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Abstract In this paper we analyze a G/ Ma,b /1 queue with multiple vacation discipline. Customers are 
served in batches according to the following bulk service rule in which at least' a' customers are needed 
to start a service and maximum capacity of the server at a time is 'b'. When the server either finishes a 
service or returns from a vacation, if he finds less than 'a' customers in the system, he takes a vacation 
with exponential distribution. When the server either finishes a service or returns from a vacation, if he 
hinds more than 'a' customers in the system, he serves a bulk of maximum of 'b' customers at a time. 
With the supplementary variable method, we explicitly obtain the queue length probabilities at arrival time 
points and arbitrary time points simultaneously. The shift operator method is used to solve simultaneous 
non-homogeneous difference equations. The results for our model in the special case of a = b = 1 coincide 
with known results for G/M/l queue with multiple vacation obtained by imbedded Markov chain method. 

1. Introduction. 
In recent years there have been significant contributions to the theory of queue with 

server vacations. For complete references on vacation models, see Doshi[4,5) and Tak
agi[ll). Vacation models have been widely used to model many problems in computer, 
communication and production system. In the literature, very few results are available 
for batch service models with server vacations. For complete reference on batch service 
models without vacations, see Chaudhry and Templeton[l). 

Jacob and Madhusoodanan[8) investigated the finite capacity M/Ga,b /1 queueing sys
tem with multiple vacation. Using the theory of regenerative process, they derived ex
pression for the time dependent system size probability. 

In this paper we analyze the G / Ma,b /1 queue with multiple vacation discipline. Cus
tomers are served in batches according to the following bulk service rule in which at least 
, a' customers are needed to start a service and maximum capacity of the server at a time 
is ' b'. When the server finishes a service, if he finds less than' a' customers in the system, 
he goes away for a random length of time called vacation. If the server returns from a 
vacation to find less than' a' customers waiting, he immediately takes another vacation, 
and continues in the manner until he finds at least' a' customers waiting when he returns 
from a vacation. If the server finds more than' a' customers waiting after his return from 
vacation or service completion, he serves a bulk of maximum of 'b' customers from the 
queue simultaneously. 

With the supplementary variable method, we explicitly obtain the queue length prob
abilities at arrival time points and arbitrary time points simultaneously. It is well known 
that shift operator D and its polynomial f(D) are very useful tools for solving simple 
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difference equations (see, for example, Gross and Harris[6]). The shift operator method is 
used for solving complicated simultaneous non-homogeneous difference equations. 

This paper is organized as follows. In section 2, we discuss operational calculus about 
the shift operator. In section 3, queue length probabilities at arrival points and arbitrary 
points are derived explicitly by solving simultaneous non-homogeneous difference equa
tions. In section 4, special cases are treated. The results for our model in the special case 
of a = b = 1 coincide wit.h known results for G/M/1 queue with exponential vacation 
obtained by imbedded Markov chain method (Choi and Park[2], Tien et al.[12]). As the 
rate of multiple vacation time tends to infinite, queue size distribution for queueing system 
with vacation will approach to that for queueing system without vacation. We show that 
the above facts hold for G/M I ,b/1 queue (Chaudhry and Templeton[l]). 

2. Operational calculus. 
In this section we will discuss operational calculus for later use. For a sequence {xn} 

of complex numbers, the right shift operator D is defined by DX n = Xn+I for all n. If 
fez) = ao + alz + ... + akzk is a polynomial with complex coefficients ai, then the 
symbol f(V) = ao + al D + ... + akDk is naturally defined by 

feD) . Xn = aOXn + alXn+l + ... + akXn+k· 

It is well-known (see, for example, Gross and Harris[6], Spiegel[10]) that this type of 
polynomial f(V) in V is used to find the general solution of difference equations. 

Now we will introduce symbol f(V) for other functions f in such a way that feD) has 
00 

a natural meaning for particular geometric sequence {w"}. For fez) = 2: akzk, it is 
k=O 

00 

natural to define feD) = 2: akDk by 
k=O 

00 

f(D). w n = CL akDk). wn = f(w)· wn. 
k=O 

00 

For instance, since exp( z) = 2: t zk, it follows that 
n=O 

exp(D) . wn = exp(w) . wn . 

Let a*(8) = It e-nXa(x)dx be the Laplace transform of function a(x). By the same 
reason as above, we have a*(V)· wn = a*(w). wn . 

