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Abstract This article presents analytical and numerical approaches for statistically testing parameter 
estimates of a regression hyperplane, using Empirical Regression Quantile (ERQ) tedmique. The analytical 
approach uses its asymptotic property of ERQ to determine the standard error of parameter estimates. 
The asymptotical results are replaced and compared with a computer intensive technique referred to as 
"a bootstrap method." Furthermore, Leverage Treatment Method (LTM) is proposed for dealing with a 
leverage point problem that may seriously affect ERQ results. It is not trivial to detect the leverage point in 
a multivariate date set. An important feature of the LTM is that it fully utilizes dual variables derived from 
ERQ for identifying the leverage point. The proposed ERQ/LTM is applied to two illustrative examples in 
which the technique is compared with other conventional methods. 

1. Introduction 
The central research issue being proposed in this article is the development of analytical 

and numerical procedures for testing parameter estimates of Empirical Regression Quantile 
(ERQ), simultaneously dealing with a leverage point that could potentially affect ERQ re­
sults. This article proposes a Leverage Treatment Method (LTM) to handle the leverage 
point problem which often leads to ERQ misinterpretation. 

The problem of this leverage point has been discussed in several articles such as Atkinson 
(1986), Belsley et al. (1980), Hawkins et al. (1984), Rousseeuw and Zomeren (1990), and 
Fung (1993). An important feature of these research efforts is that their approaches for 
dealing with a leverage point are all explored in the framework of conventional Least Squares 
(LS) regression. Meanwhile, this study will discuss the same issue from the perspective of 
ERQ, a special form of Goal Programming (GP) technique. 

The ERQ, proposed first by Sueyoshi (1991b), is an analytica.l method to produce a linear 
regression hyperplane on the 100pth percentile of an error distribution, where "p" indicates 
a predetermined percentile. In order to describe ERQ more clearly, this study starts with 
fitting a linear regression hyperplane, mathematically defined as Yl = Xj!3 +E j(j = 1, ... ,n); 
where Yj is the ph observed dependent variable, (3 = ((31,;32 ••••• (3m)T is a column vector 
representing parameter coeflicients to be measured, Xj = (Xlj. '/:2j • ... ,Xmj)T is the jth 
row vector of an observed design matrix, and E j is an error related to the ph observation. 
Formally, the ERQ can be considered as an algorithm that is designed to yield parameter 
estimates ~ = (~l' ~2'" . ,~m), satisfying the following required conditon: 

N(~)/n = p, (1) 

where N(~) indicates the number of observations such YJ < Xj/3. A methodological ad­
vantage of (1) is that this type of regression is usually very robust to the existence of an 
outlier(s) and/or non-normal error distributions (Hogg, 1977 and Huber, 1981). An initial 
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Empirical Regression Quantile and Leverage Treatment 35 

effort to obtain (1), using GP, was first accomplished by Charnes et al. (19.,).,). Their research 
work was further extended into the asymptotical theory of Bassett and Koenker (1978). As 
an extension of these studies, Sueyoshi (1991b) has opened up a new approach that can 
always maintain the required property of (1) to any data sets, including a data set with a 
small sample size. The method was referred to as "ERQ" by Sueyoshi (1991 b). A research 
issue needed to be explored for ERQ is the development of various statistical tests for eval­
uating its parameter estimates. Moreover, ERQ needs an analytical approach to detect a 
leverage point(s) that may cause serious distortion of ERQ, leading to misinterpretation of 
ERQ results in many cases. This article attempts to overcome such methodological issues, 
simultaneously. 

The structure of this article is organized as follows. The next section presents ERQ. 
Section 3 presents a statistical test for ERQ based upon its asymptotical property. The 
statistical test is reexarnined by a bootstrap method that measures the standard error of a 
parameter estimate by resampling artificially generated data sets many times in the form 
of a computer intensive simulation. This task is also accomplished in Section 3. Section 4 
presents LTM that is designed for detecting a leverage point in the framework of ERQ. The 
ERQ/LTM is applied to two illustrative data sets in Section 5. In this section, ERQ/LTM is 
compared with other traditional methods. Conclusion and future extensions are summarized 
in the last (6) section. 

2. Empirical Regression Quantile 

The ERQ can be broken down into three sub processes. The initial stage of ERQ begins 
with a conventional regression quantile model that is formulated by the following GP model: 

n 

mllllmlze L:[p8j + (1 - p)8jl 
j=1 

subject to Xjj3 + 8j - 8j = Yj, j = 1,···, n, 

8+ > 0 and 8-:- > 0, j = 1" .. , n, 
J - J -

(2) 

where 8/ and I5j are positive and negative deviations related to the jth observation, re­
spectively. Model (2), originally proposed by Charnes et al. (1955) and further extended 
by Bassett and Koenker (1978), may yield a regression hyperplane that satisfies (1) on an 
approximate basis. When a data set has a small (e.g., less than 100) sample size, a resulting 
regression hyperplane measured by (2) does not exa.ctly satisfy (1). Using the result of (2) 
as initial information, ERQ attempts to relocate the resulting regression hyperplane in a 
X - y sample space, so that it satisfies exactly (1), simultaneously attempting to maintain 
the minimized sum of absolute errors, as formulated in the objective of (2). 

In an effort to overcome this difficulty of (2) in terms of exactly maintaining (1), ERQ 
uses first dual variables measured by (2). The dual variahles of ERQ can serve as a basis 
for classifying an observed data set into two S11 bsets, as required in (1). Here, in order 
to describe the dichotomization, let tL'j be the dual variable related to the ;th observation 
determined by (2). As found by Sueyoshi (1991b), the dual variahle indicates the rate of 
change in the objective of (2) due to one unit of increase in Yj. Hence, the examination 
of the dual variable provides information on the locational relationship between Yj and its 
estimate. [See also Sueyoshi and Chang (1989a) for a detailed des cri ption on the implication 
of Wj when p = 50%.J 

Hereafter, this article uses a new symbol "k-"(k = 1, ... ,11), representing the descending 
order of Wj(j = 1, ... ,11,), so as to describe how lL''; is fully utilized to dichotomize an observed 
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36 T. Sueyoshi 

data set. The descending order may be expressed by 

(3) 

All the observations (J) are dichotomized into the following two subsets (J = GAUGB): 

GA = {j I the/hobservation has Wj belonging to the top(l - p)thpercentile in (3)}and 

GB = {j I the/hobservation has 10j belonging to the bottom pthpercentile in (3)}. 

