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Abstract In this paper, a hide-and-search game with the risk criterion is investigated. The target space 
consists of n discrete regions and each region is characterized by the searching cost, the detection rate per 
unit searching effort and the reward when the target is detected. At the beginning of the game, a target 
selects a region so as to maximize the expected risk of the search and hides himself in it. On the other hand, 
a searcher searches the target allocating his available total searching cost among regions so as to minimize 
the expected risk of the search. We formulate this search situation as a two-person zero-sum game and derive 
optimal strategies. 

1. Introduction 
Since Koopman [8J pioneered the search theory, studies on the optimal search have 

been investigated by many authors. On analysis of optimal search, the previous authors 
adopted various criteria of the search such as the detection probability of the target, 
the expected time or cost to detection, the expected risk or reward, the whereabouts 
probability and so on. As for the optimal search with the criterion of the detection 
probability or the expected time in one-sided search, many authors have investigated 
the problems thoroughly and the results are compiled by Stone [llJ. Furthermore, the 
hide-and-search game (one stage search game) with these criteria were also studied 
by many authors [1]. However, we cannot find so many papers with other criteria. 
In this paper, we study the optimal search in a two-sided search with the expected 
risk criterion. Here, the definition of the expected risk is that the expected 
search cost until detection or stopping of the search, whichever comes first, minus 
the expected reward gained by the detection of the target. The expected risk criterion 
is useful to analyze not only the optimal allocation of searching effort but also the 
optimal starting and the optimal stopping of the search. As for the optimal search 
under this criterion, only problems of one-sided search are studied [2,3,6,7,10J. 
However, we cannot find any study on the optimal two-sided search with the expected 
risk criterion. 

In this paper, we formulate a hide-and--search game wi th the expected risk and 
derive the optimal strategies of the searcher and the target. In the next section, we 
define the system parameters of the search and assumptions of the model are described 
in detai 1. In Section 3, we formulate the problem as a two-person zero-sum game and 
optimal strategies are derived in Section 4. In Section 5, special cases of our game 
are examined. Finally in Section 6, s~veral comments on the results presented in 
this paper are discussed. 

2. Definitions of the System Parameters and Assumptions of the Model 
Assumptions of our model and system parameters used in this paper are described 

as follows. 
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(1) The target space consists of n discrete regions: U; i =1.2 •...• n}. The regions are 
called boxes. 
(2) The target selects a box at the beginning of the game and hides himself in it. 
The target is assumed to be stationary during the search. 
(3) Total search cost C (>0) is available to the searcher and he searches the target 
allocating C among boxes. Here. the total searching cost C is assumed to be contin­
uously divisible in allocating it among the boxes and the search in box i costs C; (>0) 
per unit searching effort. 
(4) The searching effort allocated to box i is denoted by if> i (~O). We assume that the 
effort is allocated in each box simultaneously and the search cost is imposed at 
the beginning of the search. 
(5) If the target exists in box ~ the conditional probability of detecting the target 
wi th unit searching effort is assumed to be a i (>0) irrespective of the history of 
the past search. This assumption implies that the random search is conducted in each 
box and the conditional detection probability of search if> i in box i is given by an 
exponential function; l-exp( - a i if> J. 
(6) If the searcher detects the target in box i. he gains a reward Ri (>0). 
(7) The parameters of the search. C,. Ri. a; and C are assumed to be known to both 
players in advance of the game. 
(8) The payoff of the game is defined by the risk of the search. Here we assume that 
both the target and the searcher are opposing against each other completely in a 
sense that the target desires to maximize the payoff and the searcher wants to minimize 
it. The omniscient rationality of both players is assumed. 

3. Formulation of the Hide-and-Search Game 
At the first step of formulation of the search game. we define the pure strategies 

of both players. The target's pure strategy is defined by his selection of box i in 
which he hides himself at the beginning of the game. On the other hand. the searcher's 
pure strategy is defined by the allocation of the searching effort : ~ = {if> i. j =1.2 • 
...• n}. where constraints: :6 i Ci if> i ~ C and if> i ~ 0 for any i. are imposed on ~. 

