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Abstract A controlled M/G/1 type queueing system with a setup time for switching of the service distri-
bution is considered. At first, customers are served by a regular service time. When the number of customers
in the system exceeds m, the service time is switched to a high speed service time with a setup time. High
speed services continue until the end of the busy period. We propose a simple algorithm for the calculation
of the mean number of customers in the system by using a normalizing condition and a boundary condition.
Moreover, explicit formulas of the probability mass function are derived when the regular service distribution
is exponential or constant.

1 Introduction

In this paper, we consider an M/G/1 type queueing system with a setup time for switching
of the service distribution. At first, customers are served by a regular service time. When
the number of customers in the system exceeds m, the decision maker switches the service
time to a high speed service time. Such a switching time is called a setup time. High speed
services are continued until the end of the busy period.

This model has a close relation with the N-Policy model which has been known as a
traditional optimal control model of M/G/1 queues. Heyman [4] provided the optimality of
N-Policy under given cost structures. On the other hand, from standpoints of communica-
tion engineering, Nishigaya, Mukumoto and Fukuda [6] introduced this switching queueing
model with applications in packet communication systems, where a fundamental matrix of
absorbing transition states is used to obtain the mean number of customers. In our al-
gorithm, a normalizing condition and a boundary condition are derived. Using these two
conditions, we obtain the Z-transform of the probability mass function of the number of cus-
tomers in the system. If the regular service distribution is exponential or constant, explicit
expressions for the probability mass function are obtained.

Many queueing models such as polling, setup, machine breakdown and machine mainte-
nance models, etc., have a characteristic that a server may stop service during an occasional
interval. Recent researches ( Doshi [2] and Takagi [8], among them ) have unified these mod-
els as Vacation Models, where the time that server stops service is regarded as a vacation
time. In our model, the setup time for switching is also considered as a vacation time.

The model is described in Section 2. In Section 3, we first obtain the Z-transform
of the number of customers in the system with respect to the embedded Markov chain,
and then derive the mean number of customers in the system. In Section 4, defining the
supplementary series generated from the LST of the regular service distribution, we obtain
the unknown parameters contained in two main results of the previous section. Also, explicit
formulas of the probability mass function are derived when the regular service distribution
is exponential or constant. Then, as a result, we propose an algorithm for calculation of
the mean number of customers in the system. Finally, numerical calculations of the mean
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number of customers in the system are investigated in Section 5.

2 The Model and Notations

In this section, we shall define a coutrolled M /G/1 type queue with a setup time for switching
of the service distribution. Suppose that the arrival process is a Poisson stream with rate
A. Initially, customers are served by a regular service time Xg. If the system is crowded,
the decision maker changes the regular service time to the high speed one. That is, when
the number of the customers in the system is equal to or greater than m at the completion
of the regular service, the decision maker switches the regular service time X'z to the high
speed service time Xy. In order to make this change, a vacation time Xy is needed as a
setup time. It is supposed that decisions are made only at the completion of the service.
When the system becomes empty, the service distribution is switched to the regular service
distribution immediately. That is, a customer who arrives during an idle time of the systeni
is served regularly without a vacation.

It is natural that the decision maker requires the high speed service when the system
is crowded. Heyman [4] introduced the N-Policy by which the server is activated when
there are NV customers waiting for service and is deactivated when there is no customer in
the system. As having been shown in inventory theory, the optimality of the N-Policy is
proved under certain cost structures ( Heyman and Sobel [5] ), which includes a dormant
cost, a running cost, a start-up cost, a shut-down cost and holding cost in A/G/1 type
queue ( Heyman [4], Sobel [7] and Bell [1] ). In this paper, we consider the regular service
time, the high speed time and the vacation time. Instead of a start-up cost and a shut-down
cost, the vacation time is incurred when the service time is changed from the regular one to
the high speed one.