The sizes of G A and GB are n( 1 - p) and np, respectively. It is important to note that 
in some case where ERQ cannot clearly separate an observed data set into its two subsets, 
ERQ needs to round off fractions to an integral value for this dichotomization. For instance, 
n(l - p) = 4.8 and np = 3.2 can be observed from the combination between p = 0.4 and 
n = 8. The round-off method determines that G A and GB have .5 and 3 observations, 
respectively. 

The second stage of ERQ applies the following GP models to G A and GB, respectively: 

mmlmlze L b+ +L 
J L b+ 

J 
jEG A JEGB 

subject to XjP + 8} = Yj, j E GA, 

XjP + 8} - 8j = Yj, j E GB, 

8} 2: 0 and 8j 2: 0, j = 1"" ,n, (4) 

and 

mlmmlze L L 8-:- + 
J L 8-:-

J 
jEGA JEGB 

subject to XjP + 8} - 8j = Yj,j E GA, 

XjP+ -8j = Yj,j E GB. 

8} 2: 0 and 8; 2: 0, j=l,oo.,n, (5) 

where all the symbols used in (4) and (5) are the same as used in (2), except L represecting 
a non-Archimedean large number. Two GP models (4) and (.5) yield two distinct regression 
hyperplanes, each of which can be characterized as follows: First, as presented in (4), only 
positive deviations in GA are minimized in its objective so that (4) yields a bottom hyper­
plane to GA. Here, "bottom" means that all the sample observations in GA locate above 
or on the resulting hyperplane. Meanwhile, (4) prevents any observation in GB from being 
above the bottom hyperplane of GA, because positive deviations in GB are weighted by L in 
(4). Conversely, (5) produces an upper hyperplane to GB, where "upper" means that all the 
sample observations in GB are below or on the regression hypereplane. The function of (5) 
can be easily understood by changing the description regarding (4) in a converse manner. 

The third and last stage of ERQ needs to determine the pth hyperplane that can satisfy 
(1) between two regression hyperplanes derived from (4) and (5). In order to determine the 
pth ERQ hyperplane, let X~A and X~B be the bottom hyperplane of GA and the upper 
hyperplane of GB, respectively. Then, the ERQ hyperplane X ~ can be determined by 

(6) 
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where a is a constant value on [O,lJ. The upper and lower bounds of ~ may be obtained by se­
lecting a = 0 or 1, respectively. Thus, different a values produce different ERQ hyperplanes. 
An optimal a value is determined by the following model: 

mllllmlze 

subject to ~ = (1 - a)~A + a~B and 0 ::; a ::; 1. (7) 

Here, the criterion of minimizing the sum of weighted square errors is incorporated in (7) so 
as to determine uniquely the optimal a* value. 

Following the proof of Sueyoshi (1991b), ERQ determines the optimal a* by computing 
first: 

a = [ L P7Jj + L (1 - p)1lj]/[ L PAj + L (1 - p)Aj] 
jEG A JEGE jEG A JEGE 

A A A A A 2 
where 'f/j = (Yj - Xj!3A)(Xj!3B - Xj/3A) and AJ = (Xj!3A - Xj!3B) . (8) 

Then, using (8), the optimal a* is determined as one of the following three cases: (a) if 
o ::; a* ::; 1, then a* = a, (b) if a > 1, then a* = 1, and (c) if a < 0, then a* = O. The 
selection of a* indicates the end of the ERQ algorithm proposed by Sueyoshi (1991 b). 

It is important to note that ERQ has other statistical properties, besides its robustness, 
as a percentile regression. For instance, ERQ can incorporate prior information represent­
ing various requirements on its resulting estimates. Moreover, using such additional side 
constraints, ERQ can deal with the problem of l11ulticollinearity. [See Charnes et al. (1986, 
1988) and Sueyoshi (1994a) which describe the t.heoretical relationship between the multi­
collinearity problem and the side constraints to be incorporated in ERQ. See also Charnes 
and Cooper (1961, 1975).J 

3. Statistical Tests For ERQ 
3.1 Asymptotic Property 

The asymptotic behavior of regression quantile was first studied by Bassett and Koenker 
(1982). They studied first the asymptotical property of Least Absolute Value (LA V) esti­
mation in their works (Bassett and Koenker, 19'18 and Koenker and Bessett, 1978). Then, 
their study (1982) extended it to the asymptotical behavior of ERQ. 

In an effort to describe the asymptotic theory from the perspective of our ERQ. this 
article starts with LAV estimation which is a special case of ERQ. The LAV estimation is 
obtained by setting P = 50% in (2). It is clear that the selection of p = .50% is the most 
important case of ERQ in term of its statistica.l applications. Their theory proved that 
(2) with p = 50% produces parameter estimates and these follow a.symptotically a normal 
error distribution with E(~) = (J and Cov(~) = A2(){TX)-1. Here, A = 1/[2f(0)J and 
f(O) is the height of the density of errors at zero (i.e., their median). Thus, it proves that 
LA V estimates have a smaller asymptotic covariance matrix than ordinal LS estimates when 
A2 < a2 is measured, where a2 is the variance of errors. This indicates that, for instance, 
if the errors follows the Laplace distribution. then f(O) = l/[V2a] is observed, so that 
A2 = a 2/2 is obtained. Hence, LA V has half the asymptotic variance of LS. This asymptotic 
property can be easily extended into regression quanti le. 