The payoff g(i. ~) of the target when the strategies i and ~ are employed by both 
players. is presented by 

g(i.~) (l-exp(-a iif> ,))(:6 jCjif> rR,) + exp(-a;if> J ~ jcA j 

:6 j Cjif>j - Ri (l-exp(-aiif>J). (1) 

The searcher should not begin his search if g(~~) > 0, since the search is expensive 
compared with its reward in average, and then, obviously g(i, ~={O}) = O. Here, we 
examine the properties of the payoff g( i, ~) and have the next lemmas. 
Lemma 1. Let ~ D = {(~ iD} be the conditionally optimal strategy of the searcher 
gi ven the target's stra tegy i. 
(1) If RiaJci ~ 1, the search should not be started: ~D = {O} and g(i, ~D) = o. 
(2) Let CiD = ci(log(Ri a J cJ)/ a i. If Ri a J Ci > 1 and the total searching cost C 
is larger than CiD: C> CiD, the optimal allocation of searching effort to box i is 
given by 

A. .D = _1_ log Riai 
'f' J. Cl i Ci • 

In this case, the search should be stopped at Ci D and then 

g(j,~D) = ~~(I+log R~~i) - Ri < O. 
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(3) If Ri a j Ci > 1 and C ~ Ci 0, the search should be stopped by the cost constraint C. 
A..o = ~ 
'P .1 Cj-

g(i, q,0) = C- Ri(1-exp(- ac:C)) < o. 
Proof: Differentiating g(i, q,) with respect. to 1> i, we obtain 

(2) 

Since ag(i, q,)/a(/>oi > 0, i tj, from the second equation of (2), g(i, q,) is minimized 
by 1>J = 0 for all j (ti), and if RiaJci ~ 1, ag(i, q,)/a1> i > 0 for all 1>i > 0 
from the first equation of (2). Hence, g( i, q,) is minimized at q, ° = {O}, i. e, the 
search should not be started in this case. On the other hand, if Ri a j Ci > 1, then 
ag(i,q,)/a1>i < 0 at 1>i = 0 and lim.;_ooag(i,q,)Ja1>i = Ci > O. Therefore, if Cis 
sufficiently large, g(i, q,) minimized at somEl positive 1> iO = 10g«Ri a J/ cJ/ a i from 
ag(i, q, )/a 1> i = 0 and 1> J = 0 for all j (ti). In this case, the search should be 
continued until L,oiCoi1>J = Ci1>i = c;log(R,ajc;)/ai:= Cia «C). However, if the 
total cost C being avai lable to the searcher is not so much: C < Cl 0, the searcher 
must stop the search by his cost constraint (~ (q.e.d.) 
Lemma 2. g(i, lJ.i) is strictly convex in q, For any i. 
Proof. Since g( i, q,) is the exponential function of 1> i as shown in Eq. (1), we can 
easily prove the next inequality for any q,1 and q,2, q,1 0\: q,2, satisfying the 
constraints and for any A. : 0 < A. < 1. 

(q.e.d.) 

As shown in Lemma 2, our search game is a strictly convex game. The basic theorem 
of the strictly convex game is quoted from the text [12J without proof. 
Lemma 3. In a strictly convex game, the minimizer (the searcher) possesses a unique 
optimal strategy; moreover, this strategy is pure. 

Here, we define the mixed strategy of the target: P = {Pi, i =1,2, .", n}, where Pi 
is the probability that the target selects box i for his hiding box. The expected 
payoff rxP, q,) of the target is given by 

rxP,q,) = L,iPig(i,q,) = L,iCi1>i - L,iPi Ri (l-exp(-ai1>J). (3) 

Therefore, our problem is formulated as t.he game to obtain the optimal strategy 
(PO , q, *) satisfying 

rxp* , q, *) = mintmaxp rxP, q,) = maxFffiint rxP, q,) := G,. 

subject to constraints: 

4. Solution of the Game 

L, i C i 1> i ~ C and 1> i ~ 0 for any i, 

L, iPi = 1 and Pi ~ 0 for any i. 

