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A bstract A controlled M /G /1 type queueing system with a setup time for switching of the service distri­
bution is considered. At first, customers are served by a regular service time. When the number of customers 
in the system exceeds rn, the service time is switched to a high speed service time with a setup time. High 
speed services continue until the end of the busy period. We propose a simple algorithm for the calculation 
of the mean number of customers in the system by usin.g a normalizing condition and a boundary condition. 
Moreover, explicit formulas of the probability mass function are derived when the regular service distribution 
is exponential or constant. 

1 Introduction 
In this paper, we consider an AI /G /1 type queueing system with a setup time for switching 
of the service distribution. At first, customers are served by a reg'ular service time. When 
the number of customers in the system exceeds rn, the decision maker switches the service 
time to a high speed service time. Such a switching time is called a setup time. High speed 
services are continued until the end of the busy period. 

This model has a dose relation with the ]V -Policy model which has been known as a 
traditional optimal control model of AI / G /1 queues. Heyman [4] provided the optimality of 
N-Policy under given cost structures. On the other hand, from standpoints of communica­
tion engineering, Nishigaya, M'Ukurnoto and F'llkuda [6] introduced this switching qUE'ueing 
model with applications in packet communication systems, where a fundamental matrix of 
absorbing transition states is used to obtain the mean number of customers. In our al­
gorithm, a normalizing condition and a boundary condition are derived. Using these two 
conditions, we obtain the Z-transfonn of the probability mass function of the number of cus­
tomers in the system. If the regular service distribution is exponential or constant, explicit 
expressions for the probability mass function are obtained. 

Many queueing models such as polling, setup, machine breakdown and machine mainte­
nance models, etc" have a characteristic that a server may stop service during an occasional 
interval. Recent researches ( Doshi [2] and Takagi [8], among them) have unified these mod­
els as Vacation Models, where the time that sl'rver stops service is regarded as a vacation 
time. In our model, the setup time for switching is also considered as a vacation timp. 

The model is described in Section 2. In Section 3, we first obtain the Z-transfonll 
of the number of customers in the system with respect to the embedded Markov chain, 
and then derive the mean number of customers in the system. In Section 4, defining the 
supplementary series generated from the LST of the regular sen'ice distribution, we obtain 
the unknown parameters contained in two maiu results of the previous section. Also, explicit 
formulas of the probability mass function are derived when the regular service distribution 
is exponential or constant. Then, as a result, we propose an algorithm for calculation of 
the mean number of customers in the system. Finally, numerical calculations of the mean 
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272 K. Yamada & S. Nishimura 

number of customers in the system are investigated in Section 5. 

2 The Model and Notations 
In this section, we shall define a controlled }\I / C /1 typ<, queue with a setup time for switching 
of the service distribution. Suppose that the arrival process is a Poisson stream with rate 
A. Initially, customers are served by a regular service time X R . If the system is crowded, 
the decision maker changes the regular service time to the high speed one. That is, when 
the number of the customers in the system is equal to or greater than m at the completion 
of the regular service, the decision maker switches the regular service time X R to the high 
speed service time X H . In order to make this change, a vacation time Xv is needed as a 
setup time. It is supposed that decisions are made only at th<' completion of t.he selTice. 
\Vhen the system becomes empty, the service distribution is switched to the regular service 
distribution immediately. That is, a customer who arrives during an idle time of the system 
is served regularly without a vacation. 

It is natural that the decision maker requires the high speed service when the system 
is crowded. Heyrnan [4] introduced the N -Policy by which the server is activated when 
there are N customers waiting for service and is deactivated when there is no customer in 
the system. As having been shown in inventory theory, the optimality of the N-Policy is 
proved under certain cost structures ( Heyrnan and Sobel [5] ), which includes a dormant 
cost, a running cost, a start-up cost, a shut-down cost and holding cost in M/C/1 type 
queue (Heyrnan [4], Sabel [7] and Bell [1] ). In this paper, we consider the regular service 
time, the high speed time and the vacation time. Instead of a start-up cost and a shut-down 
cost, the vacation time is incurred when the service time is changed from the regular one to 
the high speed one. 

