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Abs/mci Selection from among n objects by relative rank with no recall - the "secretary problem"
ill the asymptotic case when n ---+ (Xl is considered, a.ssuming that k, the cost ratio, becomes very large and 
" = kin is kept to be a finite constant. It is known that in the "Iow cost" case where f{ = kn is kept to be 
a non-negative finite constant, the expected number of observa.tions comes out to be O(n) and th,~ expected 
absolute rank of the selected object comes out to be 0(1), and that in the "medium cost" case where k is 
kept to be a positlve fillite constant, both expected values come out to be O(y'n). Here the former comes 
out to be O( 1) and the latter O(n). The graph of total "loss" vs. " looks like a continuous broken line, while 
those of "expectcc: cost of observations" and "expected absolute rank" have jumps at many pomts. As " 
approaches 0, thc curves approach smooth olles corresponding to the "medium cost" case. 

1. Introduction. 

Suppose there are n objects and they are ranked from 1 (the best) to n (the worst) 
without any tie. They are arranged in a ro\\'. We are allowed to observe them one by one 
starting at an end. Let the (absolute) rank of the i-th object be Xi. Then Xl, X2, ... ,Xn is 
assumed to be a random permutation of 1,2, ... ,n. When we have observed first 1 objects, 
the rclati ve ran k of the i- th object is Yi = (n umber of J:l, X2, ... ,Xi-l less than x;) + l. 

The stopping criteria SI, S2,"', Sn = n are pre-determined. For i = 1,2"", right after 
ohserving the first i objects, if the relative rank Yi of the i-th object is less than or equal to 
Si, then we stop there and select the i-th object. Otherwise we continue the observation. 

The "classica1 secretary problem" (cf. Chow et a!. (1964)) assumes that the cost of 
observation is O. Moriguti (1993a) discussed the basic theory of the "secretary problem" 
with cost, and Moriguti (1993b) dealt with asymptotic behavior as 11 -+ 00, keeping 

( l.l) 
k = cost of observing one object 

loss of getting one lower expected rank 

a finite constant. The gap between this "medium cost" case and "zero cost" case was 
successfully bridged by the "low cost" case discussed in Moriguti (1993c). 

On the otbpr hand, results of Moriguti (1992) suggest that "high cost" case, where 

(1.2) K =:: kin 

is kept constant when n -+ 00, would be also interesting. That is what we discuss in this 
paper. 

Among possible applications, the "marriage problem" would usually be a typical example 
of the "high cost" case. 
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244 S. Moriguti 

2. Notations and fundamental formulae. 

In Moriguti (1993a), besides the notations introduced in Section 1 above, the following 
notations were used: 

Wi = the event that stopping does not occur at the i-th observation or earlier, 
Qi = P(Wi), 

Zs = min{i I Si 2: s}, 
Is = {i I is::; i::; is+1 -1}, 
Co = expected number of observations until stopping, 
Ci = expected number of further observations until stopping under the condition Wi, 

f(i, r) = P{stop right after the i·th observation, absolute rank r}, 
f(1') = P{absolute rank of the selected object is r}, 

g(i,1') = f(i, 7') - f(i, r + 1), 
Co = expected absolute rank of the selected object, 
Ci = expected absolute rank of the selected object under the condition Wj, 

to = Co + k . Co = expected total "loss", 
ti = Ci + k· Cj = expected total "loss" under the condition Wj. 

Optimal stopping criteria SI, S2, ... and resulting tj, Cj, Ci( i = 0,1, ... ) are given by back
ward recurrence formulae: 

. _ (n + I)Si(Sj + 1) k (_ Si) . 
i.-1- 2i(i+l) + + 1 i i" 

Si = int [i + 1 . t i], where int[x] denotes the greatest integer::; x, 
n+1 

_ (n + l)si(Sj + 1) (_ Si) . 
ci-1- 2i(i + 1) + 1 i C" 

( Si) ei-l = 1 + 1 - i ei, 

starting with Sn = 11, tn-l = (n + 1)/2 + k, Cn-l = (n + 1)/2, and en = O. 
Here let us introduce the following notations: 

(2.1 ) T(i) = t;/n, 

(2.2) p = r/n, 

(2.3) C(i) = c;/n. 

Then, recurrence formulae for ei, C(i), T(i), and si(i = 1,2", .), become, in the limit 
11 -+ 00: 

(2.4) Ci-l = (1 - S;/i)Ci + 1, 

(2.5) C(O __ 1) = Si(Sj + 1) + (1- Si)C(o) 
z 2i (i + 1) i z , 

(2.6) (

0 Si(Si+l) (Si). 
T z - 1) = 2i(i + 1) + K + 1 - i T(z), 
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(2.7) Si = int[(i + I)T(i)]. 