Let R(x), H(z) and V(x) be the distribution functions and denote R*(s), H*(s) and
V*(s) as the Laplace-Stieltjes transforms (LST) of Xg, Xy and Xy, respectively. We
assume that the arrival process, service times and vacation times are independent. Let r,
be the probability mass function that n customers arrive during the regular service time
Xg. We define #(z) as a generating function of r,. They are

a [P (A
e = /(; e )\:l‘( :) dR( )

Mz) = 3 2", =R(A-A2).

n=0

Similarly, hn, (), Un, 9(), (v ® h), and (v ® h)(z) are defined as
oo )\z)
ha & Q)
) /0 e (z),

h(z) 2 fj;%,,:H*(A—A:), (2.1)
n=0
ve & /Owe-*f(’\r) v (z),
o) = i:"vn=V*(/\—-)\:),
n=0
(v®h), = ivlchn—ks

(vQh)(z) & Z kahn p = (2)h(z),
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A Queueing System with a Setup Time 273

where the notation “®" represents a convolution.
As traffic intensities, we put

pr = ME[Xg],
pv £ AE[XY],
pu = ME[Xu].

It is well-known that some important statistical values can be obtained by Z-transforms as

d .
pn = —i(2)
2 =1,
NE[XE = ddlf(z)
~ z=1.
_ o (=Ardr
n = py @R (8) = (n Z 0) (22)

For Xy and Xy, the statistical values of pg, pv, N2 E[X%], X2 E[X?], h, and v, can be also
obtained in the same way.

If m = oo, then the process is the same as M/G/1. If m < oo, the stability condition is
pr < 1. We make the following assumption.

Assumption 2.1
O0<m< o and pr <1

3 The Embedded Markov Chain Approach

In this section, our setup queueing model is analyzed as the embedded Markov chain. Our
purpose is to get the steady-state probability mass function of the number of customers in
the system. We use the notations as follows:

Py, : the probability that the system is empty at the service completion,
P"R : the probability that there are n customers in the system
at the regular service completion,
PH . the probability that there are n customers in the system
at the high speed service completion,
p 2 { B (n=0)
" PR pH (n>1)

the probability that there are n customers in the system
at the service completion,

and

o0

E[L] = Y aP,
n=0

the mean number of customers in the system.

By Burke’s theorem and Poisson arrivals see time averages (PASTA) property ( Wolff [9] ),
the steady-state probability is equal to the probability of the system at any time ( pp.7-8
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in Takagi [8] ). Z-transforms of these probability mass functions are defined as

- =)
PR(z) & Y PR,
n=1
> =Pl

n=1

T,
=

(&
l>

m—1
S Pk (in the case of m > 3 ),

n=1

P(z) & P,+ PR(z)+ PH(2).

©-
N
o
—
li>

It should be noted that P(1) = 1 but PR(1) < 1, PH(1) < 1 and ¢(1) < 1
We provide the next lemma which is used for calculating P(z) and F[L] in later analyses.

Lemma 3.1 Let h(z) be a Z-transform as defined in (2.1). If &(z) is a Z-transform such
that lim., Z(2) = 0, then

lim j(f) iJ(l),
1 2 — h(2) 1—py
( #(2) ) L1 CRtiC )) #z) (1= /()

NG

F'NL - py) + T( /\2E[,X ]

lim

2(1 - pn)?
where the notation ' represents the differential operation.
Proof : It is obvious from the direct calculation of L'Héspital’s rule. m]

3.1 Thecasesof m=1and m =2
We can get explicitly the Z-transform of stationary probability mass function of the number
of customers in the system in the cases of m = 1 and m = 2.

In the case of m = 1, equilibrium equations of the embedded Markov chain are derived
as follows:

PO = I’0P0+Uoh0P1R+h0PIH,
B = rP (n21),

n

n+1 n+1
PnH = Zhn+l kPL ‘+‘Z U®h n+] kPk (7121)
k=1 k=1

From these equations, the next proposition is obtained. i
Proposition 3.1 In the case of m = 1, the Z-transform P(z) and the mean number of
customers in the system E[L] are

P(z) = PO‘[iv(:)h(:)f(:)—z—rg(ir(:)h(:)—:)