Let R(r), H(r) and \/(:1') be the distribution functions and denote R*(8), H*(8) and 
V*( 8) as the Laplace-Stieltjes transforms (LST) of X R , X H and X\', respectively. We 
assume that the arrival process, service times and vacation times are independent. Let r n 

be the probability mass function that n customers arrivE' during the regular service time 
X R . We define r(,;;) as a generating function of r". They are 

1'n ~ {oo e- AX (AXr dR(x), 
lo n. 
00 

r(z) ~ L Z"1'" = R*(A - AZ). 
n=O 

Similarly, hn,h(z),v",f7(z),(v0h)" and (V0h)(z) are defined as 

h" '" 100 e-AX(AXrdH(x), 
o n. 
00 

h,( z) '" L z"hn = H*(A - AZ), (2.1 ) 
n=O 

'" 100 e-h (A.-eT dV(x), v" o n. 00 
1)( z) ~ L znVn = V*(A - AZ), 

n=O 
" 

(v@h)" ~ L Vkh,,-b 
k=O 
cc " 

(v0h)(z) ~ L z" L t'khn-k = Nz)h.(z), 
n=O k=O 
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A Queueing System with a Setup Time 273 

where the notation "0" represents a convolution. 
As traffic intensities, we put 

PR 
~ AE[XR) , 

P'v' ~ AE[XvJ, 

PH 
~ AE[XH ). 

It is well-known that some important statistical values can be obtained by Z-transforms as 

PR d I dz f(z) ==1, 

~2 f(Z{=1. 

(-At . ~R*(S)I 
n! ds" s=l 

(n ~ 0). (2.2) 

For X H and Xv, the statistical values of PH, Pv, A2 E[X~ J, A2 E[XlJ, h1l and Vn can be also 
obtained in the same way. 

If m = 00, then the process is the same as M/ G /1. If m < 00, the stability condition is 
PH < 1. We make the following assumption. 
Assumption 2.1 

O<rn<oo and PH < 1 

o 

3 The Embedded Markov Chain Approach 
In this section, our setup queueing model is analyzed as the embedded Markov chain. Our 
purpose is to get the steady-state probability mass function of the number of customers in 
the system. We use the notations as follows: 

and 

Po the probability that the system is empty at the service completion, 

p!! the probability that there are n customers in the system 

at the regular service completion, 

p/! the probability that there are 11 customers in the system 

at the high speed service completion, 

~ {Po (n = 0) 
P" p!! + p/! (n ~ 1) 

the probability that there are n customers in the system 

at the service completion, 

00 

E[L] ~ LnP1l , 

n=O 

the mean number of customers in the system. 

By Bm'ke's theorem and Po-tsson arrivals see t'irne avemges (PASTA) property ( Wolff [9) ), 
the steady-state probability is equal to the probability of the system at any time ( pp.7-8 
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274 K. Yamada & S. Nishimura 

in Takagi [8] ). Z-transfonns of these probability m&<;s functions are defined as 

00 

PR(z) ~ L~llpR 
- n' 

,,=] 
00 

PH(Z) ~ L ~npH 
~ ", 

,,=] 

rn-l 

cP(z) ~ L ~npR ( in the ease of m ~ 3 ), ~ n 
n=] 

P(z) ~ Po + PR(Z) + PH(z). 

It should be noted that P(l) = 1 but PR(l) < 1, P'H(l) < 1 and 1>(1) < 1. 
We provide the next lelIlma which is used for calculating P(z) and ElL] in later analyses. 

Lemma 3.1 Let h.( z) be a Z-tmnsform as defined in (2.1). If .i(z) is a Z-tmnsform such 
that limop i(z) = 0, then 

1
. i( z) 
un--'­
:11 z - h(z) 

1. ( i(z) )' un ' 
=)1 z - h(z) 

i'(l) 
1- PH' 

. .1:'(z) (z - h(z)) - i(z) (1 - h'(z)) 
11m 2 

zTl (z - h(z)) 

i"(l)(l- PH) + i'(1)A2E[X~] 
2(1- PH? 

where the notation' represents the differential opemtion. 
Proof: It is obvious from the direct calculation of L'Hospital's rule. 
3.1 The cases of m = 1 and m = 2 

o 

We can get explicitly the Z-transform of stationary probability m&'lS function of the number 
of customers in the system in the cases of m = 1 and m = 2. 