Starting from a sufficiently large value of n, and the initial conditions: 

(2.8) en = 0, C(n) = 1/2, T(n) = 1/2, Sn = n, 

and using the formulae (2.4) through (2.7) successively, we can obtain eo, C(O), T(O), and 
SI, S2, . ". The cost parameter K has a decisive effect on all these quantities, of course. If we 
plot T(O), C(O) and E(O) = K . eo against K, then we get a picture like Fig. 1. 

expected costs 
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· 3 
C(O) 

.2 ~: 
· 1 : .... . 
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Fig. 1. Expected "costs" against the cost parameter K. 

Besides the fine ripple due to the limited resolution of the plotter, we observe significant 
jumps in the graphs of both C(O) and E(O). But they cancel out each other when we 
add C(O) and E(O) to get T(O). The resulting T(O) curve looks almost like a broken line, 
consisting of line segments of slope 1,2,3" .. from right to left. 

The dotted vertical lines in Fig. 1 indicate some of the positions of major jumps in 
C(O) and E(O) curves, and their tops shown by circles are the corners of T(O) curve. Their 
abscissae Ki (i = 1, 2, ... ,5) are shown in Table 1, together with the corresponding amount 
of jumps 

(2.9) 8C(0) = {C(O)+} - {C(O)-} = {C(O) for Kj + h} - {C(O) for Kj - h}, 

where h was chosen to be 0.00001. With respect to the last column E(i)/i of Table 1, see 
Appendix 1. 

Table 1. Abscissae and amounts of major jumps in C(O) curve. 

i " i C(O)+ C(O)- 15 C (0) E(i)/i 

1 .08949 .50000 .:30208 .19792 .19792 
2 .03529 .27048 .20763 .06285 .06285 
3 .01874 .18907 .15860 .03047 .03046 
4 .01162 .14313 .12418 .01896 .01895 
5 .00790 .11667 .10418 .01250 .01250 

The curves of is(s = 1,2,···,10) vs. K come out to be as shown in Fig. 2. 
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.01 .02 .04 .05 .06 .07 .08 .09 . 1 

Fig. 2. Curves ofis(s = 1,2,···,10) vs. 1\. 

It is seen that I\i(i = 1,2,··· ,5) in Table 1 coincide with the abscissae in Fig. 2 where 
i} jumps from i to i + 1 (when we go from right to left). 

3. Distribution of the number of observations. 

The cumulative distribution function of i, the number of observations, is given by 1-Q( i), 
where Q( i) is obtained starting from Q(O) = 1 and using 

(3.1 ) Q(i) = Q(i - 1) . (1 - sdi) 

successively (cf. Moriguti (199:~a)). 
Some examples are shown in Fig. 3,(a) through (e). In each of the five pictures, two 

curves are shown, one (solid line) for K = Kj + 0 and the other (dotted line) for 1\ = Kj - O. 
Corresponding expected values are shown by two verticallines:- dashed line for" = Kj + 0 
and dot-dash line for f,~ = I\j - O. Major jumps in the graph of E(O) = K • eo vs. K in Fig. 1 
are reflected in these graphs. 

4. Distribution of the absolute rank. 

The absolute rank of the selected object is O(n), so that we are to consider the limiting 
distribution of a continuous variate p = r/n (cf.(2,2)). 

As discussed in Section 4 of Moriguti (1993a), f(i, r), the probability of stopping right 
after the i-th observation and l;he absolute rank of the selected object being r, is given by 
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Fig. 3. Graphs of Q(i) vs. i for" = "i ± O(i = 1,2" - -,5)_ 

(4.1 ) S, 1 (r -1) (n - r) / (n) f ( i, 1') = Q (i - 1) . I>~ . 1 .. .' 
j=I'~ J - l - J l 

(See (4.9) there.) 
Using the notation 

( 11.2) 

we can transform (4.1) into 

x (p) = x (x - 1) " , (x - p + 1), 

• . Si 1 (r - 1)(j-1) (n - r)(i- j ) i! 
(4.3) f(l,r) = QCl - 1). L -:- f' -1)' C _ ')' (T) 

j=1 l U - l J. n 
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_ Si (i -1) (r - 1)(j-l)(n _ r)(i- j ) 
- Q (1 - 1) 'L ' (')' 

, J - 1 n' 
1=1 

Summing up (4.3) for i = i l , it + 1"", substituting r = pn, and taking the limit n -+ 00, 

we have the limiting probability density function of p: 