(4) 

(5) 

Let P* = {Pi*} and q, * = {1> i*} be the optimal strategies of the target and the 
searcher, respectively. P* and q, * are optimal if and only if 

(6) 

Theorem 1. Let 1° be the set of boxes {j I ci/(Ri a J~l}. If there exists some box k 
belonging to 1°, the optimal strategy of the target is P* = {Pk *=1, k Elo and p/=O 
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for all i} and the searcher's optimal strategy is p' = {ifJ /=0 for all i}. The value 
of the game is G = O. If plural boxes belong to 1°, since the above holds for any k 
E 1°, the mixed strategies weighted by arbitrary Pk ~ 0 for all k E 1° are also 
optimal: P" = {Pk'~O for allY k Er and Pi*=O, i HO}. 
Proof: Since G<.."P, p*={O}) = 0 for any P, the first inequality of (6) is obvious. 
The second inequality G = 0 ~ rxP", p) is proved by Lemma 1-(1). (q. e. d. ) 
Theorem 2. If and onlJI if CJ(Ri a i) < 1 for all i and ~ i{c;/(Ri a i)} ~ 1, the 
optimal strategy of the target is any Pi* such that P* = {O<P;*~C;/(Ri a;) for any i} 
and the searcher's optima} strategy is p * = {ifJ ,'*=0 for all i} : the searcher should 
not start the search. 
Proof: To prove the necess i ty of the theorem, we assume that c;/ (Ri a;) < 1 for all 
iand ~i{c;/(Ria;)} ~ 1. The first inequality of (6) is proved by substituting P* = 
{a} and showing rxP, pO) = 0 for any P. To prove the second inequality of (6), we show 
mint G(P", p) = G = O. Differentiating G(P* , p) with respect to ifJ i, 'we obtain 
arxp",p)/aifJi = Ci-Pi*Ri(Lexp(-a;ifJJ. Since 0 < Pi* ~ c;/(RiaJ, arxp",p)/aifJi 
> 0 for all ifJ i> 0 : rxp* , ~~) is a strictly increasing function of all ifJ, > O. There­
fore, rxP", p) is non-negative and has a minimum value at p = {a} and mintrxP" , p) = 
G = 0 is proved. 

Next to prove the sufficiency, we assume that the optimal strategies are given by 
P" = {O<Pi*~c;/(RiaJ} and p* = {a}. In this case, since any pU) such that p{i)= 
{Pi=c;/(RiaJ,O~pj~cj(Rj(xJ,jt-i} is also optimal for any i, Pi=c;/(Ria;) < 1 is 
concluded and c;/(RiaJ < 1 for all i is proved. Then,the inequality ~i{c;/(Ria;)} ~ 
~ iPi = 1 is obtained directly. (q. e. d. ) 

If ~ i{C;/(Ri a J} < 1, obviously C;/(Ri a J < 1 for all i and the target cannot 
select such {Pi*} : {O<Pi*~C;/(Ri a ;)}, since ~ iPi* < 1. In this case, the next Lemma 
is proved. 
Lemma 4. If ~ i{c;/(Ria J} < 1, the optimal strategies of the target P* and the 
searcher p * satisfy Pi* > 0 and ifJ;* > 0 for all i. 
Proof: The contraposition of Theorem 2 is that if ~ i{CJ(Ri a;)} < 1, (:li, P;*> 
c;/(Ria;) or (:li,ifJi*>O). In the former case, since arxp,p)/aifJil.;=o = Ci-pi*Riai 
< 0, ifJ i* > 0 is concluded too, and therefore in either case, the searcher should not 
stop the search immediately if ~i{cJ(Ria;)}< 1. The lemma is proved by the reductive 
absurdity. Here, suppose that there exists an optimal strategy p* of the searcher such 
as ifJ i* = 0 for some box i and ifJ j* > 0 for any j (t-I). In this case, since the target 
should select the box which is not searched, the target's optimal strategy P* opposing 
the searcher's optimal strategy P* is obviously {pi*=l,p/=O,jt-i} and then fXP*,p*) 
= ~ jCjifJ / > 0 holds always from Eq. (3). It contradicts the definition of the 
searcher's optimal strategy. Hence, ifJ / > 0 is concluded for all i. 