In the case of m = 1, equilibrium equations of the embedded Markov chain are derived 
as follows: 

Po roPo + vohoP]R + hOP]H, 

p'~ r"Po (n ~ 1), 

pH 
71 (n ~ 1). 

From these equations, the next proposition is obtained. 
Proposition 3.1 In the case of 111 = 1. the Z-tmnsform P(z) and the mean number of 
customers in the system E[L] are 

P(z) = 

E[L] ( 3.1) 
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A Queueing System with a Setup Time 275 

where 
1- PH 

Po = . 
1 - PH + (1 -- 1'0).0,,· + PR 

o 
Similarly, in the case of rn = 2, the equilibrium equations of the embedded Markov chain 

can be given by 

Po TOPO + ToPI
R + hOPI

H
, 

PnR TnPO + TnPI
R (n ~ 1), 

n+1 n+1 
pH 

n L hn+l_kPkH + L(v 0 h)n+l_kpk
R (n ~ 1). 

k=1 k=2 

Then we have the following proposition. 
Proposition 3.2 In the case of 111 = 2, the Z-transform P(z) and the mean n'umber of 
customers in the system are 

P(z) = 

E[L] 

where 

_~ . [r(Z)f!(Z)h,(Z) - z + 1'1.:-(1 - ~(z)h(z)) + TO(Z - il(Z)h(z)) 

1-1'1 z-h(z) 

+ r( z) + 1 - 1'0 - 1'1] , 

[ 

(1 - 1'0 - Ttl.( (1 - PH )(;\2 E[X~,] + 2pFpH) + pF;\2 E[X~]) 1 
+(1- PH) (,\2 E[X~] + 2pR(1 + .£Iv)) 
+pR;\2E[X~l- 1'1 (2(PH + pF)(l- PH) + ,\2E[X~]) 

pO'~------~~~~~--~--~~~------~~--~ 
2(1-· Tt)(l- pH)2 

Po = (1 - rtl( 1 - PH) 
(1 - 1'0 - 1'1 )pv + PR - PH + 1 - 1'1 

(3.2) 

o 
We note that TO and 1'1 in Proposition 3.1 and Proposition 3.2 can be obtained by (2.2). 

3.2 The case of a general m 

We consider the case of m ~ 3, where the derivation of p( z) is more difficult than that in 
the case of m < 3. Equilibrium equations of the embedded Mat'kov chain are derived as 
follows: 

Po 

pR 
n 

pR 
n 

pH 
n 

1'OPo + rOp1
R + hOP1

H, 
n+1 

rnPo + L r n+l-k P f! 
k=l 
m-I 

TnPO + L rn+l_kPk
R 

k=l 
,,+1 

(1 ~ n ~ m - 2), 

(m - 1 :::; n), 

L hn+l_kPkH 
k=l 

(1 :::; 11 :::; m - 2), 

n+l n+l 
PnH = L hn+l_kPkH + L (v 0 h)n+l_kPkR (m - 1 ~ /I). 

k=l k=m 

(3.3) 

( 3.4) 

(3.5) 

( 3.6) 

(3.7) 

In this section, we shall consicler P( z) uncler given Z-transfonn 1>( z) i.e. PIR, ... , P;;;_I' 
These values will be obtained in the next section. At first, the Z-transforms of P,~ and p"H 
are obtained by using equilibrium equations from (3.3) to (3.7). 
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276 K. Yamada & S. Nishimura 

Lemma 3.2 The Z-transf01'm of Pr~ 'is 

Proof: From (3.4) and (3.5), we have 

m-2 m-2 11+1 

L Z"TnPO + L z" L Tn+l_kPkR, 
n=1 n=1 n=1 k=1 

00 00 00 m-I 

L ::np:; L ::nTnPO + L ::n L Tn+l-kPf!. 
n=m-I 11=m-1 ,,=m-I k=1 

Adding the above two equations, we get 

00 00 m-2 ,,+1 00 m-I 

L Znpn
R 

n=1 
= L :;nT"PO + L Zn L Tn+l_kPkR + L Zn L Tn+l-kPf! 