When f(V) . Xn = wn, the inverse operator f(~) of f(V) is defined by f(~) • wn = Xn· 
For instance, since (V + a)· wn = (w + a). wn

, it follows that 

(_1_) .wn = (_1_) .wn . 
V+a w+a 

For a geometric sequence {wn }, we summarize operator formula which are very useful 
in obtaining a particular solution of difference equations. 
Proposition 2.1. For al,a2,w E C and mEN, 

(i) (alvm + (2)' wn = (alwm + (2)' wn
. 

.. 1 1 
(n) . w n 

- . w n
, if alw m + a2 f:. O. 

alvm + a2 - O'IW m + a2 
(iii) a*(al + a2vm). wn = a*Cal + a2Wm). wn

. 

(. ) 1 . wn __ 1 n'f *( + m) ...J. 0 IV . . W , 1 W - a al a2w -r-. 
V - a*(al + a2vm) w - a*(al + a2Wm) 
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Cl Ma. b/l Queues with Server Vacations 173 

3. Queue length probabilities. 

We consider a G / Ma,b /1 queueing system with server vacations. The interarrival times 
of customers are independent and identically distributed with p.d.f. a( x), with mean 
1/).. and Laplace transform a*(B). The service times and vacation time's are independent 
and exponentially distributed with mean 1/ J.L and l/v, respectively. Since the statistical 
equilibrium conditions for both the queue with vacation and the queue without vacation 
are same [4], we always assume that p = b: < 1 in the remaining of this paper. 

Now we will investigate the distribution of the queue length in the system at arrival 
time points and at arbitrary time points simultaneously by the supplementary variable 
method. Here we take supplementary variable as the remaining interarrival time. 

At an arbitrary time, the steady state of the system can be characterized by the fol
lowing variables; 

Define 

N = the number of customers in the queue; 

A = the remaining interarrival time; 

{ 
0, 

(= . 
), 

if server is on vacation; 

if server is busy with j customers in a batch, a :S j :S b. 

pio(a:)dx = peN = i,( = o,A E (""x +dx]), i 2: 0, 

Pij(a:)dx = peN = i, ( = j, A E (J:, X + dx]), i 2: 0, a :S j :S b, 

and their L~place transforms 

Note that pio(O) ( p;~O) == p~~») are steady state probabilities that there are i customers in 
the queue and server is on vacation at arbitrary time points (arrival time points, respec-

tively), and pij(O) (P;j?) == p~j») are steady state probabilities that there are i customers 
in the queue and server is busy with j customers in a batch at arbitrary time points 
(arrival time points, respectively) for a :S j :S b. 

Using a typical argument of the supplementary variable method (Choi and Park [3] , 
Hokstad[7]), we have the following system of differential difference equations; 
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(3.1a) 

(3.1b) 

(3.1e) 

(3.1d) 

(3.1e) 

(3.1£) 

B. D. Choi & D. H. Han 

b 

- p~o(x) = L p.POn(X), 
n=a 

b 

- p;O(X) = L P.Pin(X) + a(X)Pi-l,O(O), i < a, 
n=a 

- p;o(x) = --VpiO(X) + a(X)Pi_l,O(O), i ~ a, 

b 

- P~j(X) = -p.POj(X) + VPjO(X) + L p.Pjn(x), a ~ j ~ b, 
n=a 

- P;j(x) = -P.Pij(X) + a(X)Pi-l,j(O), i ~ 1, a ~ j ~ b - 1, 

-P~b(X) = - P.Pib(X) + VPiH,O(X) 
b 

+ L P.PiH,n(X) + a(x)Pi-l,b, i ~ 1. 
n=a 

By taking Laplaee transform to the above equations, it follows that 

b 

(3.2a) 

(3.2b) 

(3.2e) 

(3.2d) 

(3.2e) 

(3.2f) 

Bp~o(B) = Poo(O) - L p.p~,,(B), 
n=a 

b 

Bpio(B) = PiO(O) - a*(B)pi_l,O(O) - L I'Pin(B), i < a, 
n=a 

(B - v)pio(B) = PiO(O) - a*(B)pi-l,O(O), i ~ a, 
b 

(B - l-l)p~j(B) + L I-lpj,,'(B) + vPjo(O) = POj(O), a ~ j ~ b, 
n=a 

(B - l-l)pij(B) := Pij(O) - a*(B)pi-l,j(O), i ~ 1, a ~ j ~ b - 1, 

b 

(B - I-l)Pib(B) + LI-lPi'H,n(B) + vpiH,o(B) 
n=a 

= Pib(O) - a*(B)Pi-l,b(O), i ~ 1. 

The rest of this section is devoted to find the queue length probabilities p~j) at arrival 
time points, and queue length probabilities pij(O) at arbitrary time points. 