Next, suppose P* be a target's optimal strategy with Pi* = 0 for some i. Then the 
searcher's optimal strategy P * opposing P* is ifJ;" =0 for i, since the searcher should 
not search the box in which the target does not exist certainly. In this case, obvious­
ly there exists such box k: Pk * > 0 and ifJ k * > 0, and let P be a target's strategy such 
as {Pi=L1P (>0), Pk=Pk*-L1P, pj=p/ for all j (t-i, k) and Pk*>O}. Then, we have rxP", pO) 
- fXP' P *) = -L1p(I-exp( - a. ifJ 1< *» < 0, and rxP" , p *) < rxP, p *) is deduced. It contra­
dicts the definition of the optimal strategy P*, hence, Pi' > 0 is concluded. (q. e. d. ) 

Hereafter, we assume >:;{c;/(Ria;)} < 1. In this case, since Pi* > 0 and ifJ/ >0 
for all i from Lemma 4, our problem is reduced to obtain P* and p * such that 

{Pi*}: maxp rxP, pO) = G, 

{ ifJ i *}: mint rxP*, p) = G, 

(7) 
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under the constraints (4) and (5). Then, the next lemma is derived. 
Lemma 5. Let TJ and f1 be Lagrange multipliers. If Pi * > 0 and if> i * > 0 for al J i, 
the optimal strategies P * and P* are obtained by equations: 

Rj(1-exp(-Cl!iif> ;*» = TJ for all 1, 

Ci - Pi*Cl!iRieXP(-Cl!iif> ;") = Cif1 for all 1, 

(C-L,iCiif>i*)f1 = 0, 

and Eqs. (4) and (5). The value of the game is given by 

G= L,iCiif>i* - TJ. 

(8) 

(9) 

(10) 

(11) 

Proof: Since (i(P, P *) is a linear function of {Pi} and Pi* > 0 for all i from 
Lemma 4, Eq. (8) is obtained from the first problem of (7). On the other hand, Eqs. 
(9) and (10) are obtained from the Kuhn-Tucker theorem since G(P*, p) is a strictly 
convex function of {if>;} for the second problem of (7). Then, we have Eq. (11) from 

maxp rJ...P, pO) = mint rJ...P*, p) = L, jCiif> j* - TJ. (q.e.d.) 

As for the Lagrange mul tipl ier f1 in the above lemma, we can conclude that f1 ~ 0 
since dG(P*, P*)/dif>i* ~ O. If C> L,jCjif> i* := Co, f1 = 0 from Eq.(10) and then we 
have 

(12) 

from Eq. (9). In this case, the search is stopped at Co before using the total search 
cost C. (The derivation of Co will be shown later.) In either case of stopping the 
search by C or Co, {if> i*} must satisfy Eq. (8). Therefore, Eq. (9) or (12) is used to 
determine Pi *. Let TJ and TJ ° be the Lagrange multipliers when the search is stopped 
by C and Co, respectively. By determining the Lagrange mul tipl iers in Lemma 5. we 
can derive the solution of the game as follows. 
Theorem 3. Suppose L, i{cd( Cl! iRJ} < 1. TJ and TJ ° are the solutions of the next 
equations, 

L, j Cl! ;(n> TJ 0) = 1, 

respectively. Using TJ 0, we have the threshold cost Co by 

Co = L,i ~log( ~). 
Cl! i Ri - TJ ° 

If Co f C, the optimal strategies of the searcher and the target are given by 

if> j* = ~ }Og( R;IPr;-) , 

Pj* = CdJCl! iU.~ . 
L, jCi C Cl! iCr-ill 

The value of the game is obtained by 

G= C- TJ. 