n=1 n=1 k=1 n=m-l k=1 
00 m-I 00 

L :;"TnPO + L Pk
R L ZnT,,+I_k - TOPI

R
. 

n=1 k=1 n=k-l 

We obtain 

Lemma 3.3 The Z-transfonn of P"H is 

pH (z) = Z _ \(z)· [TO (PO + Pt) (:; - v(z)k(z)) + Po (1'(z)v(z)k(z) - z) 

+ V(Z)k~Z)ct>(Z) (1'(z) - z)] . 

PToof: Formulas (3.6) and (3.7) yield 

m-2 n+1 

L z" L hn+1_ k Pk
H

, 

n=1 k=1 
00 00 n+l 00 n+l 
L znp;; = L ::" L hn+l-kPt + L zn L (v 0 h)n+l-kPf!. 

n=m-I n=m-I k=l n=m-I k=m 

Then we get 

00 00 n+1 00 n+1 
""' ",npH 
~"" n L Z" L hn+l_kPkH + L :;" L (v 0 h)n+l-kPf! 
n=1 n=1 k=1 n=m-I k=m 

00 00 

L Pk
H L :;nhn+l_k - hOPI

H 

k=1 n=k-I 

( 3.8) 

o 
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00 00 

+ L Pk
R L zn(v0h)n+I_k. 

k=m n=k-I 

pH(Z) h(Z)p-H(_) -h pH f!(z)h.(z) ~ _npR 
_ ~ () I + _ ~ ~ n' 

n=m 

(1 _ h~Z)) pH(Z) h P H iJ(z)h(z) ~ npR 
- 0 I + --,- ~ Z n' (3.9) 

n=m 

On the other hand, from definition of </J(z) and (3.8), we have 
00 

L zn p/! = pR(Z) - </J(z) 
n=m 

= (f(z) - TO) Po - TOPI
R + (f(Z) - 1) y:I 

zn p/!. (3.10) 
z n=1 

From (3.9) and (3.10), we have 

(1- h~Z)) pH(z) = -hOPI
H 

+ V(Z)zh(Z) [(f(Z) _. TO) Po - ToPI
R + C~) - 1) % znp~t] . 

Also, hOPI
H is removed by using (3.3). Hence 

(z - h(Z)) pH(~;) = Z (TOPO + ToPI
R - Po) 

+v(z)h(z) [(f(Z) - 1"0) Po - TOPIR + C~Z) - 1) </J(Z)] , 

pH(~;) = 1_ [TO (Po + pt) (z - v(z)h(z)) + Po (f(z)v(z)h(z) - z) 
z - h(z) , 

v(z)h(z)</J(z) (_(_' _ ~)] + , T N) "' • 

In the following theorem, the Z-transform of {Pn}::"=o is given. 
Theorem 3.1 The Z-transfoTrn of Pn is 

p(z) = (1 + f(z)) Po - TO (Po + PI
R) + r~z) </J(z) 

+ 1_ [TO (Po + PI
R

) (z - v(z)h(z)) 
z - h(z) 

o 

+Po (r(z)v(z)h(z) - z) + i'(Z)h~Z)</J(Z) (f(z) - Z)] . (3.11) 

Proof: From Lemma 3.2 and Lemma 3.3, this theorem is pr9ved with 

p(z) = Po + pR(z) + pH(Z). 

o 
Lemma 3.4 (The normalizing condition) Using Po + PIR and Pn

R(l ~ n ~ rn - 1), we 
have 

1 - PH + TO (Po + PI
R

) Pv - </J(1) (PR - PH) 
~= . 