+7~‘(Z)+1—7‘0],

+(1 = pu) (M E[XE] + 20r(1 + pv))

(1 =70) (1 = pu)(NE[XP] + 20y pur) + pv N E[XF])
+prA2E[X 3]

E(L]

i

Fy-

2(1 - pu)? ’
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where .
— PH
Py = )
0 1 —pu + (1 —70)pv + pr

a
Similarly, in the case of m = 2, the equilibrium equations of the embedded Markov chain
can be given by

Py = 1oPy+roPE+ hoPE,

P)f = 7"nI)O‘i'Tnplﬁ (n>1),
n+1 n+1

Pl = Y hunsPE+ 3 (0 @Rk PE (n21).
k=1 k=2

Then we have the following proposition. )
Proposition 3.2 In the case of m = 2, the Z-transform P(z) and the mean number of

customers in the system are
B2) R [f(s)ﬁ(z)ﬁ(:) — 2411 = 0(2)h(2)) +ro(z — B(2)h(=))
) 1 - s —h(2)

+7z)+1—ro -1,

(1=ro—r1)((1- PI{)(/\2E[X3'} + 2pvpu) + pv N E[XE])
+(1 — pu) (N E[XE] + 2pg(1 + pv))
+prRAE[XE] — 11 (2(pn + pv)(1 — pr) + N E[XF])
2(1 = r1)(1 - pu)? ’

Fy-

E(L) (3.2)

where
P = (l_rl)(l_pl{)
0= .
(L=ro—ri)pv +pr—prp+1—-1

]
We note that ry and r; in Proposition 3.1 and Proposition 3.2 can be obtained by (2.2).
3.2 The case of a general m
We consider the case of m > 3, where the derivation of P(z) is more difficult than that in
the case of m < 3. Equilibrium equations of the embedded Markov chain are derived as
follows:

Py = 1Py +roPlt+ noPE, (3.3)
n+l
Pt = rPo+ Y rapaP8 (1<n<m-2), (3.4)
k=1
m—1
PR = r,Po+ Y mauaPd  (m—1<n), (3.5)
k=1
n+1
P* = N hopiPE (1<n<m-—2), (3.6)
k=1
n+1 n+l1
P = Y honi P+ Y (0@ h)pu e PE (m—1<n). (3.7)
k=1 k=m
In this section, we shall consider P(z) under given Z-transform ¢(z) i.e. PE ... PE .

These values will be obtained in the next section. At first, the Z-transforms of P® and P
are obtained by using equilibrium equations from (3.3) to (3.7).
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Lemma 3.2 The Z-transform of P

PR(z) = (#(2) = 10) Py — 1o P +ll?(-f—). (3.8)

Zz

Proof:  From (3.4) and (3.5). we have

m—2 m— m—2 n+1
R
> IR = Z WP+ 3 Z?m WP,
n=1 n=1 n=1 k=1
oo 20 m—1
R
X R = ) Pt Z Y Tk P
n=m-—1 n=m-1 n=m-—1 k=1
Adding the above two equations, we get
=) m—2 n+1
R
ST PR = Y Bo+ 2 - er N Z Tng1-k P
n=1 n=1 =1 n=m-1
) oo
— N R . - pR
= Z*«nTnPO'*' Z Plc Z ~nrrl+l—k_70P1 .
n=1 k=1 n=k—-1

We obtain
3 5 F(z) md
szPkR = (7'(2)—7'0)P0—T0P1R+_(:_)zZkPkR’

BR(z) = (#(z)~ o) Py — roPft + J2IOE)

Lemma 3.3 The Z-transform of PH is

P = — ‘[TO(PO"*'PlR)( — H2Wh(2)) + Py (F(2)0(2)(2) - )

h(z)
V(=
4 Aeihlz)elz) <r(>—z>]

