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Abstract The single machine sequencing problem is considered in which each job has a release date, a 
processing time, and a delivery tinw. The objective is to find a sequence of jobs which minimizes the time 
by which all jobs are delivered. We :;tudy priority sequencing rules which use an index to prioritize jobs. In 
particular, we establish worst-case bounds for families of weighted linear and quotient indexing rules. We 
also analyze an O(n log n) dynamic indexing rulE' .4. Two subregions of the admissible input space are 
identified in which heuristic A has bcttcr worst-cas(' performance ratios. 

1. Introduction 
We consider a scheduling problem (SH) with n jobs to be processed without interruption on 

a single machine. Associated with each job i are a release date ri ~ 0, a processing time Pi > 0 
on the machine and a delivery time qi ~ 0, where qi is the postprocessing time after leaving 
the machine. The objective is to minimize the makespan, i.e., to finish the n jobs as soon as 
possible. The problem can be viewed as a three-stage flow-shop problem, where an unlimited 
number of machines are available in the first and third stage with a processing time on the 
first and third stage ri and q., rl~spectively. Problem SH can also be viewed as equivalent to a 
scheduling problem with a due date di instead of a delivery time qi associated with each job i 
and the objective of minimizing maximum lateness with respect to due dates. The equivalence 
can be established by letting di ,= K - qi, where K is a constant. 

We note that problem SH is strongly NP-hard [11]. As both an 'easy' NP-hard problem 
and a fundamental problem arising in the theoretical context of computing lower bounds for 
flow shop and job shop problems [2], problem SH has drawn a lot of attention from researchers. 
Research interests follow two lines: worst-case analysis of heuristics and the development of 
enumerative methods. Kise, Ibaraki and Mine [10] analyzed the performance of several heuristics 
and showed that each heuristic can deviate by an amount arbitrarily close to 100% from the 
optimum. Based on the extended Jackson's rule [9], also known as Schrage's heuristic [14], 
Potts [13] presented an O(n~ 101: n) heuristic which ensures that a solution within 50% of the 
optimum is always produced. Hall and Shmoys [7] presented an O(n~ log n) heuristic which 
ensures that a solution within 33% of the optimum is always produced for the problem when 
there are precedence constraints :~mong the jobs, and two polynomial approximation schemes for 
the problem without precedence constraints. Hall and Rhee [8] considered fifteen heuristics for a 
related problem, thirteen of which belong to the family of weighted linear rules (F,) considered 
in this paper. They empirically studied the average case performance of these heuristics by 
randomly generating the testing set. They failed to derive the worst-case performance ratios 
for these heuristics. Instead they used linear programming to estimate the worst-case bounds. 
Another line of research on pursuing the enumerative methods for solving problem SH includes 
Baker and Su [1], McMahon and Florian [12], earlier [3] and Grabowski et al. [6]. 

In this research we follow the line of worst-case analysis of heuristics. In particular, we 
analyze the worst-case performance of one family (F,) of weighted linear rule. and one family 
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(F,,) of weighted quotient rules. Worst-case performance ratios are derived for these two families. 
We also analyze an O(n log n) dynamic linear rule (A). We identify one special case for which 
heuristic A has a worst-case performance ratio of 4/3, and one case for which heuristic A has a 
worst-case performance ratio of 5/4. The worst-case results on FI can be viewed as an extension 
of Kise, Ibaraki and Mine [10] as well as Hall and Rhee [8]. In using a priority index for 
sequencing the jobs, intuitively one would expect that the smaller the release date, the higher 
should be the priority; the larger the delivery time, the higher should be the priority. It is 
unclear a priori how processing time may be related to a good job sequence. Our investigations 
on FI and F", in some sense, answer how we a.ggregate the single job measures "i, Pi, qi in 
forming a priority index for sequencing the jobs. 

The paper is organized as follows. Section 2 is on the analysis of the linear and quotient 
indexing rules. Section 3 is on the analysis of the dynamic linear rule A. We concludE~ with 
section 4. For a survey and discussion of worst-case analysis of heuristics, see Fisher [4] and 
Garey et a1. [5]. 