Letting B = v in (3.2e), we have 

(3.3) PiO(O) = PoQi, i ~ a-I, 

where Q = a*(v) and Po = Pa_l,O(O)Ql-a. Substitution of the equation (3.3) into (3.2e) 
yields 

(3.4) * (B) _ Po(Q - a*(B)) i-I 
PiO - II Q, 

[J-V 

Letting B = I-l in (3.2e), we have 

(3.5) 

i ~ a. 
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where w = a*(f..l) and Pi = POi(O). By inserting (3.5) into (3.2e), we obtain 

(3.6) *(8)=pi(w-a*(8))W i - 1 i>l a<J·<b-l. 
p') II ' -, - -

U-Ji 

We need the following lemmas for solving non-homogeneous difference equations. 

17S 

Lemma 3.1. If b: < 1, then z - a*(f..l - f..lZb) = 0 has the unique root 'Y between 0 and 1. 

Proof. See Gross and Harris[6]. 0 
00 

Lemma 3.2. Let {xn} ~=o be an unknown sequence with z= IXnl S l. 
n=O 

(i) A particular solution of difference equation (1' - 8) . Xn = C with ~ -18 is given by 

(ii) The general solution of homogeneous difference equation (1' - 8) . Xn = 0 with 181 < 1 
is given by 

Xn = c8", 

where c is arbitrary constant. 
(iii) A particular solution of difference equation CD - a*(1l - Ji.D

b
)) . Xn = 8n (8 -I -y) is 

given by 

where 'Y is the unique root of z - a*(f..l - f..lZb) = 0 and 0 < 'Y < l. 
(iv) If b: < 1, then the general solution of homogeneous difference equation (1' - a*(p -

f..lDb)) . Xn = 0 is given by 

Xn = C1", 

where c is arbitrary constant. 

Proof. (i). This is obtained by applying Proposition 2.l.(ii). 
(ii). Clear. 
(iii). This is obtained by applying Proposition :U.(iv). 

(iv). In general, when 'Yi is a root of z-a*( f..l-f..lZb) = 0, a solution of (D-a*(f..l-f..lDb)).a;n = 
o is given by Xn = cni. So the general solution is a linear combination of such solutions. 

00 

But we require that a solution {xn} must satisfies z= IXnl S 1. To satisfy this condition, 
n=O 

a root 'Y of z - a*(J.t - f..lZb) = 0 must be inside the unit circle. Since there is only one root 
inside the unit circle of z - a*(j..l - IlZb) = 0 under the assumption b: < 1, the general 

solution of (1' - a*(f..l - f..lDb)) . Xn = 0 is given by Xn = C"(n. 0 
By using the shift operator 1', the equation (3.2f) can be written as 

b-l 

(3.7) (8 - 11 + f..lDb)pib(8) = (1' - a*(8))pi __ l,b(0) - vPiH.O(8) - 2:= f..lpiH ,n(8). 
n=:a. 
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By considering the imbedded Markov chain at arrival time points, we obtain the following 
relation 

(3.8) 

By substituting (3.3) and (3.5) into (3.8), we obtain 

Pib(O) = (100 e-Jl(l-Vb)t a(t)dt) . Pi-l,b(O) 

(3.9) 
+ pova>+b-l 100 lt e-VXe-Jl(I-ab)(t-x) aCt) dx dt 

b-l 00 
+ I>jW i - 1 1 (e-I'(1-W

b
)t - e- 11t ) aCt) dt. 

j=a 0 

This can be rewritten as 

(
'1"'1 *( 'T'Ib». (0) _poV(Q - a*(J.l- J.lQb) i+b 
v - a J.l - J.lv P.b - (1 b) Q J.l - Q -1/ 

(3.10) b-l 

- L pj(W - a*(f.1. - J.lWb))w i
, i 2: o. 

j=a 

Note that the another formal way to obtain (3.10) is to substitute () = J.l-/./pb into (3.7). 
By Lemma 3.2(iii), a particular solution of (3.10) is given by 

(3.11) 

where Q -# , and w -# ,. For the brevity of paper, we treat only the case Q -# , and 
w -# ,. By Lemma 3.1 and Lemma 3.2(iv), the general solution of homogeneous difference 
equation (V - a*(J.l - J.lVb))Pib(O) = 0 of (3.10) is given by 

(3.12) 
(h) . 