An empirical difficulty in using the asymptotical property of LA V is that A = 1/[2f(0)J is 
assumed to be known. This assumption is hardly achievable in real data sets. Many research 
works, including Dilman and Pfaffenberger (19S2, 1988), have investigated an estimation 
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method for ,\. This article will use the result of Dilman and Pfaffenberger (1982, p.40) so as 
to estimate ,\ by the following equation: 

~:= 1/[2.f(0)) = [e(g) - e(-g))/(4g/n), (9) 

where e(g) and e( -g) are the gth and _gth errors on the symmetric index of the median 
sample. 

A drawback related to (9) is that the median point cannot be uniquely determined by 
(2), because it is solved by linear programming (LP) and its solution is always determined 
on an extreme point(s). In the structure of (2), the extreme point is determined by the 
combination of sample observations. As a result of such LP property, (2) always needs several 
data points on its regression hyperplane. For instance, when a linear regression model with 
two parameters is fitted to a data set, at least two sample observations are usually required 
to be on the resulting hyperplane. Consequently, it is very difficult to determine the median 
point and its derived symmetric index. As discussed by Dielman and Pfaffenbergar (1988, 
p.846), the problem for identifying the median sample makes the determination of ~ more 
difficult in many real applications. Meanwhile, the ERQ approach proposed in this study 
fully utilizes the information of dual variables, as presented in the previous section, so that 
it can easily determine the median point and thereby, the symmetric index required for 
(9). This clearly indicates a methodological advantage of ERQ in the estimation of i [The 
problem of a leverage point, that will be discussed later in this article, is also due to the 
property of (2); the model always needs sample data points on its regression hyperplane. 
Such data points strongly pull down the location of a resulting regression hyperplane. For 
instance, if a data point on the regression hyperplane exists far away from the majority of 
its belonging data set in a X - y space, then it often becomes the leverage point.] 

The asymptotical theory on the LAY estimation is easily applicable to regression quan­
tile, as well. That is, (2) yields parameter estimates j3 whose asymptotic distribution is 
multivariate normal with mean vector E(j3) = /3 and covariance matrix is 

C (f3') = (XT X)-lp(l - p) 
ov .f2((p) , (10) 

where (p is the pth quantile of the error distribution. 
As mentioned previously, Bassett and Koenker (1982, P.4lO) extended the asymptotic 

theory of regression quantile, proving that the asymptotical behavior of ERQ estimates 
converges to that of regression quantile estimates. Therefore, ERQ estimates behave like 
those measured by (2) in a very large sample size. [Of course, it can be very easily found 
that a large difference may occur between the properties of ERQ and regression quantile in 
a small sample.) As a result of their proof (1982), statistical tests for ERQ estimates can be 
conducted in the asymptotical properties of (9) and (10). 

3.2 Bootstrap Method 

As explored above, the asymptotical property of ERQ can serve as a theoretical basis 
for its statistical tests. However, this study needs to admit that in some case, where er­
rors do not follow the normal distribution, we need to examine empirically how much they 
are different from the asymptotic distribution. For example, a data set including a student's 
GPA (Grade Point Average) maintains a skewed error distribution because GPA is measured 
between 0 and 4. Another example can be easily found in measuring parameter estimates of 
a cost function. The cost function needs to satisfy various economic conditions (e.g., linear 
homogeneity and negative own-price elasticity), so that it can be connected to a produc­
tion function, as required in Shephard's duality theory (lemma) of production economics 
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(Shephard, 1970). [The duality theory is different from the duality of LP.See Charnes et 
al. (1988) and Sueyoshi (1991a) for a detailed description on regularity conditions required 
by the duality theory of economics.] As presented in Sueyoshi (1991a), side constraints 
representing the regulatory conditions often came an assumed error distribution to be far 
from the normal. In such many cases, this article suggests that we need to use a computer 
intensive technique, referred to as "bootstrap method" , to empirically measure the standard 
error of each parameter estimate. 

The bootstrap procedure for LAY estimation was proposed first by Dielman and Pfaffen­
berger (1988, p.847). This study uses it for ERQ. The bootstrap approach for ERQ consists 
of the following four numerical steps: 

(a) First, ERQ is applied to an observed data set. The estimated parameters ~ and the 
residuals Ej = Yj - Yj are saved. 

(b) Second, the errors are resampled with replacement to obtain new sample errors Ej. The 
errors are used to create a pseudo-data set: 

Yj = Xj/j' + Ej. 

(c) Third, the parameters are reestimated to obt3jn new parameter estimates 7J. Deviations 
in these parameter estimates can be directly observed by 7J - ~. 

(d) By replicating the above processes, the distribution of the true errors (~ - (3) can be 
approximated by the distribution of the pseudo-errors (Z-J - B). 

The variance of the bootstrap distribution can serve as an estimate of the variance of ERQ 
parameter estimates. In this study, .500 bootstr,ap replications are used. [Of course, this 
study is aware of tbe fact that more bootstrap replications may improve the quality of the 
variance estimation.] 

4. Leverage Point 
4.1 Leverage Treatment Method 

When applying ERQ (also LAY), we need to pay attention to the existence of so-caJled 
"a leverage point(s)", or an outlying point(s) in X, that may cause serious distortion of an 
ERQ hyperplane, usually leading to misinterpretation of ERQ results. 

Here, this study adapts a figure from Rousseeum and Zomeren (1990), as presented in 
Figure 1, to visually describe the leverage point problem. Using their terminology, all the 
data points in Figure 1 are classified into the following four types: (a) "regular observations" , 
(b) "vertical outlier" , (c) "good leverage point" , or (d) "bad leverage poin t." Both data listed 
with (c) and (d) are leverage points, because their .1' values are outlying in its data space. 
Although (c) exists on the linearly extended line from the majority of regular observation, 
(d) deviates from the linear pattern. Therefore, (c) and (d) are referred to as a good leverage 
point and a bad leverage point, respectively. The vertical outlier (b) is not a leverage point. 
Since ERQ is robust to both the vertical outlier and the good leverage point, this study 
focuses upon identifying the bad leverage point only. 