2. Analysis of Two Families of Sequencing Rules 
For a processing order of the n jobs on the machine, we define a 'busy schedule' as one with 

no forced idle time. In what follows, we will only consider 'busy schedule'. Given a problem 
instance I, let TH (I) represent the objective value (the makespan) obtained by using heuristic H 
and T* (I) represent the optimal solution, where heuristic H can be any algorithm producing a 
processing order of the n jobs on the machine. Also let EH (l) = TH (l) - T*(I). Let TJH denote 
the worst-case performance ratio associated with heuristic H, then TJH = sUPI{TH (l)/T-(In, 
where I is a problem instance. In what follows, when no confusion arises, we will use TH, T* 
and EH instead of TH (I), T* (I) and EH (I). 

It is well-known that 

TH = maXl:5i:5i:5n {r ,,(i) + L~;i P,,(h) + q"(i)} = r,,(u) + L~;u P,,(h) + q,,(v), 

where (0"(1) ... ,,-(n)) is the sequence generated by Hand 1 ~ u ~ v ~ n. If there is a choice, 
it is assumed that u and v are both as small as possible. As u is as small as possible, either 
job O"(u) is the first job or the machine will be idle immediately prior to processing job O"(u). 
Furthermore, note that the machine is continuously busy processing jobs 0"( u) through 0"( v). We 
define the set of jobs between q(u) and O"(v) as the critical group. We refer to this group a.s the 
critical group because the makespan is determined by this group. Let rmin = minu :5 h :5v{r,,(h)} 

and qmin = minu:5h:5.{q,,(h)}' 

We first develop some properties of EH, TJH and T*. 

Lemma 1. 

(1) T*? ',,(h) + P,,(h) + q,,(h), 1 ~ h ~ n. 
(2) T*? 'min + L~;u P,,(h) + q ... in· 

(3) EH ~ r,,(u) - r ... in + q,,(.) - q ... in ~ r,,(u) + q,,(v)' 

(4) TJH ~ 2 if any of the following conditions holds: 
( i) 
( ii) 
( iii) 
(iv) 

r,,(u) ~ r,,(.), 

q,,(-) ? q,,(.), 

",,(u) + Pa(,,) ~ r,,(.) + P .. (v) , 

q,,(u) + Pa(u) ? q,,(v) + p,,(v)' 

Proof. (1) The completion time of any single job is obviously a lower bound for the optimal 
objective value. 

(2) The optimal objective value can be no smaller than the minimum possible completion time, 
considering only jobs q(u), ... , O"(v). 

(3) The first inequality can be obtained by subtracting TH from the inequality in (2). The 
second inequality holds since both release dates and delivery times are nonnegative. 

235 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



236 T-C. Lai 

(4) By (3) and then (1). for (i) or (ii), we have EH $ ",,(u) + q,,(v) $ max{,.,,(u) + q,,(u), " .. (v) + 
q,,(v)} $ T*j while, for (iii) or (iv), we have EH $ ",,(u) + q,,(u) $ max{,.,,(u) + p,,(u) + 
q,,(u),",,(v) + p,,(v) + q .. (v)} $ T". Hence, l1H $ 2. ~ 

We now examine indexing !"ules for sequencing jobs. An index I, of job i is a function of 
the attributes (e.g., ,." p, and q.) of the job. Indexing rules use I, to prioritize jobs, where we 
assume that a high value of I, represents high priority. We consider one family (Fd of weighted 
linear indexing rules and one family (Fq) of weighted quotient indexing rules for sequencing 
jobs, where F, = {I,: I, = xq, - y,., + zp" x > 0, Y > O} and Fq = {I,: I, = (xq, + 
p;}/(Y"i + p,), x > 0, Y ? I}. Let F/ = {Ii : Ii = xq, - Y"i + Pi, X ? 1, Y > O}, F? = 
{I,: I, = xq, - y,., + P" 0 < x < 1, Y> o}, F,3 = {I,: I, = xq, - y,., - Pi, Y? 1, x > O}, 
F/ = {I,: I, = xq, - y,., - Pi, 0 < Y < 1, x> O}, and Fr' = {Ii: Ii = qi - Y"i, Y> O}. We 
note that F, ='UF,', i = 1, 2, 3, 4, 5. This is true since F, = F/ U F,2 if z > OJ F, = F/ u F,' if 
z < OJ and F, = F,5 if z = O. 

Let (TH denote the sequence generated by heuristic H and (T* denote the optimal sequence. 
The worst-case performance ratios for these families of heuristics are derived in theorem 1. 