Pib (0) = C,', 

where C is arbitrary constant. Since the general solution of non-homogeneous difference 
equation (3.10) is the sum of the solution of homogeneous equation and a particular 
solution, the general solution of (3.10) is given by 

(3.13) 
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Next we find out llib(B). Let zj(B), 1 ::; j ~. b, be the zeros of B - J-l + J-lZb = 0 for 
fixed B with Re( B) 2: 0. Then the general solution of homogeneous difference equation 

b 

(B - J-l + J-l1)b)pib(B) = ° of (3.7) is L: djzj(B) where dj is arbitrary constant. By inserting 
j=1 

(3.4), (3.6) and (3.13) into (3.7) and applying Lemma 3.2(i), a particular solution of (3.7) 
is given by 

(3.14) 

Thus the general solution of (3.7) is 

(3.15) 

* (B) = ~d. i.(B) + C(, - a*(O)) i-I 
P,b ~ )z) B (1 ,b)' 

j=1 - IL - Y . 

pov(a - a*(B)) i+b-l 2:b
-

1 
. (w - a*(B)) i-I 

+ (( b) )(B ,-a - PJ W . J-l 1 - 0' - V - v) j=a 8 - J-l 

00 00 

Since L: pib(O) ::; 1, we have L: PbiH,b(O) ::; 1, k = 1,2" .. ,b. Note that zJi+k(O) = zj(O), 
.=0 ,=0 

since zj(O) (1 ::; j ::; b) are b-th roots of 1. By letting B = ° in (3.15) and summing over 
00 b 00 

i, we must have the convergence of L: L: djzj(O), since L: Pbi+k,b(O) converges and " 0' 
,=OJ=1 ,=0 

b 

and ware less than 1. This fact occurs only when L: djzj(O) = 0, for k = 1,2· .. ,b. The 
j=1 

determinant of b x b-matrix (zj(O)) is known as Vandermonde determinant of order b [9, 
page 93] and is not equal zero. Therefore all dj (1 ::; j ::; b) must be zero. Hence we have 

C(,-a*(8)) i-I pov(a-a*(8)) i+b-l 
B - J-l(1 - ,b)' + (J-l(l - ab) _ v)(8 _ v) 0' 

(3.16) b-l (w _ a*(8)) . 
"'" . ,-1 . > 1 - ~ Pj B _ w, z - . 
j=a J-l 

Now we find PiO(O), 0::; i ::; a - 2. By inserting 8 = ° into (3.2b) and using (3.6) and 
(3.16), we obtain the recursive relation 

b-l 

PiO(O) - Pi-l,O(O) = L J-lpij(O) -+- J-lpib(O) 
(3.17) J=a 

C(l-,) ,.-1+ POIl·(l-a) i+b-l =, 0' 
l-,b II(l-a b)-v . 

By the above recursive relation, we have 
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Next we determine the constants C, Po and Pi (a :::; i < b). For this purpose, we will find 
b-a+2 equations involving C, Po and Pi (a :::; i < b), among which b-a+l equations come 
from boundary conditions (3.2d) and other equation comes from the following relation 

00 00 b 

(3.19) A = LPiO(O) + L LPij(O). 
i=O ;=0 j=a 

Thus from (3.19) we obtain one equation; 

a-2 (C('Ya-1 _ 'Yi) Po«f..L _ v)aa-l _ f..Lab+i)) 
A='"' b + . b ~ 1 - I' f..L( 1 - a ) - I1 ,=0 . 

00 00 b-l 

+ L poa
i + L LPjW

i 

i=a-l i=Uj=a 

(3.20) i pova i 00 ( i+b b-l ) 
+~ Cl' + f..L(I-ab)-v-~Pjl.<..' 

=--b (a - l)')'a-l + I' - I' C [ a-I b] 
1-1' 1-1' 

+ Po(f..L - v) [(a _ l)aa-l + aa-l - ab] 
f..L(1 - ab) - v 1 - a 

Letting () = f..L in (3.2d) yields 

b 

(3.21) POi(O) = L f..Lpij(f..L) + vpio(f..L), a:::; i :::; b. 
j=a 

By substituting (3.4), (3.5), (3.6), (3.13) and (3.16) into (3.21), we have other equations; 

(3.22) 
b 1 b-l 

C pova - '"' Pj 
::; + f..L(1- ab) _ v - ~ ~ = 0, 

J=a 

(3.23) . _ C( _ ) i-b-l + POll( a - w) i-I <. b 
p, - I' w I' (1 b) a ,a _ l:::; - 1. 

f1 -a -v 

By solving the simultaneous system of b - a + 2 linear equations (3.20), (3.22) and (3.23) 
for unknown constants C,Po and Pi (a:::; i :::; b - 1), we have 
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(3.24a) 

C = )..J(a) {J(a)g(-y) + (v - J1.)J(-y)g(a) }-l , 
1 - "'(b "'(lm b- l 

(3.24b) 

(3.24c) 

=~ {J(a)(-Y - wh i
-

l 
_ J(-y)(a - w)ai

-
l } 

P, "'( rb-1 a b- 1 

. {J(a)g(-y) + (v - J1.)J(-y)g(a)}-I, a < £ < b -1, 
1 - "'(b "'(va b- 1 - -

where g(x) = (a - l)x a - 1 + xa-l_xb and J(x) == 1 _ (x_w)(I_x
b

-
a

). 
I-x w(1-x)x' a 

Thus we have obtained the following main results. 