1 + PR + p\, - PH 
(3.12) 
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Proof: From the normalizing condition given by (3.11), we have 

1 = limP(z) 
zl1 

= Po (1 + PR + p~,) - TO (Po + pt) ~ + <p( 1) (1 _ 1 - PR) , 
1 - PH 1 - PH 1 - PH 

1 - PH + TO (Po + PiR) Pv - 4>(1) (PR - PH) 
Po = 

1 + PR + p" - PH 

o 
As the main result of this section, the mean number of customers in the system is 

obtained. 
Theorem 3.2 The mean number of customers in the system E[L] is 

Proof: 

Po - TO (Po + PIR) [ (2"2 ) 2 2 ] 
E[L] = 2(1 _ PH)2 (1 - PH) A E[Xv] + 2p\'PH + Pv A E[XH] 

+2(1 ~~H)2 [(1- PH) (.\2E[X~] + 2pR(PV + 1)) + PR.\2E[X1J] 

+----.1!l1_) _ [ A2E[xk](1- PH) + 2(1- PH)(PR -l)pv ] 
2(1 - PH)2 -A2E[xkJ(1 - PR) 

+PR - PH 4>'(1). 
1- PH 

From (3.11), we have 

d -= Hrn -d P(;;) 
zl1 z E[Ll 

pRPO + PR<&{l) + 4>'(1) -4>(1) 

TO (Po + PIR) [ 2 2 2 2 ] 
+ 2(1 _ PH )2 -(1 - PH)('\ E[Xv] + 2PVPH) - Pv A E[XHl 

+----.!!!._ [(1 _ PH) ( A2E[Xkl + A2E[X~1 + A2E[Xkl ) 
2(1 - PH)2 +2(PRPv + PVPH + PHPR) 

+ (PR + Pv + PH -1).\2E [X11] 

+ (4)(l)(pv + PH - 1) + 4>'(1)) P
1

R - 1 
- PH 

4>( 1 ) (2 [ "2] ( ) \ 2 [ 21 ( ) +2(1-PH)2 AE'\R I-PH +"EXH PR-I) 

PO-TO(PO+pIR) [ 2 2 2 2] 
2( )2 (1 - PH )(.\ E[X~ll + 2pVPH) + PV.\ E[XHl 

1- PH 

+2(1 ~oPH)2 [(1- PH) (.\2E[X~J + 2pR(PV + PH)) + PR.\2E[X1J] 

+PRPO + PR4>(I) + 4>'(1) - </J(1) 

+ (4)(1)(pv + PH - 1) + <P'(l)) PR - 1 
1- PH 
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-+-2(1~1~H)2 (),2E[X~](1- PH) + ),2E[X~](pR -1)) 

Po - ro (po + PI
R

) [ (2.2 ) ?·2 1 
2(1-PH)2 (l-PH) )'E[,\\,]+2p\'PH +p\,)'-E['\H] 

-+- 2(1 ~oPH )2 [( 1 - PH) (),2 E[X~] + 2pR(P\' + 1)) + PR),2 E[X~]l 
_ cp(l) [ ),2E[Xiz](1- PH) + 2(1- PH)(PR -l)pv ] 
t- 2(1_ PH)2 -),2E[X~H1- PR) 

-+-PR - PH q,'(l). 
1- PH 

o 

4 The Mean Number of Customers in th.~ System 
In the previous section for m = 1 and m = 2, P(z) is obtained. In the case of m 2: 3, we 
derive PR(Z), pH(~;) and P(z) in Lemma 3.2, Lemma 3.3 and Theorem 3.1, respectively, 
where parameters TO, PR, Ph PH, ),2E[Xiz], ),2EIX?] and ),2E[X~] are given and parame­
ters Po, PI

R, q,( 1) and q,'( 1) are unknown. In this section, the derivation of these unknown 
parameters is considered mainly. Since Po and P;; satisfy homogeneous linear equations, 
the problem is to obtain their coefficients. We introduce a supplementary series fn which is 
defined by the solution of the recursive equation. Using the normalizing condition and the 
boundary condition, an algorithm of the computation E[L] for m ~ 3 is discussed. 
4.1 The Definitions and Analyses for Supplementary Series 
First of all, we give some definitions of series. 
Definition 4.1 The series {Yn}::"=l is defined from {rn}::"=o as follows: 