TheoreIll 1. 
(1) l1H = 2 if HE F,1. 
(2) - 'l !.±J1.·f H - ",2 '1H - v - 1+11 1 E: .(', . 

(3) 
(4) 
(5) 
(6) 

l1H = 2 if H E F? 
- 3 - 1l.±.=. 'f H : F' '1H - 1+% 1 E_, . 

'1H = 2 if HE F,5. 
l1H=2 if HEFq • 

Proof. If " .. (u) $ ",,(v) or q .. (u) ~~ qa(v), then, by lemma 1(4). '1H $ 2. Therefore, we need only 
to consider the case: ",,(u) > "a(u) and q,,(u) < q,,(v)' Assume that ",,(u) - ",,(v) = f3T* and 
qa(v) - qa(u) = OtT". Also, assume that Pa(u) = (JT* and p,,(v) = (J'T*. 

For HE F/ or F?, we have, by definition of H, xq,,(u) - Y",,(u) + P .. (u) ? xqa(v) - Y" .. (v) + 
p,,(v)' Thus we have qa(v) $ qa(u) + ~Pa(u) - ~(",,(u) - " .. (v)) and " .. (u) $ ,. .. (v) + ;P .. (u) -
;(qa(v) - qa(,,))' 

Similarly, for H E F,3 or F,', we have, by definition of H, xqa(u) - Y"a(u) - p,,(u) > 
xqq(v) - !I"q(v) - P .. (v)· Thus, we have qq(v) $ q .. (u) + ~P .. (v) - !(" .. (u) - " .. (v)) and ",,(u) < 
,. .. (v) + ;Pa(v) - ;(q.,.(v) - q .. (u))' 

(1) Since x? 1, we have q .. (v) ~. q .. (u) + P .. (u)· 
Hence, EH $ ,. .. (u) + q .. (v) $ ",,(u) + P .. (u) + q .. (u) $ T*, i.e., l1H $ 2. 
To show that the bound is tight, consider the example with n = (K/x) + (KIY) +- 2 and 

o < ( < 1 as shown in table 1. 

Table 1 

i 1 2 n-1 n 

,., K 0 0 K 
11 11 

p, 1+( 1 1 1- £ 

qi K 0 0 K 
'" " 

Then (TH =(1 2 ... n) with TH = 1K + 1K + 2 while (T* = (Tl(T~ with T* = K + K + 2 
JI ~) • ., a ' 

where (Tl =(23 ... ~ + 1) and o'~=(l n n - 1 ... ~ + 2). Hence, TH/T* ~ 2 as K -+ 00. 
11 11 

(2) Since, by lemma 1(1), T* ~ r"lu) +P"I") +q.,.(u), we have EH $ L:~=u P"II.) -P"'lu) +q,,(v) < 
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(2 - 9)T*. By lemma 1(3), we also have 

Hence, 

EH :5 ".,(u) + q.,(v) :5 r.,(v) + r.,(u) - r.,(u) + q.,(u) :5 (1 + fJ)T*, 

EH :5 ".,(u) + q.,(w) :5 r.,(u) + p.,(u) + qo.(u) + (!. - l)p.,(u) - !(r.,(u) - r.,(v) 
x x 

:5 (1+ 1- x9 - !t/)T*, 
x x 

EH :5 '.,(u) + q.,(u) :5 r.,(u) + p.,(u) + qo'(u) + q.,(v) - q.,(u) - p.,(u) 

:5 (1 + a - 9)T* 

and 

H 1 x 
E :5 ,.,(u) + q.,(u) :5 r.,(u) + q.,(v) + -1O.,(u) - -(q.,(u) - q.,(u) 

!I !I 

:5 (1 + !9 - ~a)T*. 
!J !I 

EH 1 - x !J 1 x x + !J 
- < min{2 - 9 1 + fJ, 1 + --9 - -j3, 1 + a - 9, 1 + -9 - -a} < 2 - --. 
T* - , x x !I !I - 1 + !J 

Note that the last inequality becomes an equality when 9 = t$!-, fJ = ~~: and a = 1. Therefore, 
<3 !.±2. '1H - - 1+11· 
To show that the bound is tight, consider the example shown in table 2 with n = 3. 