In an effort to identify the bad leverage point in our perspective, this article redefines 
it analytically in the framework of ERQ, returning to its capability to find a median point 
by fully utilizing dual variables of (2). The dual variables can be examined on a single 
dimension, even if it is obtained from multivariate ERQ regression. The examination makes 
it possible to identify the median point in 117 dimensions (i.e., the number of parameter 
estimates to be measured). This article uses the median point as initial information for 
identifying the bad leverage point. 
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Figure 1 : Simple Example with (a) Regular Observations 
(b) Vertical Outlier, (c) Good Leverage Point 
and (d) Bad Leverage Point. 

Source: Rousseeuw and Zomeren (1990, P.626). 

• 
(d) 

Next, this study describes how the dual examination is incorporated in LTM for identi­
fying the bad leverage point. The LTM is broken down into the following six subalgorithmic 
processes: 
(a) First, LTM sets p = 50% in (2). Then, the median point (Ym, Xm) is determined on (3), 

using the following simple rule: 

(a -1) if n = 2r + 1, then (Ym,Xm) = (y"Xr ) and 

(a - 2) if n = 2r, then (Ym, Xm) = {(Yr + Yr+Il/2, (Xr + X r+1 )/2}. (11) 

This median point can strongly resist to the existence of a vertical outlier. However, it 
might become a bad leverage point. 

(b) Second, in order to avoid such a case where the median point becomes the bad leverage 
point, LTM identifies all the data points on the regression hyperplane of (2), whose set 
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(H) can be defined as follows: 

H = {j E J and - 1 < Wj < I}. 

Then, LTM computes Xs that is the arithmetric sample median of the observed data set 
(X), i.e., 

(12) 

where each component of Xs is simply a middle order statistic on the order (XiI, Xi2, ... ,Xin) 

when n is odd. When n is even, we use the average of the order statistic with ranks (n/2) 
and (n/2) + 1. More formally, the ilh component of X.(i = L 2 ..... m) is determined by 

(b - 1) if 11 = 21' + 1, then (:ri.) = (:rir) and 

(b - 2) if 11 = 21', then (x's) = {(.Tir + xir+Il/2}. (13) 

(c) Third, LTM determines which data point in H is the closest point to Xm and Xs. For 
this purpose, the examination follows the order of the symmetric dual index from the 
median point (Xm). Hence, Xm is the initial data point to be examined. Let XM be 
the selected data point in H that is the closest to both Xm and Xs. The XM is a data 
point that is robust to not only an outlier but also a leverage point. 

(d) Fourth, LTM computes a distance measure, named "LTM - Dj". that is formulated as 
follows: 

LTM - Dj = V(Xj - X.\r)S(X)-I(Xj - XM)T 

for each point Xj(j = 1, ... ,n), where 

n 

S(X) = [Z)Xj - XM)(Xj - XA/)T]/(n - 1) 
j=1 

(14) 

indicates the sample covariance matrix from X AI. The distance LTM - Dj measures how 
far Xj is located from XM. 

(e) Fifth, LTM compares the score of LTl\I- DJ with a cutoff value measured by X;",I--a/2' 
(f) Finally, in order to confirm whether a data point with a high LTM-D score is a bad or 

good leverage point, LTM temporally omits it from an observed data set. If there is a 
bad leverage point in an observed data set, the data point must be on the ERQ regression 
hyperplane. [This feature of (2) indicates a methodological disadvantage in determining 
an ERQ regression hyperplane. However, it becomes an advantage in identifying a bad 
leverage point.] Then, using the remaining data set, LTl\1 repeats ERQ. If a major 
change is found in the two resulting ERQ hyperplanes. the omitted data point can be 
identified as the bad leverage point. OtherwiE,e. it is a good leverage point. This process 
is replicated until all the leverage points are discovered. 

It is important to note that (14) is a modified from of Mahalanobis distance measure 
(Rousseeuw and Zomeren, 1990, P.633): 

and 

MDj = V(Xj - T(X))C(X)-l(Xj - T(X))T 

n 

C(X) = [L:(Xj - T(X))(XJ - T(X))T]/(n - 1) 
j=l 

(15) 

where T(X) is the arithmetic mean of the data set (X) and C(X) is the usual sample co­
variance matrix. As discussed by Rousseeuw and Zomeren (1990), the Mahalanobis distance 
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suffers from a masking effect, by which multiple outliers do not necessarily have a large 
MDj score, because the mean value is easily influenced by the outlier(s). Equation (14) 
modifies the Mahalanobis dist.ance in a way of replacing T(X) and e(X) by XM and S(X), 
respectively. Meanwhile, Rousseeuw and Zomeren (1990) used l\Jinimum Volume Ellipsoid 
(MVE) estimates for T(X) and C(X) to increase the robustness of the Mahalanobis distance 
measure. [See Rousseeuw (1984) in which Least Median of Squa.res (LMS) regression is used 
to measure MVE estimates. A mathematical description on LMS is presented, with an illus­
trativeexample, in the next section. See also Atkinson (1986) for a description on identifying 
outliers by another LS approach.] A problem of their approach is that the MVE estimation 
is computationally inefficient. Meanwhile, the examination of dual variables produced by 
ERQ easily identifies the data point (XM) whose finding plays an important role in reducing 
computational effort to determine LTM - Dj scores. 

5. Illustrative Examples 
5.1 A Small Data Set 
5.1.1 LTM Results 

An illustrative data set, presented in Table 1, is artificially generated so as to describe 
how LTM is used for identifying a leverage point.. Furthermore, ERQ/LTM results applied 
to the data set are compared with other conventional regression techniques. 