Proof: Formulas (3.6) and (3.7) yield

m-—2 m—2 n+1

Y PY = 3 Y bR

n=1 n=1 k=1

o0 oo n+1 n+1

Z :nPf = Z "Zhn+l kPL + Z Zv®hn+l kP]c

n=m-1 n=m-—1 k=1 n=m-—1 k=m

Then we get

n+1

+
Z a1k P+ Z "3 (v ®h)ns1— P

n=m-1 k=m

Z Zhng1-k = ho P!
n=k-1
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oG

+3 B Y (0 @Ak,

k=m n=k-1

PH(z) = i”(f)PH(:) — hoPH + M )ofj pR
(1 - fl—(—l) PH(z) = —hoPf + MQ f PR, (3.9)
On the other hand, from definition of ¢(z) and (3.8),_ we have
2 TPY = PR(z)~9(2)
= (#(3) —ro) Po — ro P + (i(;) - 1) mz_:l :"PE, (3.10)
From (3.9) and (3.10), we have .
(1 - @) PRy = —hoPH

Also, hoPJ is removed by using (3.3). Hence
(z - il(Z)) f’”(::) = z (roPo + 7‘0P1R - Pg)

+0(z)h(2) [(f(:) —1o) Po— roPff + (r(zz) - 1) ¢(2’)] ,
Pi(z) = - —171(7) [ro (Po+ PF) (= = 9(2)A(2)) + Po (7(2)0(2)(2) = =)
+é(z)h(zzm&(z) (F() — Z)]
(]

In the following theorem, the Z-transform of {P,}3%, is given.
Theorem 3.1 The Z-transform of P, is

P(z) = (14#2)Py—ro (Po + PIR) + f(j)qﬁ(:)
+- _.171( . [ro (Po + PIR) (: - 6(2)71(2))
¥(2)h(2)¢(=)

(F(2) — :)] . (3.11)

Proof :  From Lemma 3.2 and Lemma 3.3, this theorem is proved with
P(z) = Py+ PR(z)+ PH(z).
O
Lemma 3.4 (The normalizing condition) Using Py + P and PR(1 <n<m—1), we

have ‘
_l—=pu+ro (Po+ PF) pv = 6(1) (pr — pir)

14+ pr+pv —pu

Py (3.12)
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Proof:  From the normalizing condition given by (3.11), we have
1 = 121?11 P(z)

+ ov 1 —-
= P <1+@ p‘)—rO(P0+PlR) Py +¢<1)<1— ”R),
1—pn 1 - py

P 1“PH+T0(P0+P1R)PV—¢(1)(PR—PH)
¢ 1+ pr+pv — pu '

As the main result of this section, the mean number of customers in the system is
obtained.
Theorem 3.2 The mean number of customers in the system E[L] is

PO—T()(P0+P1R)

ElL} = [(1 = pr) (VE[X?] + 2pvpr) + pv N E[X3]]

2(1—pp)?
B -2
3= gy (1~ o) (VEIXE] + 26m(pv + 1)) + prN BN
o) { NE[X3)(1 - pr) + 21 - pa)(pr — 1pv
2(1—pn)? ~NE[XE)(1 - pr)
PR — /E ’
T #(1).

Proof :  From (3.11), we have

E[L] = nmiﬁ(z)

prPo + pro(1) + ¢'(1) — ¢(1)
ro (Po + Pf
02((1 0_ o ;2) ["(1 — pr)(NE[XY] + 2pv pir) — vazE[X?J]]
R [( L o) ( NE[X3] + NE[X2] + A2E[X2]
51— pn)? P +2(prpv + pvpu + prpR)

+

+(pr + pv + pu —~ 1)>\2E[X%1]}

+(¢(1)(pv +pg—1)+ ¢/(1)) ?}i——_l
Pu
+T1¢é“1/311—)2 (,\2E[X}2{](1 — pu) + NE[X2](pp — 1))
Py—19 (P, + PR
0 28 E ;H)2 1 ) [(1 ~ pu)(NE[XT] + 2pvpu) + PVAZE[X?A]
Py

Y ME [(1 = pu) (N E[XE] + 20r(pv + pu)) + prA2E[X}]|

+prPo + pre(1) + &'(1) — &(1)