Tabl,~ 2 

i 1 2 3 

ri !..=LK 
1+11 

0 0 

Pi !.±2.K + 3 
1+11 

!~K+2 
1+11 1 

qi 0 max{O, 2':+':l/-1 K} 
.:(1+11) K 

Then q-H = (1 2 3) with TH = (3 - t$!-)K + 6, while q-* = (3 2 1) with T* = K +6. Hence, 
TH/T* _ 3 -~:.I/. as K - 00. 

1+1/ 

(3) Since!J ~ 1, we have r.,(u) :5 r.,(u) +P.,(u). 
Hence, EH :5 r.,(u) + q.,(u) :5 r.,(v) + p.,( .. ) + q.,(v) :5 T*, i.e., 'IH :5 2. 

To show that the bound is tight, see the example as shown in table 1. 

(4) Similar to the proof in (2), we can show thal~ 

EH . {" 1 - !J ", x fJ' 1, SI} !J + x - < mm :2 - 9 1 + a 1 + --u - -a 1 + - 9, 1 + -9 - -fJ :5 2 - --. 
T* - "!I !I ' x x 1 + x 

Note that the last inequality achieves equality when 9' = ~, fJ = 1 and a = ~. 
To show that the bound is tight, consider the example with n = 3 as shown in table 3. 
Then q-H = (123) with TH = (3 - ~)K +6, while q-* = (321) with T* = K +6. Hence, 

TH /T* - 3 - !f1-; as K -+ 00. 
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Table 3 

i 1 2 3 

r; K max{O, 211±"'1I- 1 K} 
11(1+",) 0 

p; 1 !.=..I!.K+2 1+", !.±.ll. K + 3 1+", 

q; 0 0 !..::LK 
1+", 

(5) Since H E Fr', we have q .. ( .. ) - yr .. (u) ~ q .. (v) - yr .. (v) , or alternatively, q .. (u) ~ q .. (v) + 
y(r,,(u) - r .. (v))' Since y > 0, we have either q .. (u) ~ q .. (v) or r .. (v) > r .. (u). In either case, we 
have, by lemma 1(4), '1H ::; 2. 

To show that the bound is tight, see the example with x = 1 as shown in table 1. 

(6) Since, by definition of H, 

we have 

xq .. (u) + P .. (u) > xq .. (v) + P .. (v) 

yr .. (O£) + P .. (O£) - yr .. (v) + P .. (v) , 

xq,?(O£) - yr .. (u) > xq .. (v) - yr .. (.) 

y'· .. (u) + Pa(u) - yr .. (v) + P .. (u) 

We have either xq .. (u) - yr .. (u) :~ xq .. (v) - yr .. (v) or yr .. (u) + P .. (u) ::; yr .. (v) + P .. (v). In the 
first case, we have, as in (5), '1H ::; 2. In the second case, we have r .. (u) ::; r .. (v) + (ljy)p .. (v) ::; 

r .. (v) +P .. (v) (since y ~ 1) and thus EH ::; r .. (u) +q .. (v) ::; r .. (v) +P .. (v) +q,,(u) ::; T*, i.e., '1H ::; 2. 

To show that the bound is tight, consider the example with n = K2 + 1 as shown in table 
4. 

Table 4 

i 1 2 K2 K2 + 1 

r; 0 0 0 0 

P; 
1 1 1 1 X.- K K 

q; 2 2 2 K 

Then qH =(1 2 ... n) with rH = 2K + 1, while q* =(n . 0 0 2 1) with T* = K + 3. Hence, 
TH jT* -+ 2 as K -+ 00. (> 

In the sense of worst-case pI!rformance, it is interesting to note that: (i) I; = xq; + p; is 
better than I; = yq; - p; (x, Y ~~ 1), (ii) I; = xq; + P; is better than I. = xq. - P' (x > 0), 
(iii) I; = -xr. - p. is better than I. = -yr. + P. (x, Y ~ 1), (iv) I. = -xr. - p. is better 
than I. = -u, + p; (x, > 0), (v) I; = q, and I; = -r; each are as good as the weighted index 
I. = q, -xr; (x> 0), and (vi) I. = U is as good as the weighted index I. = "'9;++P; (x > 0, y ~ 1). 

r. t/r. p, 

3. Analysis of A Dynamic LiIlear Indexing Rule 
In this section we analyze a dynamic linear rule, denoted by A, where we will use I, = q. - r, 

to prioritize jobs and allow the release date relative to the current time to be updated, so that 
jobs are dynamically sequenced. We note that heuristic A can be implemented in O(n log n) 
steps as follows. We define (x)+ := max{O, x}. 
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A: 1. Let 8 be an ordered set of {I, 2, ... , n} arranged in nonincreasing order of the value 
of the index I. = q, - r,. Let N = I, to = 0, 8 1 == 0. Let 8' be an ordered set of {I, 2, ... , n} 
arranged in nondecreasing order of r,. 