£!. 1 - rl 
YI 

ro 
£!. -rn 

(n 2: 2). Yn 
ro 

o 
Definition 4.2 Suppose that al and a2 are given as an initial condition. The series an is 
defined recursively as 

n-I 
an £ LYn-kak 

k=1 

(n ~ 3). (4.1) 

o 
In the next lemma, the series P,~ in (3.4) satisfies the above recursive relation when the 

initial values Po and PIR are given. 
Lemma 4.1 Suppose that as initial values Po and PI

R are given. If we put 

al .- Po + PIR, 
a2 .- P2

R 

YI (Po -+- PIR) - ~Po, 
ro 

then P,~ can be represented by an such that 

P;; = an (3::;n::;m-1), 

and the boundary condition is 
(4.2) 
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Proof: From (3.4), we obtain 

pR _ ~pR .~ -rn-k pR -1",,-1 R 
1! - ,,-I + L.t k + 0 

1"0 k=1 1"0 ro 
(2 S 11 S In - 1). (4.3) 

It follows from the boundary condition of (4.3) and (3.5) for n = m-I that 

And from Definition 4.1 ane! Definition 4.2, this lemma is proved. 0 
From the above lemma, we have that {p~};;l and Po satisfy homogeneous linear equa­

tions in which unknown variables are Po and pt In order to get the simple form of their 
coefficients, we introduce a supplementary series as follows: 
Definition 4.3 A s"ltpplernentary series In is defined as 

fa ~ 1, ( 4.4) 

" fn ~ 
LYdn-k (n 2 1), (4.5) 
k=1 

( n-l It ) 

L Yn-kik = L Yn+l-kik-l . 
k=O k=1 

0 

Remark that I" is the solution of a discrete type recursive equation of Yn' Even though Yn is 
not a probability mass function, (4.5) is similar to the renewal equation. A simple relation 
between an and In is shown in the next lemma. 
Lemma 4.2 If series {an} and {In} are given by (4.1), (4.4) and (4.5), then we have 

(n 2 2). (4.6) 

Proof: This lemma is proved by induction on n. As it is trivial for the ease of n = 2, we 
give a general proof as follows: 

n 

an+1 = L Yn+l-kak 
~'=I 

n 

L Yn+l-kak + Yn(LI 
k=2 

n 

LYn+l-k [(ik-l - yt/k-2) al + !k-2a2] + Yn al 
k=2 

n " 

al LYn+l-dk-1 + (a2 - alYtl LYn+l-klk-2 
k=1 k=2 

at/n + ((L2 - aIYI) 1,,-1 
(fn - Yt/n-tl al + In-I0.2· 

o 
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Lemma 4.3 (Th4~ boundary condition) By using Po. 

(4.7) 

01' 

pt = ( 1",-2 - - 1) Po 
1'OI",-l 

is obtained. FU1'thel'rnol'e, we have 

R (/m-2 ) Po P" = -1-/n-1 - /,,-2 ~-
m-I 10 

(2:::;n:::;m-1). 

Pmo/: From the boundary condition (4.2) and (4.6) in Lemma 4.2, we have 

0= (/m-l - yJ!m-2) al + Im-2 a2. 

Then the above three equations can be obtained. 0 
From Lemma 4.3, the unknown Z-transform .P(::) can be represented using I" with given 

Po as follows: 

m-I 

cp(z) = L znpn
R 

n=1 
m-I 

ZP1
R + L z" p!! 

,,=2 

::; (fm-2 _ 1) Po + ~=1 ::;" (fm-2 f,,-1 _ In-2) ~o 
1'Olm-l ",=2 fm-l 10 

::PO [(fm-2 _ ~) ~2 ,ltf + ~m-lf _. ] 
I ~ L' n N m-2 10· 

1'0 m-I n=O 

Then we get 

cp( 1) 
p, [(I ) 

m-2 ] o m-2 
-:- -f - - 1 L In + fm-2 - 1'0 , 
1'0 m-I n=O 

( 4.8) 

p, [(I ) m-·2 m-2 ] 
cp'(l) == cp(l) + -1'0 I m

-
2 

- 1 L: nf" - L In + (m - 1)lm-2 . 
o m-I ,,=0 n=O 

(4.9) 

Now, an unknown factor in Theorem 3.2 is only Po. In the next theorem, Po is obtained 
by Lemma 3.4. 