-1
O + o = 1) +0/(1) T
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o(1) ) o
+2(1——pT)2 ()‘QE[-'\EI}U — pr) + NE[X})(pr — 1))
Py — P, PR
- Ao s ) (1~ o) (WELXP] + 200 011) + pv NELX7]]

2(1 - pn)
j2 _ o
+m—_:9m [(1 - pH) ()\QE[_\%] + 2pr(py + 1)) + pR/\ZE[_Xf,]]

L o) [ NE[XE(1 - pu) + 21 — pu)(pr — Dov
2(1 - pH)2 ~NE[XE)(1 - pr)

MR,

4 The Mean Number of Customers in the System

In the previous section for m = 1 and m = 2, 15(:) is obtained. In the case of m > 3, we
derive PE(z), PH(z) and P(z) in Lemma 3.2, Lemma 3.3 and Theorem 3.1, respectively,
where parameters ro, pr, pv, pr. N2 E[X2], )\2 E[XZ] and \?E[X%] are given and parame-
ters Py, P, (1) and ¢/(1) are unknown. In this section, the derivation of these unknown
parameters is considered mainly. Since Py and PFX satisfy homogeneous linear equations,
the problem is to obtain their coefficients. We introduce a supplementary series f,, which is
defined by the solution of the recursive equation. Using the normalizing condition and the
boundary condition, an algorithm of the computation E[L] for m > 3 is discussed.

4.1 The Definitions and Analyses for Supplementary Series

First of all, we give some definitions of series.

Definition 4.1 The series {y,}>2, is defined from {r,}3%, as follows:

_A_ 1 - Tl
n = To 3
-7
Yo = —2  (n22).
To

a

Definition 4.2 Suppose that a; and ay are given as an initial condition. The series a,, is
defined recursively as

n—1

4 =Y Yorar (0> 3). (4.1)
k=1

a
In the next lemma, the series P in (3.4) satisfies the above recursive relation when the
initial values Py and PJ are given.
Lemma 4.1 Suppose that as initial values Py and PF are given. If we put
a, = P[) + PlR,
as = P2R

1
= y(P+PY) - =P,
yl( 0 1) - 0
then PR can be represented by a, such that

PR =g, (3<n<m-1),

n

and the boundary condition is
m = 0. (4.2)
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Proof :  From (3.4), we obtain

PR = —PR L+ Z :_"_IPO 2<n<m-1). (4.3)
0

It follows from the boundary condition of (4.3) and (3.5) for n = m — 1 that

’ m—1
Pﬁ-l = TmaPp+ Z Tm—kPkRy
k=1
m— l__1 —k —_r 1
0 = Pﬁ + e “—P,.
Ty ! ,; To ¢ To
And from Definition 4.1 and Definition 4.2, this lemma is proved. a

From the above lemma, we have that { PR}7"! and P, satisfy homogeneous linear equa-
tions in which unknown variables are Py and P. In order to get the simple form of their
coeflicients, we introduce a supplementary series as follows:

Definition 4.3 A supplementary series f, is defined as

fo
fa

(1>

1, (4.4)
z”: Yefake (R 21), (4.5)
k=1

n—1 n
( = Z Yn—k e = Z yn+l—kfk—l> .
k=0 k=1

>

Remark that f, is the solution of a discrete type recursive equation of y,. Even though y, is
not a probability mass function, (4.5) is similar to the renewal equation. A simple relation
between a,, and f, is shown in the next lemma.

Lemma 4.2 If series {a,} and {f,} are given by (4.1), (4.4) and (4.5), then we have

Gn = (faot = prfa) 0 + fapas (n22). (40)

Proof:  This lemma is proved by induction on n. As it is trivial for the case of n = 2, we
give a general proof as follows:

Uny1 = Zyn+1—kak

= Z Ynt1-kQ + Ynly

k=2
= > Ynti-k [(fe-1 — Y1fiz2) @1 + fio2as] + yacy
k=2
= a1 ) Ynst-kfro1 + (a2 = @191) Y Yns1-kfr2
k=1 k=2

ayfn + (s — alyl)fn—l
(fo = fo-1) @1 + fa102.
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Lemma 4.3 (The boundary condition) By using Py,

Py+ PP = fm-2 P, (4.7)
ToJm-1
or ;
PR= ( 171—'2___1)}3‘
' 7‘0fm—t 0

is obtained. Furthermore, we have

fm—-l

Proof :  From the boundary condition (4.2) and (4.6) in Lemma 4.2, we have

m—_ F’
P,{*:(f an_l—f,,-g);g (2<n<m-1)

0= (fm‘l - ylfm—i?)al + fm-—?a?'