Table 1 : Resulting Dual Variables and LThI - D Scores 

Observation 
( j ) x y Dual Variable LTM - 0 Score 

1 100 16 -0.9315 3.275 ** 
2 15 15 -l.0000 0.538 

3 20 18 -l.0000 0.31~ 

~ 22 20 -l.0000 0.224 

5 25 19 -1.0000 0.090 

6 30 22 -l.0000 0.135 

7 27 23 -0.0685 (m) 0 

8 29 24 l.0000 0.090 

9 33 25 1.0000 0.269 

10 34 26 1.0000 0.314 

11 35 27 1.0000 0.359 

12 36 38 1.0000 0.404 

13 40 31 1.0000 0.583 

Note: (m) indicates a median point and " ** " indicates that its L TM - D score is 

larger than the chi-square cutoff point (2.24). S (X) = 496.92. 
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The first stage of ERQ sets p = :")0% in (2). The ERQ application yields resulting dual 
variables as listed at the third column of Table 1. The dual examination determines the 
seventh observation (27,23) as the median point (X",). This point is also the closest point to 
the arithmetic sample median (Xs) measured by (12). Therefore, (27,23) becomes (XM, YM), 
as well. Using this data point (27,2:3) and the illustrative data set of Table 1, LTM computes 
S(X) = 496.92 and all LTM - DJ(j = 1. 2, .. , 13) Yalues, using (14). All of these LTM - Dj 
results are listed at the fourth column of Table 1. In this table, the LTM - D 1(= :3.275) 

exceeds the cutoff value V xi, 0.97.5 = 2.24. [This study used a chi-square table listed in Hines 
and Montgomery (1980,p.594).] Based upon tbis result, the first observation is determined 
as an outlier. 

Second, the first data point can be considered to be on the resulting regression line, 
because of its dual value (i.e., -1 < Wl = 0.9315 < 1). This result indicates that the first 
observation is a le'verage point and antlier. 

Finally, LTM omits the first data point i1>nd applies (2) to the remaining data set 
(j = 2, .. ,13). The two ERQ applications yield the following two distinct regression lines, 
depending upon the inclusion of the first data point: 

(a) Y = 25.5890 - 0.0959:r(with the first obseryation) and 

(b) Y = 6.000 + 0.600:1' (without the first observation). 

Thus, we can easily find that the two regression hyperplanes have a major difference in these 
signs and magnitudes. This clearly indicates that the first observation is a bad leverage point 
and outlier. 

5.1.2 Comparison among Four Regression Methods 

As a result of omitting the leverage point (the first data) from the observed data set, 
ERQ determines its initial regression line as y = 6 + 0.6.r and produces dual variables as 
follows: W2 = -0.6, W3 = 0.6, U'4 = 1.0, U's = -1.0, W6 = -1.0. It', = 1.0,108 = 1.0,109 = 
1.0,1010 = -1.0,1011 = -1.0,1012 = 1.0 and H'13 = 1.0. The dual examination classifies the 
data set into the following two group: 

GA = {j /3,4,7,8,12 and 13} and GB = {j /2,5,6,9,10 andll}. 

The second stage of ERQ, using (4) and (j), yields !J = 6 + 0.6:r both as the upper 
regression line for GB and as the bottom regression line for GA. [It is just a coincidence that 
GA and GB produce a same regression line.] 

Finally, since the two lines are same. this sludy omits the determination of optimal 0'. 

Thus, the estimated ERQ/LTM regression becomes y = 6 + 0.6:1'. 
Hereafter, this research compares the resulting ERQ/LTivI regression line with other re­

gression lines measured by traditional regression methods so as to visually examine the level 
of estimation improvement of ERQ/LTl\I by comparing its result with other methods. This 
research selects LS, LAY, and LMS (Least Median of Squares) methods as estimation alter­
natives of ERQ/LTM. This comparison among the four regression methods can be vi.sually 
summarized in Figure 2. This study does not m'ed to describe LS, because the technique is 
very well known and presented in any statistical text book. Furthermore, the LAY estimation 
indicates ERQ with p = 50% in (2), which has been long considered as an estimation alter­
native to the LS method since the 18th century. This article omits its description on LAY, 
as well. However, LMS (Least Median of Squares) regression, first proposed by Rousseeuw 
(1984), needs a description on its formulation and statistical application. The LMS tech­
nique is currently proposed as an alternative estimation method for identifying outliers and 
leverage points (Rousseeuw and Zomeren, 1990). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



44 T. Sueyoshi 

Mathematically, the LMS method is expressed by 

mInImIze median E2 
!3 J J 

(16) 

where Ej = Yj - !3lXl) - !32X2) -,'" ,-!3mXmj indicates the ph residual. The sum of squared 
errors in LS is replaced by the median of the squared residuals in (16). This replacement 
adds LMS a capability to produce more robust estimators to an outlier than LS. 

This study summarizes important findings in Figure 2 as follows: 
(a) First, Figure 2 clearly depicts a fact that. both LA V and LS are seriously influenced by 

the bad leverage point (i.e., the first data). 
(b) Second, as discussed previously, the leverage point exists on the LA V regression line. 

Consequently, the point completely distorts the LA V regression line from the direction 
of the data set. 

(c) Third, the level of LAV distortion is much worse t.han LS, indicating that LAV is more 
seriously influenced by a leverage point than LS. 

(d) Finally, LMS regression (y = 3.6+0.7x) and ERQ/LTM (y = 6+0.6;1') fit to the direction 
of the data set. This result obviously indicates the robust.ness of the two approaches to 
the bad leverage point. 

5.2 A Data Set Regarding DEeD Public Telecommunication Systems 
5.2.1 Data Set and Regression Model 

The next illustrative data set used in this ERQ/LTM application represents the perfor­
mance of public telecommunications in 24 OECD countries (1987). The data set, originally 
presented in an OECD policy study (1990,pp.139-157), was adapted from Sueyoshi (1994b). 
In his study, Sueyoshi (1994b) first developed a new type of stochastic frontier probuction 
by combining Data Envelopment Analysis (DEA) with LAV. As visually described in Figure 
2, LA V estimation is seriously affected by the existence of a bad leverage point. In an effort 
to extend his original work (DEA/LAV) here, this article presents a new combination among 
DEA, ERQ, and LTM that can measure parameter estimates of a stochastic frontier pro­
duction function. This study expects that the combination DEA/ERQ/LTM may provide a 
new empirical result that cannot be obtained from DEA/LAV. 