( 4.4) 

Values of Q(i) herein are obtained with (3.1) as discussed in Section 3. So after obtaining 
si(i = il,i l + 1, .. ·), there is no difficulty in the numerical computation of (4.4) for p = 
0, 0.01, 0.02"", 1.00, say. Then, using Simpson's rule for numerical integration, we can 
get the values of the cumulative distribution function 

( 4.5) 
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for p = 0, 0.02"", 1.00. Plotting the results for K = Kj ± 0 (i = 1,2,···,5), we get graphs 
(a) through (e) of Fig. 4. It is interesting to note here that the graph for K = Kj - 0 is closer 
to that for K = f;i+l + 0 than to that for K = Kj + O. This feature is in line with the nearly 
horizontal lines of C(O) in each interval (Ki+1' Ki)(i = 1,2", .). 

It is possible to express (4.5) in an analytically more beautiful form using the incom
plete beta function. But the above mentioned procedure will be preferable for numerical 
computation. 

5. Final remarks. 
Transition to the "medium cost" case (Moriguti (1993b)) is observed to be smooth in 

many respects. (See Appendix 2 for some examples.) 
Thus, with "medium cost" case in the middle, and "low cost" case and "high cost" case 

OIl its two sides, the three asymptotic theories cover all situations completely. To see how 
these theories are reflected in the case of finite n, Fig. 5 plots to, co, and k· eo against k (all 
011 logarithmic scale) for the population size 11 = 1000. 

1000. expected costs 

100. t------t-----+----+--O"-~-----,...,~--_w:~--___I 

10. 

c 
k·e(O 
l~~--~------~----·-L--____ L-____ -L ____ ~k 

. 001 .01 . 1 1 10. 100. 1000. 

Fig. 5. to, Co, k· eo vs. k for n = 1000. 

Fig. 5 suggests that, in the case of n = 1000, the case of cost-ratio k between 0.03 and 
1.0 can be treated as the "medium cost" case, whereas the case of k below 0.03 belongs to 
the "low cost" case, and the case of k above 1.0 should be treated as the "high cost" case. 

Case of the astronomer Johannes Kepler (1571-1630) as described in Ferguson (1989), 
seems to belong to the "high cost" case, because he decided on the fifth he interviewed. The 
population size '.vas at first n = 11, although he could have gone on beyond that number. 
It would not be 'Jnreasonable to assume that his potential population size n was very large. 
In that case, his estimate of interviewing one candidate might have been around K2 = 0.035 
times n (see Fig. 3(b)). Then the expected absolute rank would have been somewhere 
between 20% and 27% of the whole potential population (see Fig. 4(b)). This explains why 
he was happy with his choice (Ferguson (1989), p. 285). 
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In concluding the last paper of the series starting with Moriguti (1992), the author would 
like to express sincere gratitude to Professor Herbert Robbins, who first introduced him to 
this intriguing set of problems in 1964, and who encouraged him on occasions of his visits 
to New York, sometimes through telephone conversations. 

Thanks are also due to Mr. Isao Watanabe who made substantial contributions in his 
graduation thesis (Watanabe (1965)) under the guidance of the present author. 
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Appendex 1. About the Major Jumps in Fig. 1. 

First, let. us est.ablish that, as " changes, T(O) changes continuously. If any discontinuity 
occurred, it would be at a poing where 8i changes by 1. Let "si denote the value of " for 
which Si in (2.7) changes from s + l to s. Namely, 

(ALl) For I~si + 0, 8 :S (i + l)T(i) :S 8 + 1, 

and 

(A1.2) For "s, - 0, 8 + 1 :S (i + I)T(i) :S 05 + 2. 

For the sake of proof by induction, let us assume that T(i) is continuous at "si. Then (ALl), 
(A1.2) imply 

(A1.3) For K = "si, (i + l)T(i) = 05 + 1. 

Hence (2.6) gives us 

. ,8(8+1) (o5)S+1 8+1 8(8+1) 
(AI4) For" = "SI + 0, T(z 11 - + ,,+ 1 - ,,+ . - . - 2i( i + 1) - i i + 1 - i + 1 - 2i( i + 1)' 

(A 1.5) 

F .. _ _ T(' _ ) _ (8 + 1)(8 + 2) . (_ s + 1) 8 + 1 _ 8 + 1 _ s(s + 1) 
or '" - "SI 0, z 1 - 2i(i + 1) +" + 1 i i + 1 - K + i + 1 2i(i + 1)" 