Then the above three equations can be obtained. a
From Lemma 4.3, the unknown Z-transform ¢(z) can be represented using f,, with given
P, as follows:

m—1
dz) = Zz"Pf
n=1

m—1
= :PR4 Y PR
n=2
fm—2 ) m:1 (fm—2 ) PO
= z|—-1|F+ 2" nel — fn_a | —
(TOfm—l 0 ,,2:2 fm—-lf ! f 2 To
:P m— m_2 n m-—
= 0[(f 2“~’>z3fn+2 1fm—2—7'0]-
To fm—l n=0
Then we get
P . m-—2
(1) = ,—0 Kf—i - 1) S fut fruea — To] , (4.8)
To fm-1 n=0

/ PO fm—2 mﬁ\2 m_2
¢(1) = ¢(1)+__|:(__1) 2, nfn— Zfrz+(m—1)fnl—2] . (49)
n=0

To fm—l n=0

Now, an unknown factor in Theorem 3.2 is only FPy. In the next theorem, P, is obtained
by Lemma 3.4.

Theorem 4.1 The idle probability Py is given by

P _ 7'O.fm—l(]- - pH)
0 —_—
{ Tofm-1(1 4+ pv) = 1o fin—2m

m—2
+(PR - PH) (fm—‘lfm-—l + (fm—Z - fm—l) Z fn) :l )
n=0

Proof:  Substituting (4.7) and (4.8) into (3.12), this theorem is proved. m}
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4.2 An Algorithm

In Section 3, we first get E[L] in the cases of m = 1 and m = 2 in (3.1) and (3.2),
respectively. For m > 3, the Z-transform P(z) of the stationary probability mass function
P, is obtained in Theorem 3.1 under the condition that {PF}=! and Py are given. In
Section 4, it follows from the boundary condition, (3.4) and (3.5) that {PR}™7! and P,
satisfy homogeneous linear equations and their coefficients are given by f, in Lemma, 4.3.
From the normalizing condition, Py is obtained in Theorem 4.1. We are now in position to
summarize our algorithm of the computation E[L] for m > 3.

Step 1 Compute {y,}7=} from {r,}™} by Definition 4.1.

Step 2 Compute {f,}n=y from {y,}7- by Definition 4.3.

n=1
m-—-2 m—2
Step 3 Calculate Y f, and Y nf,.
n=0 n=0

Step 4 Calculate Fy by Theorem 4.1.

Step 5 Calculate Py + P by Lemma 4.3.

Step 6 Calculate ¢(1) by (4.8).

Step 7 Calculate ¢'(1) by (4.9).

Step 8 Calculate E[L] from Py, Py + P, (1) and ¢'(1) by Theorem 3.2.

4.3 The Analytical Results for Some Regular Service Distributions

Using previous results, an explicit expression of E[L] for some distributions of the regular
service time Xg can be obtained. At first, the Z-transform of f, is represented by 7(z).
Lemma 4.4 The Z-transform of f,

(o]

fln) & Z_:OZ"fn
18
f(z) = ;;(:;0—_:

Proof :  From the definition of f,, we obtain
f(z) = 1+ Z o
n=1

o0 n
= 143" Yefar
n= k=1

1

= 1+ f(2) 3 2w
k=1

N 1 - o

= 14+ f(2)|= n + 3 rk)
To =3 To
= 1+ B - = () 2r = ),
rof(z) = ro+ f(z)(z+ 10— 7(2)).
Therefore, this lemma is proved. . a