2. Let il be the first job in 8. If 8N "10, then go to step 3. Otherwise, set i = il and go 
to step 4. 

3. Let i2 bE! the first job in 8N · If q,.. - (rjl - tN-d+ ~ qj" then i = il; otherwise, 
i = i2' Go to step 4. (We note that (r,-. - tN-d+ denotes the updated release date relative 
to time tN-l, where tN-l is the time at which the (N - l)-th job is ready for delivery. Also 
note that job i2 is ready for processing and thus iits updated release date is zero. Job il h;3.S the 
hightest index value among those jobs which are not ready for processing at time tN -1 and job 
)2 has the highest index value among those jobs which are ready for processing at time tN -1, 

The if-condition tests to see which one job, il or i2, has the highest index value among the 
unsequenced jobs.) 

4. Set 8 = .., - {i}, 8 ' = 8' - {i}, 8N = SN - {i}, tN = max{tN - 1 + Ph rj + Pi} and 
O'(N) = i. Go to step 5. 

5. If N = n" then stop: 0' = (0'(1), ... , 0'('1)) is the generated sequence. Otherwise: set 
N == N + 1; set 8 N = 8 N -1 U {h: h E 8 ' , rh ~ tN _ d and 8 = 8 - 8 N, where 8 N is an 
ordered set arranged in nonincreasing order of q,; go to step 2. (We note that 8 N contains the 
jobs which are ready for processing at time tN - 1 .) 

It is easy to verify that heuristic A runs in O(n log n) (e.g., Carlier [3], pp 45). As a 
preliminary to analyzing the worst-case behavior of heuristic A, we present some properties 
associated with heuristic A in the following three lemmas (2, 3 and 4) that are needed in our 
subsequent analysis. Let TA = r",(u) + E~=uP"'(h) + q",(v) and ti represent the time at 
which job O'(j) is ready for delivery, where 0'(.) is the sequence generated by A. Note that, 
for u ~ i ~ v, t:i = r",(u) + E~=u P",(h)' If r",(u) < r",(v) , let k be such that r",(.) ~ tie and 
r",(.) > tk - 1 , and let r,,(I) = mink+l$h$v{r,,(h)}' 

We define the set of jobs between O'(u) and! O'(v) as the critical group. We refer to this 
group as the critical group because the makespan is determined by this group. We note that if 
r,,(u) < r,,(.), then job O'(k) is the first job in the critical group for which job O'(v) is available 
after <T(k) has been processed. 

Lenuna 2. 

(1) If r,,(u) < r,,(.), then: 

q,,(h) ~ qa(.) for k + 1 ~ h ~ v; q,,(k) ~ q.,(v) if r,,(I) ~ tk- 1 also. 

(2) If r"(k) ~ r,,(u) < r,,(v), then q,,{h) ~ q,,(k), u ~ h ~ k. 

(3) If r"(1) ~ r ,,(u) < r,,(.), then q,,(.) = qmin' 

(4) If r,,(u) ~ r,,(.» then q,,(.) = qm,n' 

Proof. (1) Since r,,(u) < r,,(.), we have, by definition of k, r ... (v) ~ tk • Thus, by definition of 
heuristicA,wehave 'q,,(I.)-(r,,(h)-tk )+ ~q,,(.), k+l~h~v,i.e.,q"(h) ~q,,(v» k+-l~ 
h ~ v. In particular, we have q,,(I) ~ q,,(.). Similarly, if r,,(I) ~ tk-l, then we have by 
definition of heuristic A, q ... (k) ~ q",(I)' Therefore, q ... (Io) ~ q ... (w)' 

(2) Since, by definition of heuristic A, q,,(u) - (r ... (u) - t .. _ d+ ~ q,,(/.) - (r "(k) - t .. _ d+ and since 
r ... (u) ~ r,,(k), we have, q,,(u) ~ q,,(k)' Also, since (r,,(Io\ - t .. )+ = 0, by definition of heuristic A, 
we know that q"(,,,) ~ q,,(k), U + 1 ~ h ~ k. Hence, q ... (h) ~ q"(I') , u ~ h ~ k. 