Since the data set used in this study is presented in Sueyoshi (1994b), this article does 
not provide its detailed description concerning the data set, here, except noting that each 
data point indicates OECD country's Public Telecommunications Operation (PTO). The 
PTO is measured in the form of a production activity t.hat uses the following three in­
dependent variables (inputs): (a) the number of telephone main lines installed in PTO 
[unit = 1000 lines]' (b) the total amount of capita.! investment [unit = 1 million US dollars], 
and (c) the number of employees working for PTO [unit = 1000 employees], as well as the 
following dependent variable (output): (d) the total amount of telecommunications service 
revenues [unit = 1 million US dollars]. 

A regression model applied to the data set is the Cobb-Douglas production function: 

In y = A + a In Xl + b In X2 + e In :1'3 (17) 

where Y and xi(i = 1,2, and 3) indicate the dependent and three independent variables, 
respectively. Parameter estimates to be measured by DEA/ERQ/LTM are listed with 
"A", "a", "b", and "e". As presented in (17), all the data points are transformed in a natural 
logarithm. 

A stochastic frontier production function, applied to (17), has the following error struc­
ture: 

In y = In(f(X) + u) + 11 or Y = EXP{[ln f(X) + u] + v} (18) 
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Figure 2 : Illustrative Example with LS, LA V, LMS and ERQIL TM 

where f(X) = A + a In Xl + b In X2 + c In :r3. The managerial erro (u) is due to manage­
rial/ decisional inefficiency such as inappropriate decision making, which is visually defined 
by a deviation from a frontier function. The DEA capability is fully utilized for measuring 
the level of the managerial error. It. is very well known that a frontier production func­
tion is easily influenced by the existence of even a single outlier. It is also true that a bad 
leverage point affects seriously the resulting frontier production function. This application 
to the PTO data set, thus, illustrates practicality and empirical usefulness of ERQ/LTM in 
productivity analysis, both of which are not yet fully explored in Sueyoshi (1994b). 

It is important to note that this research is aware of the existence of conventional studies 
on the stochastic frontier production analysis. including Aigner and Chu (1968), Aigner et al. 
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(1977), Greene (1990), Kopp and Smith (1980), Meusen and Van den Broeck (1977), Schmidt 
(1986), and Van den Broeck et al. (1980). The approach proposed in this article may serve 
as an alternative method when the conventional approaches have a difficulty in measuring a 
stochastic frontier production function, particularly in the cases where bad leverage points 
and outliers exist in an observed data set, and/or where underlying error distributions are 
difficult to determine for the managerial (u) and observational (v) errors. 

5.2.2 LTM Application 

When applying DEA/ERQ/LTM to the stochastic frontier production function of PTO 
in 24 OECD nations, this study needs to provide a comment on LTM's use and its application. 
That is, the purpose of LTM is to identify a bad leverage point that affects seriously the 
result of ERQ. However, it is not always true that its objective is to delete the bad leverage 
point. In some case where the leverage point is essential to make a production function, the 
data point needs to be still kept in its estimation process. For example, the PTO of the 
United States of America (U.S.A.) is much larger than the other OECD nations. Thus, the 
data point might have a high likelihood to become a bad leverage point and/or an outlier. 
If the American PTO were deleted from this empirical study, the resulting performance 
analysis would have only minor implication for the PTO evaluation in OECD nations. A 
user(s) needs to decide whether the bad leverage point is to be kept, deleted or corrected, 
depending upon the type of research and application. 

The LTM results, applied to the PTO in the 24 OECD nations, are summarized in 
Table 2. The table exhibits dual variables derived from (2) and LTM-D scores measured by 
(14). Here, the dual examination determined a set of data points (H) whose dual variables 
belonged to -1 < w·< 1. 

H = {Denmark, Ireland, Luxembourg and Switzerland}. 

Furthermore, the median point Xm was found to locate between the data points regarding 
Denmark and Luxembourg. Using (12), the arithmetric sample median Xs was identified as 

Xs = {8.237,6.839,3.388}. 

By comparing Xs and X values of the four nations in H, XM was determined as the X of 
Switzerland, i.e., 

XM = {8.160, 7.231, 2.929}. 

Along with the XM value, the LTM-DJ scores regarding 24 OECD countries were 
measured by (14). These LTM results are listed at the third column of Table 2. The 

cutoff value J C\'~, 0.975 = 3.058 indicates there is no serious outlier in this logarithmi­
cally transformed data set. Exceptions may be found in Iceland and the United States. 
The two nations have a large magnitude (2.108 and 2.005, respectively) in these LTM­
D scores. Furthermore, all the data points in H do not have high LTM-D scores, indi­
cating that there is no bad leverage point affecting seriously the regression hyperplane: 
In y = 1.849 + 0.127 In Xl + 0.663 In X2 + 0.190 In ;1:3. Consequently, this study may now 
proceed for measuring a stochastic frontier production function to the PTO data set of 24 
OECD nations. 
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Table 2 :Resulting Dual Variables and LTM-D Scores 

Country Dual Variable LTM -D Score 

Australia -1.0000 0.5783 

Austria -1.0000 0.1736 

Belgium -1.0000 0.3612 

Canada 1.0000 0.7343 

Denmark 0.3108 (m) 0.3790 

Finland -1.0000 0.3742 

France 1.0000 1.0520 

Germany -1.0000 1.2196 

Greece -1.0000 0.6861 

Iceland 1.0000 2.1077 

Ireland 0.7361 0.8194 

Italy -1.0000 0.9043 

Japan 1.0000 1.4214 

Luxembourg 0.3192 (m) 1.9681 

Netherlands 1.0000 0.3253 

New Zealand 1.0000 0.6682 

Norway 1.0000 0.3663 

Portugal -1.0000 0.6189 

Spain -1.0000 0.5383 

Sweden -1.0000 0.3294 

Switzerland 0.6338 (M) 0 

Turkey -1.0000 0.4304 

United Kingdom 1.0000 1.0578 

United States 1.0000 2.0048 

Note: (m) indicates two data points between which a median point exists. and (M) 

indicates the data point that is the closest to the median point and the arithmetic 

sample median: XS = (8.264, 6.839, 3.388). 

5.2.3 DEA Application 

47 

I 
I 
! 