Theorem 4.1 The idle p1'Obability Po is given by 

Pmof: Substituting (4.7) and (4.8) into (3.12), this theorem is proved. o 
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4.2 An Algorithm 
In Section 3, we first get E[L] in the ca.ses of m = 1 and m = 2 in (3.1) and (3.2), 
respectively. For 111 2 3, the Z-transfonn ?(z) of the stationary probability ma.ss function 
Pn is obtained in Theorem 3.1 under the condition that {p,n ~":/ and Po are giwn. In 
Section 4, it follows from the boundary condition, (3.4) and (3.5) that {P,~};~~/ and Po 
satisfy homogeneous linear equations and their coefficients are given by fn in Lemma 4.3. 
From the normalizing condition, Po is obtained in Theorem 4.1. We are now in position to 
summarize our algorithm of the computation E[L] for In 2 3. 
Step 1 Compute {Yn}~~/ from {l'n}~ol by Definition 4.1. 
Step 2 Compute {fn}~~ol from {YII }~;;11 by Definition 4.3. 

m-2 m-2 

Step 3 Calculate L fn and L nf,,· 
n=O ,,~o 

Step 4 Calculate Po by Theorem 4.l. 
Step 5 Calculate Po + p1R by Lemma 4.3. 
Step 6 Calculate <1>(1) by (4.8). 
Step 7 Calculate <1>'(1) by (.1.9). 
Step 8 Calculate E[L] from Po, Po + P1

R , 4>(1) and 4>'(1) by Theorem 3.2. 
4.3 The Analytical Results for Some Regular Service Distributions 
Using previous results, an explicit expression of E[L] for some distributions of the regular 
service time XR ean be obtained. At first, the Z-transfonll of f" is represented by f( z). 
Lemma 4.4 The Z-transform of fn 

00 

j(z) ~ L z" fn 
n=O 

is 
- 1'0 
f ( z) = f( z) _ :.; . 

Proof: From the definition of fn' we obtain 

00 

j(z) == l+LZnfn 
n=1 

00 " 

1 + L :.;n L yk!n-k 
n=1 k=1 

00 

1 + j(z) L Zk Yk 
k=1 

1 + j(z) (zl- 1'1 + f zk-,rk) 
1'0 k=2 10 

1 + j(Z) (z(l - Td - (r(:.;) - Zrl - 1'0)), 
TO 

TO + j(Z) (Z + 1'0 - i'(:.;)). 

Therefore, this lemma is proved. 0 
Since f(z) = R*(A - AZ), j(z) is similar to the Pollaczek-Khinchin transform equation of 

the number of eustomers in /\11/ C /1 queues. When the service distribution is exponential or 
constant, the distribution of the number of customers in an M/C/1 queue is given ( Gross 
and Harris [3] ). We ean apply these methods and obtain the explicit formula of fn. 
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Proposition 4.1 If X R is exponential, that is 

then 

r" = (n ~ 0), 

1'(:: ) 
1 + PR - PR:;' 

(1- PR)l(l + PR) (m -1- 1 ~~R (1- p'R-I)) , 

m-2 

Lf" 
n=O 

1 ((m--2)(m-1) 
(1 - PR)(1 + PR) 2 

m-2 

L nfn = 
n=O 

- (1 ~~R)2 (1 _. (m - 1)p'R-2 + (m - 2)P'R- I)) . 

Proof: From the direct calculation, r nand 1'( z) are obtained. And it follows from Lemma 
4.4 that 

1(::) = 

fn = 
(1 - PR)(l + PR) 

(n ~ 0). 

Proposition 4.2 If X R is a constant, that is 

then 

are obtained and 

Pr (XR = ~f) = 1, 

R*(s) e- ff ·, 
ro = e-PR , 

1'(:;) e-PR (1-z), 

1(::) 
e-PR 

e-PR(1-z) - z' 

f 
- ~ PR" (-(k + 1)PR),,-k 

n-Le 
k=O (11. - k)! 