(3) Similar to the proof in (2), we can show that q ... (h) ~ q ... (I) , u ~ h ~ I. 

By (1), q,,(h) ~ q"'('i' k + 1 ~ h ~ v, so q ... (v) = 'Il""n' 

(4) Following the proof of (2) and using v instead of k, we can obtain q,,(h) ~ q ... (v\> u ~ h ~ v, 
i.e., q .. (.) = q",.,.. <) 
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Lemma 3. 

Proof. We claim that T* ~ min{r,,(/.), r .. (i)} + E~=lo P,,(h) + q,,(_). By rewriting TA = 
max{r,,(u), tlo-d + E~=Io P .. (h) + q,,(v) and then subtracting the above inequality, the results 
follow. 

Let T; be the optimal objective value by only considering jobs u(k), u(k + 1), ... , u( v). We 
will show that T; ~ min{r,,(~),r,,(I)} + E~=IoP"(h) + q .. (v), which will yield the desired 
result, since T* ~ T;. 
Case 1: r,,(I) $ max{r,,(u), tlo-d. The inequality holds since, by lemmas 2(1) and 2(3), 
q",(v) = minlo~h~v{q .. (h)}' 
Case 2: r"(1) > max{r,,(u), tlo-d. Since we know that 

T; ~ min{r,,(Io) + E~=Io P,,(h) + q,,(v), r,,(I) + L:~=" P .. (h) + q,,(Io)}' 
the inequality holds if we can show that r,,(,,) + q,,(v) $ r"(I) + q",(,,). We then consider two 
cases: k = u (i.e., r,,(Io) ~ tlo-d and k > u (i.e., r,,(Io) $ t"-l < r"(I)' IT k = u, we have, by 
defini tion of heuristic A at time tlo - 1 , 

q,,(/.) - (r,,(Io) - t,,-d+ ~ qo(l) - (r"(1) - tlo-d+ ~ q .. (v) - (r,,(I) - tlo-d+ 
since q,,(I) ~ q,,(v)' Alternatively, we have q,,(k) + r,,(I) ~ q,,(v) + r,,(k) since r,,(I) > r,,(k) (= 
r,,(u) > t k - l . If k > u, we have, by definition of heuristic A at time t k - l , q,,(k) ~ q",(I) - (r"(I)­

tk-d ~ q,,(v) - (r"'(I) - tk-d ~ q,,(v) - (r"(I) - r,,(k))' and thus, q,,(Io) + r,,(I) ~ q,,(v) + r,,(k)' 

o 
Lemma 4. If r,,(u) = rm ... , then r,,(v) ~ 2EA. 

Proof. Since, r ,,(u) == rm ... , we have, by lemma 1(3), EA $ q,,(v) - qm.... We only need to 
consider the case: r,,(u) < min{r"(I)' r,,(v)}; otherwise, we have q,,(v) = qm'" by lemmas 2(3) 
and 2(4). We consider two cases: r,,(u) < r,,(I) $ t"-l and r"(I) > t k - l • 

Case 1: r,,(u) < r,,(I) $ tk - l · 

Since in this case r,,(I) $ t~-l' we have, by lemma 2(1), q,,(k) ~ q,,(v)' Letting qm'" = 
q"U)' j i- v, we have j < k by lemma 2(1) and using q,,(Io) ~ q,,(v)' By definition of heuristic A 
at t j - 1 , for i = k, I, we have: 

qm'" ~ q,,(.) - (r,,(i) - ti-d+ ~ q,,(.) - (r,,(.) - r,,(u) if u < j < k; and 
qm'" - (r,,(u) - tu-d+ ~ qo(i) - (r,,(.) - tu-d+ if j = u. 

Alternatively, we have, for i = le, I, r,,(.) - r,,(u) ~ q,,(i) - qm'" ~ q,,(v) - qm .... 