This study has applied Data Envelopment Analysis (DEA). proposed first by Charnes 
et al. (1978), to the PTO data set so as to empirically determine the magnitude of Uj(j = 
1, .. ,n) incorporated in (18). Seiford (199:3) provided a bibliography regarding DEA. Since a 
detailed description on DEA can be now found in Tone (199:3) and Cooper et al. (1994) in 
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Japan, this article omits such a detailed comment on the DEA use and its implications. [See 
Chan and Sueyoshi (1991), Sueyoshi (1990a, 1991c, 1992b, 1992c) and Shang and Sueyoshi 
(1994) for various DEA applications. See also Chang and Sueyoshi (1991), Sueyoshi (1990b, 
1992a, 1992d), and Sueyoshi and Chang (1989b) for algorithmic development related to 
several DEA models.] The original DEA, referred to as "Ratio-Form," can be mathematically 
formulated in the following GP model: 

maximize h 
n 

s.t. L,XJAj <XT 
- 0' 

j=l 
n 

- L,YjAj + Yoh ::::: 0, 
j=l 

Aj 2: 0 and h 2: O,j = 1, .. ,n. (19) 

An efficiency score (0*) of the specific oth DMU is measured by 0* = 1/ h*, where h* is 
derived from (19). The DEA efficiency score represents the degree of the specific oth DMU 
on [0,1]. 

Utilizing the result of h*, this study determines the estimated managerial error (uo) as 

U o = Yoh* - Yo· (20) 

In our proposed approach, DEA repeats n times the two computational processes: (19) 
and (20). [The subscript "0" is used to denote a specific DMU to be measured by (20). 
Meanwhile, the subscript "j" indicates the observed order of DMUs.] 

After identifying Uj(j = 1, ... , n) by (20), each Yj is replaced by Yj, i.e., 

(21 ) 

Then, (21) can be replaced by 

In yj = A + a In Xl + b In ;/:2 + c In X3 + Vj, j = 1, ... , n. (22) 

5.2.4 ERQ Application 
After completing DEA, this study applied ERQ to the adjusted data set (1n y*, In X) so 

that the resulting ERQ hyperplane became a stochastic frontier production function to the 
observed data set (1n y, In X). First, the bottom hyperplane of CA was estimated by (4) as 
follows: 

In y = 1.861 + 0.261 In Xl + 0.472 In X2 + 0.284 In X3. 

Second, the upper hyperplane of CB was estimated by (5) as follows: 

In Y = 1.7:31 + 0.265 In Xl + 0.499 In X2 + 0.249 In X3. 

Finally, the optimal a* was estimated as 0.6003 by (8). Threfore, the estimated ERQ 
hyperplane of the stochastic frontier production function became 

In Y = 1.783 + 0.263 In Xl + 0.488 In X2 + 0.263 In .1"3. 
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5.2.5 Statistical Test 
As presented previously, this article proposes anaIytical and numerical approaches for 

conductiong various statistical tests. This study presents first the asymptotical approach 
and then compares it with the bootstrap method. The t-test is used as an example of 
many statistical tests, such as confidence intervals and hypothesis tests, in this illustration. 
Computational processes related to the t- test may be easily extended to other statistical 
tests. 

In conducting the t-test based upon the ERQ asymptotical result, this study first mea­
sured the>. estimate, using (10). The error deviations (Vj) were rearranged by the symmetric 
order from the median sample point. Resulting ~(g), e( -g) and>' are listed in Table 3, along 
with the order of 9(9 = 1, ... ,12). The>. estimates were used with a covariance matrix 
(XTX)-l of the PTO data set, so as to estimate the standaTd deviation of the four pa.ram­
eters. All of them are listed in the right side of Table 3. 

Besides the asymptotical approach, the boo'Cstrap method presented in Section 3.2 was 
applied to estimate the standard deviation of the four paTameters. as well. The resulting 
bootstrap estimates are summarized at the bottom of Table ;~. 

Table 3: Estimate and Standard Deviation of Parameter Estimate 

Standard Deviation 
A 

0 e (g) e (-g) A e- r ML TI PTO·'£ 

1 0.000002 [211 -0.00541 [ 2J 0.0324 0.0899 0.0246 0.0168 0.0173 

2 0.022675 [19] -0.01273 [15] 0.1062 0.2942 0.0805 0.0551 0.0567 

3 0.034183 [181 -0.01525 [ 7] 0.0989 0.2738 0.0750 0.0513 0.0527 

4 0.034394 [23] -0.01599 [14] 0.0756 0.2093 0.0573 0.0392 0.0403 

5 0.050299 [ 5] -0.01628 r 8] 0.0799 0.2213 0.0606 0.0414 0.0426 

6 0.051944 [ 4] -0.01985 [ IJ 0.0718 0.1988 0.0544 0.0372 0.0383 

7 0.056089 [171 -0.02496 [16] 0.0695 0.1924 0.0527 0.0360 0.0371 

8 0.057208 [20] -0.03938 [22] 0.0724 0.2006 0.0549 0.0376 0.0386 

9 0.073244 [ 3] -0.04093 [13] 0.0761 0.2108 0.0577 0.0395 0.0406 

10 0.074177 [24] -0.04860 [12] 0.0737 0.2040 0.0559 0.0382 0.0393 

11 0.092394 [ 6] -0.08544 [11] 0.0970 0.2687 0.0735 0.0503 0.0517 

12 0.096745 [10] -0.20499 [ 9] 0.1509 0.4178 0.1144 0.0782 0.0805 

Average 0.0837 0.2318 0.0635 0.0434 0.0447 

Bootstrap Result 0.1724 0.0483 0.0329 0.03~ 

Note: The number in [ J indicates the observed order of 24 data. The symbols Itl, It ItML, It ItTL,1t 

and "PTO-E" indicate intercept, main lines, telecommunications investment, and PTO 
employment, respectively. 
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By comparing the two results at the bottom of Table 3, this study finds that the bootstrap 
method has produced slightly smaller deviations in the four parameters than the asymptotic 
approach. Furthermore, it is found in Table 3 that the ,\ estimate depends upon the selection 
of "9". There is no way for uniquely determining the best choice of the 9 value. This feature 
indicates that different choices of 9 yield different ,\ estimates. Therefore, this study used 
its average to compute the standard error of ERQ parameter estimates. This operational 
difficulty can be considered as a methodological shortcoming of the asymptotic approach. 
Consequently, this study believes that it is better to measure the asymptotic standard errors 
in combination with another estimation technique such as the bootstrap method. Comparing 
the two approaches, we can confirm whether there is no major difference in the two results. 

