1)' 
F6j - 2(X) = 1 - X2j+1, 

F6j - l (X) V10 (x:~j + X2i+2 - 2), 

F6j(X) = V10 (X2j - X2i+2), 

where j = 1,2,···, if (cf. [19]). The elements of matrix A except the last column and 
vector XO were chosen from the intervals [-10,10] and [1,5], respectively. All elements in 
the last column of A were set to be -1. The constant vector b in the constraints was then 
chosen as b = AT XO + ~e, where e = (1,1,···, If, thereby XO became an interior point of 
the feasible region and could be used as a starting point for the algorithm. 

We have solved the above test problems for various values of n and m. In the proposed 
method, we set the parameter values as follows: El = 0.001, E2 = E3 = 0.0001, J.L = 0.3, 
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I = 1.2, 1] = 0.7 and ~ma:z: = 0.99. In the SQP method, default values given in [10] were 
used for all parameters. Table 1 summarizes the results for the proposed method and SQP 
method. We may observe that the proposed method outperformed the SQP method in all 
runs both in terms of objective values obtained and CPU time. (Note that both methods 
always generate a sequence of feasible solutions for the test problem (4.1).) It should be 
pointed out, however, that the computational experiments assumed that the initial interior 
point was readily available, which would not be the case in practice. Nevertheless, the 
obtained results are encouraging enough to claim that the proposed method is a promising 
approach to linearly constrained non linear least squares problems. 

5. Concluding Remark 
In this paper we have proposed a hybrid method for solving the nonlinear least squares 
problem with linear inequality constraints. Because the method is of Gauss-Newton type, 
it only uses the first order information of the functions involved. We remark that a similar 
hybrid algorithm of Newton type may also be designed to solve problems with general 
nonlinear objective functions, if one is willing to use its second derivatives. 
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