Since 7#(z) = R*(A — Az), f(2) is similar to the Pollaczek-Khinchin transform equation of
the number of customers in M/G/1 queues. When the service distribution is exponential or
constant, the distribution of the number of customers in an M/G/1 queue is given ( Gross
and Harris [3] ). We can apply these methods and obtain the explicit formula of f,.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Queueing System with a Setup Time 283

Proposition 4.1 If Xy is exponential, that is

A - -2y
R(z)=Pr{Xg<a)=1—¢ *r",

then
1 PR "
ki3 = > 0 3
" 1+ pr (1+/)R> (n20)
. 1
fz) = — |
1+ pr—pr2
= 1 ( Pk ( 1))
n = m-—1-— 1-p%~ ,
D v Gy T-pr\ 'R
E2n _ 1 ((m —~2)(m — 1)
= (1 = prX1 + pgr) 2
3
PR m—2 m=1
—— PR (1 (m-1 +(m—2 :
(l_pR)Q( (m = 1)pp~% + (m — 2)p7 ))

Proof:  From the direct calculation, r, and 7(z) are obtained. And it follows from Lemma
4.4 that

f(") — 1+pR—pRZ
(L4 pr)(1 = 2)(1 — prZ)
_ 1 ( 1 o4 )
(1-pr)1+pr)\1 =2 1—pgz)’
1— p711%+2
= > 0).
f (1 = pr)(1 + pr) (n20)
8]
Proposition 4.2 If X is a constant, that is
Pr (XR - fxﬁ) =1,
then
R*(s) = e‘ffr",
rg = e PR,
i(z) — e—f’R(l—z)’
- e“PR
1) = e
are obtained and .
ok (=(k+1)pg)"™" ,
fo = k_X_%e”"‘ ( b (n > 0). (4.10)
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Figure 1: The mean number of customers E[L] in M/M/1, M/E,/1 and M/D/1 type
models: E[Xg] = 2.0 and E[Xy] = 1.0.

Proof : By the expansion of 1/ (1 - zePR“'”) ( see pp.270 in Gross and Harris [3] ), we
have

N e PR e PREPR(1~2)

ePr1-2) — 5 ] — zepr(1-2)

o0
= e PREPR(1=2) Z (,kPR(l—Z)zk
k=0
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(e <]
e~ PR Z elk+1lpr(1-2) Lk
k=0

— e PRZe(kH)pRZ( “‘1)/’3* ok

j=0

k+1)p e

e~ PR Z elk+1)pr Z — ! z

S ’»+1)PR)n -
P k'
zz: Z ) (n—k)! '

I

I

Therefore, (4.10) can be obtained. (]

It should be noted that E[L] depends on the form of the regular service distribution
through r,, but it depends only on first and second moments of the high speed service
distribution and the vacation time distribution. If the service time is exponential and
constant, then we can abbreviate steps 1—-3 and 1—2, respectively, of our algorithm in
Section 4.2.

5 Numerical Illustrations

In this section, we investigate numerical calculations of the mean number F[L] of customers
in the system. In Figure 1, graphs of E{L] are illustrated as a function of m when both service
and setup times are exponential, Erlang type 2 distribution and constant, respectively. If
pr < 1, E[L] converges to the mean number of customers in the M/G/1 queueing system
with the service time Xz, and if pg > 1, E[L] diverges as m — oo. In numerical standpoints,
an optimal switching scheduling where the average sojourn time is to be minimized will
be discussed. Since the arrival process is assumed to be a Poisson process with rate A
independent of states, from Little’s formula, the average sojourn time ( the waiting time
+ the service time ) is equal to E[L]/A. The optimal switching point m* which minimizes
the average sojourn time is the same as m* which minimizes F[L]. It can be observed that
—F|[L] is unimodal in m, that is, E[L] is monotone decreasing in {1, m"] and is monotone
increasing in [m~*,co). Moreover, m* is monotoune decreasing for increasing arrival rate A.
As was shown in the optimality of N-Policy, it seems that we obtain the optimal switching
point m”.
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