If Co < C, the optimal strategies are given by 

A.* 1 ( R ) 
'f'i = ~log Ri~ , 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(16)' 

(17)' 
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The value of the game is given by 
G = Co - TJ 0, (18)' 

Proof. Let Ra be min; Ri. For TJ ; 0 ~ TJ ~ Ra, we obtain ifJ;' as Eq. (16) from Eq. 

(8). Hence, if the search is stopped by the constraint of total cost C (CO ~~, Eq. 
(13) is established. From Eq. (13), we can obtain TJ uniquely. To see it. we set the 
left-hand side of Eq. (13) as 1'( TJ). Then, 1'( TJ ) : (0, Ra) -> (0,00) and d1'( TJ )/d TJ = 
2:i{c;/(ai(Ri -TJ»} > 0 are easily confirmed. Hence, the equation 1'(TJ) = Chas a 
unique solution TJ, 0 < TJ < Ra. Using TJ obtained from Eq. (13), we can derive f1 and 
Pi* from Eqs. (5), (8) and (9) as follows. 

/l. = 1 - L;i{CJ(~i(Ri-TJ))}' 
(19) 

Next, we consider the case that the search is stopped optimally before exhausting 
the total search cost C (CO <~, and then, let TJ ° be the Lagrange multiplier TJ in 
Eq. (8). The searcher's optimal strategy; Eq. (16)' is derived from Eq. (8) too. In 
this case, since f1 = 0 as described before, Eq. (12) holds from Eq. (10). Then, we 
obtain Eq. (17)' from Eqs. (8) and (12). Since C> 2: iCiifJ ;', Eq. (13) does not hold 
in this case. Hence, we use the constraint (5) to determine TJ ° and we have Eq. (14). 
We can easily show that Eq. (14) has a unique solution as follows. Since 0 < TJ ° 
<Ra as mentioned before and 2: ;{ci/(a iRi)} < 1 by the assumption of Theorem, 
2:i{c;/(a;(R;-TJo»} is a strictly increasing function of TJo from 2:;{cj(a;R;}} 
«1) to infinity. Hence, Eq. (17) has a unique solution. Eq. (15) is derived by 
substituting Eq. (16)' into Co = 2: iCiifJ;". The value of the game Eqs. (18) and (18)' 
are obtained from Eq. (11). 

5. Special Cases of the Game 
In this section, we examine special cases of our game. 
If Ri = R for all i in our model, the solution of the game is very simplified and 

the closed form solution is derived easily. Omitting proof, we show the next. 
Corollary 3-1. If Ri = R for all i and L; i{c;/(a Jl)} < 1 in Theorem 3, the solution 
of the game is as follows. 

file define Co as 

° _ ( R ) Ci C - log 2: i CcJa,) 2:;~. 

If Co < £:; the optimal strategies of the searcher and the target are 

ifJi* = ~)Og( 2:iCc~7a;) ), 

Pi' =ai2:J~JaJ· 
The value of the game is given by 

G = Co - R + L;, ~ 
" a;" 

If Co ~ £:; the optimal strategies are 

ifJ' = C , ai2:;(cJa;)' (20) 

(21) 
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In this case, the value of the game is given by 

G '" C - liU -exp( - L: i (~J a J)}' 

Next, we set Ci = 1 and Ri = R -4 00 in Corollary 3-1. In this case, we have the next 
Corollary. 
Corollary 3-2. If we set Ci '" 1 and Ri '" R --+ 00 for all i in Corollary 3-1, the 
optimal strategies P* and ~ * are obtained as follows. 