(n ~ 0). 

o 

(4.10) 
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Figure 1: The mean number of customers ElL] in M/M/I, Af/E2 /1 and M/D/l type 
models: EIXR] = 2.0 and E[XHJ = 1.0. 

Proof: 
have 

By the expansion of 1/ (1 - zePR(l-Z)) ( see pp.270 in Gross and Har-ris [3] ), we 

le-:) 
00 

= e-PR e PR (1-Z) L e kpR (1-z):;k 

k=O 
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Therefore, (4.10) can be obtained. 0 

It should be noted that E[L] depends on the form of the regular service distribution 
through rn, but it depends only on first and second moments of the high speed service 
distribution and the vacation time distribution. If the service time is exponential and 
constant, then we can abbreviate steps 1-3 and 1-2, respectively, of our algorithm in 
Section 4.2. 

5 Numerical Illustrations 
In this section, we investigate numerical calculations of the mean number E[L] of customers 
in the system. In Figure 1, graphs of E[L] are illustrated as a function of m when both service 
and setup times are exponential, Erlang type 2 distribution and constant, respectively. If 
PR < 1, E[L] conVE'rges to the mean number of customers in the M/C/1 queueing system 
with the service time .YR , and if PR ;::: 1, E[L] diverges as m --+ 00. In numerical standpoints, 
an optimal switching scheduling where the average sojourn time is to be minimized will 
be discussed. Since the arrival process is assumed to be a Poisson process with rate A 
independent of states, from Little's formula, the average sojourn time ( the waiting time 
+ the service time) is equal to E[L]/ A. The optimal switching point m* which minimizes 
the average sojourn time is the same as m* which minimizes E[L]. It can be observed that 
-E[L] is unimodal in m, that is, E[L] is monotone decreasing in [1, m*] and is monotone 
increasing in [m*, 00). Moreover, m* is monotone decreasing for increasing arrival rate A. 
As was shown in the optimality of N-Policy, it spems that we obtain the optimal switching 
point m*. 

Acknowledgements 
The authors wish to thank the anonymous referees for careful reading of this paper and 
invaluable comments. 

Referenees 
[1] C.E.Bell (1971) : Characterization and Computation of Optimal Policies for Operating 

an M/C/1 Queuing System with Removable Server, Operations Research, 19 pp.208-
218. 

[2] B.T.Doshi (1986) : Queueing Systems with Vacations - A Survey (Invited Paper), 
Queueing Systems. 1-1 pp.29-66. 

[3] D.Gross and C.M.Harris (1985) : Fundamentals of Queueing Theory, 2nd eds., John 
Wiley & Sons, New York. 

[4] D.P.Heyman (1968) : Optimal Operating Policies for Queueing Systems, Operations 
Research, 16 pp.362-382. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



286 K. Yamada & S. Nishimura 

[5] D.P.Heyman and M.J.Sobel (1984) : Stochastic Models in Operations Research, Volume 
II: Stochastic Optim'ization, McGraw-Hill, New York. 

[6] T.Nishigaya, K.Mukumoto and A.Fukuda (1991) : M/C/1 System with Set up for 
Server Replacement, Transactions of Institute of Elect1'Onics, Information €3 Commu­
nication Engineers, J74-A-10 pp.1586-1593. ( in Japanese) 

[7] M.J .Sobel (1969) : Optimal Average-Cost Policy for a Queue with Start-Up and Shut­
Down Costs, Operations Research, 19 pp.208-218. 

[8J H.Takagi (1991) : Queueing Analysis, Volume 1: Vacation and Pl'iol'dy Systems, Part 
1, Elsevier Science, Amsterdam. 

[9] R.W.Wolff (1989) : Stochastic Modeling and the Theory of Que'ues, Prentiee-Hall, 
Englewood Cliffs, New .Jersey. 

Shoichi Nishimura 
Department of Applied Mathematics 
Science University of Tokyo 
1-3 Kagurazaka, Shinjuku, Tokyo 162, Japan 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