Theorem 3.3. (i) The steady state probabilities p~;) ( p~;») that an arrival sees i cus
tomers in the queue and the server is on vacation (busy with j customers in a batch, 
respectively) are given by 

(a) _ .!. {~( a-I _ 'Vi) + Po (( _ ) a-I _ A,b+i)} 0 <_ Z' <_ a __ 2, 
PiO - \ 1 b "'( I (1 b) ,J1. v a J1.u. , 

A -"'( J1. -a -v 

(a) 1 i 
PiO = ~poa, i 2: a - 1, 

(a) 1 i 
Pij = ~PjW, i 2: 0, a :s j :s b - 1, 

i 2: O. 

(ii) The steady state probabilities pio(O) (pij(O)) that there are i customers in the system 
and the server is on vacation (busy with j customers in a batch, respectively) at arbitrary 
time points are given by 

i 2: 1, 
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pio(O) (0 :s i :s a - 1) are obtained from (3.2a) and (3.2b). The constants C, Po and Pi 
(a :s i :s b - 1) are given by (3.24). 

Proof. Since pi;) = tPii(O), (i) follows from (3.18), (3.3), (3.5) and (3.13). (ii) follows 
from (3.4), (3.6), (3.2d) and (3.16) by letting B = O. 

4. Special cases. 
(i) Since our model for a = b = 1 becomes GIM/1 queue with exponential vacation, we 
will show that Theorem 3.3 matches with known result for G I M /1 queue with exponential 
vacation (Choi and Park(2], Tian et al.(12]). From (3.24a) and (3.24b), we obtain 

( 4.1a) 

(4.1b) 

C = .\1'(1-1')0'(3, 

Po = .\(1 -1')0', 

where a = ~g =~J=~ and (3 = /L(l ~~)-v' Then by substuting C and Po into Theorem 
3.3(i), we obtain 

( 4.2a) 

(4.2b) 

P(a) = (1 _ "II)O'a i i > 0 ,0 J' -, 

pi;) = (1-1')O'(3bi+1 
- ai+l), i 2:: o. 

Similarly we have from Theorem 3.3(ii) that 

( 4.3a) pio(O) = ~(1 - a)( 1 - l' )O'a i
-

1
, i 2:: 1, 

v 
* 1'i (1 - a)a i 

Pil(O) =,\(1-1')0'(3[-- ], i2::1, 
. /1 v 

( 4.3b) 

( 4.3c) P~l(O) = ~(1 -1')0'. 
/1 

The above result agrees with the one for GIM/1 with exponential vacation (Choi and 
Park[2]' Tian et al.[12]). 

(ii) As the rate of exponential vacation time tends to infinite, queue size distribution 
for queueing system with vacation approaches to that for queueing system without vaca
tion. We show that the above facts hold for GIMl,b/1 queue with a = l(Chaudhry and 

Templeton(l]). Let C(o) = limv->oo C, p~o) = limv->oo Po and p;o) = limv ..... oo Pi. Using 
limv ..... ooa = limv ..... ooa*(v) = 0, we obtain from (3.24a), (3.24b) and (3.24c) that 

( 4.4a) 

(4.4b) 

(4.4c) 

( 4.4d) 
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L (ao) l' (a) d (ao) l' (a) Th b Th (.) b' et Poo = Imv--+oo Poo an Pij = Imv--+oo Pij' en Y eorem 3.3 1 , we 0 tam 

b 
(ao) 1 ' w P -00 - - w + ,b_, ( 4.5a) 

( 4.5b) 
b i+b 

(ao) = '" (ao) _ w(l - ,h 
Pi - L...J Pij - ,b ' 

j=1 w -~, -, 
i ~ O. 

Note that p~ao) is the probability that there aJ:e i customers in the queue and server is 
busy at arrival time points. The above result ai~rees with the one for ordinary G I M1,b 11 
queue (Chaudhry and Templeton[l], page 292). 
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