* _ 1 
Pi - aiL: i(1/ a ,0' 

The result of Corollary 3-2 is completely identical with the optimal strategies of 
the hide-and-search game with the criterion of detection probability of the target 
studied previously by Gittins and Roberts [!3J or Nakai [9J. This correspondence is 
elucidated as follows. The constraint of the total searching cost C becomes C ~ ~~ i cP i 

(the total searching effort) by setting c, '" I, and if we set Ri = R, the target 
space becomes homogeneous with respect to the cost-and-reward structure. Furthermore, 
if we set R --+ 00, the search is not stopped before exhausting the total searching 
effort C. Therefore, the problem of minimizing the expected risk becomes identical with 
the problem of maximizing the detection probability of the target under the constraint 
of the searching effort. This problem is just the same as the previous studies [5,9J. 
This is the reason why the solution of special case of our game coincides with the 
results obtained by the previous authors. 

Next, setting R--+ 00 in Corollary 3-1, we deal with the cumulative searching cost C 
as a variable increasing sequentially from zero until the detection of the target. Let 
t/J i*(0 be the optimal density of searching effort in box i at Cand cP i* =f ct/J i*(x)dx. 
Then, the next corollary is obtained. 0 

Corollary 3-3. Suppose Ri = Rand R is sufficiently large. HIe consider the case in 
which cumulative searching cost C increases from zero continuously with rate L1C and 
the search is continued until detection of the target satisfying L: iCi cP i* '" C in each 
time. Then, the optimal strategies are 

(22) 

(23) 

Let pi*(0 be the posterior probability of the target being in box i when the target is 
not found until C; the next relation holds. 

a i~;*(O '" constiwt for any i. (24) 

Proof. By the assumption: Ri '" ~ Corollary 3-1 is established, and in this corollary, 
if R -4 00, then we have Co --+ 00. Hence, the searcher's optimal strategy is always 
stopped by the cost constraint C and Eqs. (20) and (21) hold. As for the searcher's 
optimal strategy, Eq.(20) holds and we obtain Eq.(22) by differentiating CPi* given 
by Eq. (20) with respect to C. Eq. (23) is the same as Eq.(21). Eq. (24) is derived as 
follows. The posterior probability Pi*(O of the target being in box i when it is not 
found until C is presented by 
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c 

c 
In the above, since exp( - a j f 0 cP i' (x) dx) = exp( - C/ 2; ; (cj a ;)) is obtained from Eq. 
(22), substituting it into the above, we have Pi'(C) = Pi'. Therefore, Eq. (24) is 
derived from Eq. (23) as follows. 

(q.e.d.) 

It should be noted that Eqs. (22), (23) and (24) are completely identical with the 
optimal strategies of the search game with the criterion of the expected cost shown 
by Gittins [4J. In this case, since the reward is assumed to be sufficiently large, 
the search is continued until detection and the searcher gains the reward R certainly. 
Then, to minimize the expected risk means to minimize the expected cost until detec­
tion. Hence, the solution given by Corollary 3-3 becomes identical with the solution 
of Gittins' problem [4J. 

§ 7. Discussions 
In this section, we examine the meaning of the optimal conditions and discuss 

generalizations of the model to be investigated in future. 
(1) According to Theorems 1 and 2, the searcher should not begin his search in either 
case: (mini cd(Ria;) ~ 1) or (2;i{cd(Ria;)} ~ 1 and cj(Ria;) < 1 for all i). 
The implication of Theorem 1 is explained as follows. The value C;/(Ri a i) is the 
conditional expected cost versus reward ratio when unit searching effort is allocated 
to box i given the target being in the box really. Hence, if this value is not smaller 
than 1, the search in box i is too expensive for the searcher. If there exists such 
box, since the target selects always the box by the assumption of the omniscient 
rationality of the target, the searcher is always compelled to do the expensive search. 
Therefore, if min; cd(Rj (~J ~ 1, the searcher should not begin the search to avoid 
the expensive search. On the other hand, if the condition of Theorem 2: ci/(Ri a;) < 1 
for all i, such box mentioned above does not exist. However, if 2; i{cj(Ria;)} ~ 1 
in this case, the target can select an optimal strategy {Pi'} by which the expected 
risk of the searcher becomes non-negative as stated in the proof of Theorem 2. Hence, 
since the search is also too expensive in average in this case, the searcher should 
not begin the search. 