Hence, by letting Ez == min{r,,(Io), r,,(I)} - r,,(u), we have EA $ q,,(v) - qm'" $ Ez. 
Letting El = tlo - l - min{r,,(I),r,,(Io)}, by lemma 3, we have EA $ El. 
Since El + Ez $ max{r ,,(u), tk - l } $ r,,(u), we have r,,(v) ~ 2EA. 

Case 2: r,,(I) > t"_l' Letting qm'" = q,,(i) , j i- v, we have, by lemma 2(1), u $ j $ k. 
By definition of heuristic A, we have 

qm'" ~ q,,(k) - (r .. (Io) - ti-d+ and q .. (I.) ~ q,,(v) - (r .. (v) - tlo-d+ 
and thus r,,(v) ~ q,,(v) - qm'" + (r"(k) - ti-d+ + t k - l . Since 

(r,,(k) - tj-d+ +- t k - l ~ max{r,,(u), tlo-d ~ EA (by lemma 3), 
we have r .. (v) ~ EA + EA = 2EA. 0 

We now present our worst-case results for heuristic A. 

Theorem 2. (1) '7A = 2. 
(2) If r"lu) = r" .... , then '7J1 = 4/3. 
(3) If r .. (u) = rm'" and q"("1 ~ r,,(v), then '7A = 5/4. 

Proof. (1) If r"(ul ~ r .. (v), we have, by lemma 1(4), '7A ~ 2. Consider the case: r,,(u) > r,,(v)' 
In this case, we have q"lu) > q .. (v) and thus, by lemma 1(4), 'lA $ 2. To show that this bound 
is tight, consider the example with n == K +- 1 and K ( < 1 as shown in table 5. 
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Then O'A =(12 ... n) with TA = 2K +1+£, while 0'* =(n 12 ... n-l) with T* = K +2+K£. 
Hence, TA IT* --+ 2 as K - 00. 

Table 5 

1 2 :i 

1 2 

2 2 :2 

K 

K 

2 

K+l 

o 

K 

o 

(2) By only considering job O'(tJ) and then by lemmas 4 and 1(3), we have 
T* ~ r.,.(v) +- P.,.(v) + q.,.(v) > 2EA + q.,.(v) ~ 3EA, i.e., '1A ~ 4/3. To show that the bound 

is tight, consider the example with n = 3 and K > 2 as shown in table 6. 

Table 6 

i 1 :~ 3 

ri 0 0 2K 

Pi K :!K 1 

qi 2 l. K 

Then O'A =(1 2 3) with TA = 4K + 1, while 0'* =(2 3 1) with T* = 3K + 3. Hence, 
TA IT* - ~ as J( - 00. 

(3) By only considering job 0'( tJ) and then by lemma 4, we have 

T* ~ r.,.(v) + P.,.(v) + q.,.(v) > 2r.,.(v) ~ 4EA, i.e., '1A ~ 5/4. 
To show tha.t the bound is tight, consider the example with n = 3 as shown in table 7. 

Table 7 

1 2: 3 

rj 0 0 2K 

P'i K 2K 1 

qj K+2 J( + 1 2K 

Then 0' =(1 2 3) with TA = 5K + 1, while 0'. =(2 3 1) with T* = 4K + 3. Hence, 
TA IT· -+ ~ as K -+ 00. <> 

4. Conclusion 
It seems appealing to use indexing rules for sequencing jobs. Therefore, one interesting 

question would be the optimal design of an indexing rule in the sense of worst-case performance 
or average-case performance. This paper partially addressed that issue in the sense of worst-case 
performance for the single machine sequencing problem with release dates and delivery times. 
One further research avenue would be to investigate the worst-case performance for more g,meral 
indexing rules beyond linear and quotient forms. 
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We designed and analyzed one family of weighted linear rules and one family of weighted 
quotient rules. All the rules in F/, F/, F/' and Fq have the same worst-case performance. 
Another research avenue would be to conduct probabilistic analysis and then identify the rule 
with the best average-case performance. 

For heuristic A, our analYBis revealed that the worst-case performance ratio is 2 for all 
the admissible input space, 4/3 in one subregion (r",(u) = r"..,.) and 5/4 in another sub region 
(r",(u) = r"..,. and q",(v) ::::: r",(,,). This suggests one way to improve the performance of a 
heuristic: if we can modify a heuristic such that it terminates in a Bubregion with a. better 
worst-case performance ratio, then the modified heuristic will have a better performance. 
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