Table 4 : Test for Ho by Asymptotical Approach and Bootstrap Method 
~ 

(~2Cii )112 ~i I (~2Cii )112 Variable /3i 

"'* Intercept 1.783 [0.2318](0.1724) [7.692](10.342) 

** Main Lines 0.263 [0.0635](0.0483) [4.142](5.445) 

Telecommunications ** 
Investment 0.488 [0.0434 ](0.0329) [11.244](14.833) 

** PTO Employment 0.263 [0.0447](0.0351 ) [5.884]«7.493) 

Note: The symbol n ** " indicates the level at 1 % significance of the t - test. 
The numbers with [ ] and ( ) in the third column indicate the standard 
deviations measured by the asymptotical approach and the bootstrap 
method, respectively. The corresponding results are listed in the last 
column. 

Table 4 exhibits a result on the t-test for the null hypotheses Ho : f3i = 0, using the 
standard errors measured by both the asymptotical approach and the bootstrap method, 
respectively. An important finding is identified in Figure 4; the bootstrap method rejected 
the null hypotheses related to all the four parameter estimates at the level of 1 % significance. 
This result indicates that all the parameter estimates are important in making the stochastic 
frontier production function for PTO of the 24 OECD nations. The asymptotical approach 
also rejected the null hypotheses at the same level of significance. However, the magnitudes 
of ~;/(~2Cii)1/2(i = 1, .. , m) measured by the asymptotical approach are all smaller than 
those of the bootstrap method. This result is due to a fact that the standard error measured 
by the bootstrap technique is smaller than that of the asymptotical approach. [A different 
data may produce a distinct result between the two methods.) 

5.2.6 Productivity Analysis 

As mentioned previously, the resulting stochastic frontier production function can serve 
as an empirical basis for not only predicting future PTO performance, but also evaluating 
current PTO performance in OECD nations. As a research extension of Sueyoshi (1994b), 
this section compares the productivity measures of PTO performance in 24 OEeD nations 
determined by DEA/ERQ/LTM with those of the previous DEA/LAV. Such empirical com­
parison is summarized in Table .5. 
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Table 5 : Efficiency Comparison between DENLA V and DEAlERQILTM 

~ Country 
DEAlLAV DEAlERQILTM 

Australia 0.5726 0.5783 
Austria 0.7443 0.7402 
Belgium 0.7677 0.7891 

Canada 0.8216 0.8330 
Denmark 0.8340 0.8516 
Finland 0.6912 0.7015 
France 0.8458 0.8493 
Germany 0.6961 0.6847 
Greece 0.5290 0.5695 
Iceland 1.0000 1.0000 
Ireland 0.8678 0.8845 
Italy 0.7065 0.7024 
Japan 0.9611 0.9595 
Luxembourg 0.9594- 0.9841 
Netherlands 0.9585 0.9873 
New Zealand 0.8731 0.9016 
Norway 1.0000 1.0000 

Portugal 0.5718 0.5916 
Spain 0.6143 0.6282 
Swe.den 0.6896 0.6991 
Switzerland 1.0000 1.0000 
Turkey 0.2534 0.2574 
United Kingdom 0.8652 0.8861 
United States 1.0000 1.0000 

Note: DEAlLAV results are adapted from Sueyoshi (1994). 

Tahle 5 indicates that there is no major difference between the two approaches, both re­
porting that the four nations, (Iceland, Norway. Switzerland. and the U.S.A.) are evaluated 
as 100% production efficiency. [This research believes that such similarity in productivity 
analysis is just a coincidence between DEA/ERQ/LTl\1 and DEA/LAV. A different data set 
may produce a large discrepancy between the two methods.] The empirical result indicates 
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that the U.S. can be considered to achieve the high productivity by utillzing its scale effi­
ciency. This perception regarding the U.S. may be applicable to Japan, as well. Small nations 
such as Iceland, Norway and Switzerland also presented the high productivity. The other 
OECD nations represented some amount of inefficiency by comparing relatively these PTO 
performances with those of the four efficient nations. Thus, the resulting DEA/ERQ/LTM 
can serve as empirical basis for not. only prediction but also productivit.y analysis. 

6. Conclusion and Future Extensions 

This article has achieved three research objectives that can be summarized as follows: 
First, this study has presented an asymptotic framework for ERQ/LTM t.hat can be served as 
an analytical basis for conducting various statistical tests and measuring confidence intervals. 
The asymptot.ical approach was compared with the boot.strap method, so that. t.his study 
confirmed whether the two methods yielded any significant difference in the t-test. Second, 
LTM was incorporated into ERQ. The LTM can identify a bad leverage point that may 
affect seriously ERQ results. As a consequence of incorporat.ing LTM int.o ERQ, ERQ/LTM 
estimates become robust to not only an outlier but also a bad leverage point. Finally, as 
an important application, this study used ERQ/LTM in combination with DEA so that the 
three combination produced a stochastic frontier production function. This study has applied 
the DEA/ERQ/LTM production analysis to a data set regarding PTO performance in 24 
OECD counties. The empirical result of DEA/ERQ/LTM was compared with DEA/LAV 
proposed by Suehoshi (1994 b). 

As extensions of this study, the following research issues need to be explored in the near 
future: First, we need to confirm the LTl'vI performance for identifying bad leverage points by 
comparing it with other statistical methods in a simulation study. Second, DEA/ERQ/LTM 
needs to be compared with other econometric methods in terms of producing a stochastic 
frontier production function. Finally, it is hoped that this study can make a small contri­
bution to the use and development of LTM, ERQ and DEA/ERQ/LTM. This reseach waits 
anxiously further extensions along the lines specified in this article. 
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