On the other hand, if c;/(Riai) < 1 for all iand 2;i{cj(Ria;)} < 1, the 
optimal strategies of the target and the searcher are Pi' > 0 and <I> i' > 0 for all i 
by Lemma 4 : The searcher should not remain any box unsearched and the target should 
not eliminate the possibility of hiding in any box. Because, if otherwise in either 
side, by the assumption of omniscient rationality of the players in the game theory, 
the searcher or the target can take advantage of the know ledge Pi' = 0 or <I> i' = 0, 
respectively, to maximize his own reward. 
(2) The interpretations of Eqs. (8), (9) and (10) for the optimal strategy <l>i' in Lemma 
5 from the view point of the searcher are stated as follows. Since the left-hand side 
of Eq. (8) is the conditional expected reward given the target being in box i, Eq. (8) 
means that the searcher should allocate his searching effort so as to equalize the 
conditional expected reward to ~ among boxes. By this allocation, the searcher does 
not give any advantageous box to the target to hide. As for Eq. (9), dividing both 
sides of Eq.(9) by Ci, we obtain {ci-pi*aiRiexp(-ai<l>i')}/Ci =p... The left-hand side 
of this equation is the ratio of the marginal expected risk at <l>i' and the searching 
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cost in box i. By Theorem for the optimal distribution of searching effort given by 
Iida [6J, the searcher can minimize the overall expected risk by allocating his 
searching effort so as to equalize the marginal expected risk versus searching cost 
ratio to p among boxes. Therefore, the searcher can gains the minimum risk by 
allocating his searching effort according to Eq. (9). As for Eq. (10) which is the 
complementary slackness condition of this non-linear programming problem, this 
equation elucidates the stopping condition of the search. As stated before, if the 
search should be stopped by Co «C), then the marginal expected risk versus cost ratio 
p becomes zero at Co, and if the search should be stopped by the cost constraint C, 
the value of p is non-positive. 

On the other hand, from the viewpoint of the target, the optimal conditions of 
Lemma 5 are interpreted as follows. Since the conditional risk g(i, p) given the 
target's box are equalized to C - TJ by Eqs. (l) and (8), the target has not any prefer­
able box to hide. But by determining his distribution by Eq. (9), the target can avoid 
to give the searcher any efficient box having the low marginal expected risk, and this 
strategy is effective for the target to maximi.ze the expected risk. 
(3) The value Co given by Theorem 3 is the total searching cost on which the marginal 
expected risk of the search among boxes becomes all zero, namely the optimal stopping 
point of the search before the cost constraints C. 
(4) Finally, let us consider problems to be investigated in future. In this paper, we 
assume a stationary target. If the target can move and if he knows the searcher's 
current position, the problem is formulated by an evasion-and-search game which is 
characterized as a multistage game. Theoretical treatment of this problem may be very 
difficult, but it is an important problem to be studied in future. In this paper, we 
consider the optimal allocation of the total searching cost C. If the search game 
being constrained by a cost rate in every search time instead of the total cost, the 
time dependent allocation of searching effort is obtained. As for the search problem 
of this type with the risk criterion, Iida [6J investigated the one-sided search. The 
exponential detection function 1'( rp) assumed in this paper can be generalized to more 
general detection functions with regular properties: d1'(rp)/drp > 0 and d21'(rp)/drp2 
< 0 for all rp wi thout any difficulty. We deal with the discrete target space in this 
paper. This assumption will be generalized to a continuous target space and the 
similar optimal solution to Theorem 3 will be derived by the variational calculus 
approach instead of the Kuhn-Tucker theorem. 
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