Thus, if T( i) is continuous at "si, then T( i-I) is also continuous there. At the starting point 
i = n, T(n) is 1/2 and so continuous. Hence, backward induction establishes the continuity 
of T( i) for any i, including i = O. This completes the continuity of T( 0) with respect to K. 
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Next, let us examine the jump of C(O) at K = Ksi. Since Fig. 1 and Fig. 2 show that 
major jumps occur at K = KOj, let us denote KOj simply by Kj hereafter. Then, Sj = 1 for 
K = Kj + 0 and Si = 0 for K = Kj - O. Now (2.15) gives us 

(A 1.6) For K = Kj + 0, C(i - 1)= i(i ~ 1) + (1- ~)C(i), 

and 

(A1.7) For K = Kj - 0, C(i - 1) = C(i). 

Therefore, the jump is 

(A1.8) 
. 1 C(i) 

SC(2 - 1) = .(.) at K = Kj. 
Z Z + 1 z 

Similarly, we can get from (2.4) 

(A1.9) For K = "j + 0, ej-l = (1 - l/i)ej + 1, 

and 

(Al.lO) For" = Kj - 0, ej-l = ej + 1. 

Therefore, the jump is 

(A1.l1) Sei_l = -e;/i at K = Kj. 

If we introduce the notation 

(A1.l2) E(i) = K' ej 

then the jump of E( i-I) is 

(A1.l3) ISE(i - 1) = - E(i)/i at K = Kj. 

Since there Cd,nnot be any jump in the interval [0, i-I], the jumps (A1.8) and (A1.13) 
will be reflected in the jumps of C(O) and E(O), so that their jumps are 

(A1.l4) 
1 _ C(i) 

SC(O) = i(i + 1) z at K = Kj, 

(A1.l5) 
E(i) 

SE(O) = --. - at K = Kj. 
Z 

Adding up (Al.14) and (Al.15), and using (Al.3) for S = 0, we can reassure that T(O) does 
not have any jump at K = Kj. 

The last column in Table 1 shows the value of E(i)/i for K = Kj(i = 1,2"",5). Com
parison of SC(O) and E(i)/i should be the numerical verification of the fact that the jumps 
of C(O) and E(O) at K = Kj have the same magnitude and the opposite signs, thus cancelling 
each other when added up to get the jump of T(O). 
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Appendix 2. Transition to the Medium Cost Case. 

It is natural to expect that, as K ---+ 0, the curves in "high cost" case will show smooth 
transition to the corresponding curves in "medium cost" case, if we choose proper coodinates. 
In this Appendix, we will show two representative examples of that kind of transition. 

The first example is Q(i), the probability that stopping does not occur at the i-th 
observation or before, as shown in Fig. 3, (a) through (e). Changing the abscissae into 

(A2.1 ) iJ(2K) = (i/Jri) . J(2k), 

and superposing those curves, we get ten curves in Fig. 6. Of them, five solid curves (broken 
lines, in fact) with circles at some corners correspond to K = Kj + 0, and five dotted curves 
with crosses at some corners correspond to K = Kj - O. The uppermost solid curve with solid 

squares at corners shows the corresponding curve of Q( u) vs. uJ(2k) = (i/ Jri) . 02k ). (See 
Fig. 2 of Moriguti (1993b).) 

1 Q( i 

· 8 

· 6 

· 4 

.2 

00 i../2JC 
1 2 4 6 7 

Fig. 6. Q(i) vs. iJ(2K) and Q(u) vs. uJ(2k). 

Reflecting the "jumps" in the E(O) curve in Fig. 1, the transition is not completely 
smoot.h. But Fig. 6 suggests that the transition will eventually get smoother as K tends to 
O. 

The second example is F(p), the cumulative distribution function of the absolute rank r 
of the selected object, against p = r/n. The curves are shown in Fig. 4, (a) through (e) for 
K = Kj ± 0 (i = 1,2,···,5). Changing the abscissa into 

(A2.2) 

and superposing those curves (omitting (e)), we get eight curves in Fig. 7, solid ones cor
responding to Kj + 0 and dotted ones to Kj - 0 (i = 1,2,3,4). The limiting curve for the 
"medium cost" case is shown here by a dashed curve. (See Fig. 3 of Moriguti (1993b).) 

General impression is that curves for K = Kj + 0 approach the limiting curve from below, 
and curves for K = Kj - 0 from above. Closer look, however, reveals a little more complex 
picture. Any way, in a region near the origin, all curves seem to approach the dashed curve 
from below. 
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Fig. 7. F(p) vs. pi }(21\,) for I\, = I\,i ± 0 (i = 1, ... ,4) and the limiting curve. 
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