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Abstract A finite-time horizon two-armed bandit problem with one arm known, in which there are con­
straints on the number of timf's each arm may be pulled, is considered. The loss incurred at the stage 
when there are n stages rf'maining is multiplied by the factor /'n, and the objective is to minimize the total 
expected weighted loss over 11 stages. This problem is formulated by dynamic progranuning and the critical 
value function which specifies the optimal strategy is derived along with its mono tonicity properties. The 
recursive equation is solved explicitly in the case of the exponential distribution. Tables of the critical values 
are obtained for special cases of {f3n}. 

1. Introduction 

Suppose that there are n sequential stages remaining and there are two arms ao and 
a1 which can be pulled at most k and 1 times, respectively, where 1 ~ k ~ n, 1 ~ I ~ n 
and k + 1 ;:::: n + 1. In each stage one of two arms ao or a1 is pulled. By pulling ao, an 
observation z is obtained from the distribution with density J(zlu) and a cost z is incurred 
as the result, where u is unknown. The expected cost incurred by pulling a1 is 1. There is 
the prior knowledge thatu has the conjugate prior distribution with density g(ul:r, y). The 
cost obtained when there are n stages remaining is multiplied by a positive constant (3n, 
that is, fJn, fJn-1,···. (31 have the role of discount factors which depend upon the number of 
remaining stages. The objective is to minimize the discounted total expected cost. 

This problem is an extension of the finite-horizontal classical two-armed bandit problem 
with one arm known, where n =: k = 1. In the real world, the constraints 1 ~ k ~ nand/or 
1 ~ I ~ n are sometimes important. For example, in the clinical trial, n patients will arrive 
one by one sequentially and for each patient, one of two treatments ao and a1 is selected, 
where the treatments 00 (or 01) can be used at most k (or l) times, because of the amount 
of medicine available. Another example is to minimize the total expected flowtime of jobs 
in the single machine production system, where the same kind of products are produced by 
attaching one of two kinds of tools, 00 and et1, to the machine. Tool 00 is available for at 
most k products and tool Q1 is available for at most 1 products. Tool a1 has been used for 
a long time and therefore its mean processing time is known. Tool ao is new and one must 
decide whether it is to be used in place of a1 or not. The processing time when ao is used 
has the density J(zln). Although 11 is unknown, we have a prior knowledge that 11 has the 
conjugate prior distribution with density g(ul:r, y). In this case, fJi = i for 1 ~ i ~ n. 

The special case. k + 1 = n, is the sequencing problem and minimization of the expected 
weighted sum of flowtimes is discussed in Hamada and Glazebrook [4]. Since the critical 
values derived in [4] depend only on k andl and not on n, the index policy is useful in that 
case and the extended problem with more than two kinds of jobs is solved. In this paper. 
we derive the critical value which depends not only on (k, I) but also on n, and therefore the 
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index policy is not useful in this problem. 
In Section 2, the problem is formulated by the principle of optimality of dynamic pro­

gramming and a stopping property is derived. In Section 3, the optimal strategy is specified 
by using the critical value function. Properties of this function are derived. In Section 4, 
the optimal strategy for the case of the exponential distribution is specified by solving the 
recursive equations explicitly. 

2. Formulation by dynamic programming. 

The state vector is denoted by (ni k, li x, y), where n denotes how many stages are remain­
ing, k denotes how many times ao is available, I denotes how many times al is available, and 
(x, y) is the parameters of the prior distribution. As the matter of convenience, (nj k, I; x, y) 
also denotes the problem with state vector (ni k, li x, y). Let en = {(k,I)ll :5 k :5 n, 
1 :5 I :5 n, k + I ;:: n + I} and S = Sx x Sy, where S is the state space of (x, y) and also Sx 
and Sy are the spaces of x and y, respectively. Let (<p(x, y; Z), 1jJ(x, y; Z)) be the parameters 
of the posterior distribution of u after obtaining Z by pulling ao when the parameters of the 
prior distribution of u is (x, y). Let 

h(zlx, y) = J J(zlu)g(ulx,y)du 

and 
R(x,y) = E[Zlx,y] 

= J 2:h(zlx,y)dz. 

Then, it is easily derived that 

(1) E[R(<p(x, Y; Z), 1jJ(x, Yi Z))lx,y] = R(x, y) 

for (x, y) E S. 
Now, we make the following assumptions as in Hamada [3]: 

Al : <p(x, Yi z) is continuous in x, nondecreasing in x and z and nonincreasing in y and 
1jJ(x, Yi z) is continuous in y, nonincreasing in x and z and nondecreasing in y. 

A2: h(zlx',y)/h(zlx,y) :5 h(z'lx',y) / h(z'lx,y) for any z < z' when x, > x and 
h(zlx, y)/ h( z Ix, y') :5 h( z'lx, y)/ h( z'lx, y') for any z < z' when y' > Y (This property 
is called the likelihood ratio ordering: See, for example, Ross [6]). 

A3: R(x,y) > 0 for (x,y) E S. 
A4 : For c > 0 and y > 0, there exists Xl E Sx such that R(XI, y) > c and also there 

exists X2 E Sx such that 0 < R(X2, y) <: c. 

The monotonicity properties that R(x,y) is continuous and strictly increasing in x and 
continuous and strictly decreasing in y are derived from A2 (See, for example, the proof of 
Proposition 5.4 of Ross [6] or Appendix of Rosenfield and Shapiro [5]). Let Gn(k,lix,y) 
be the minimum expected total cost incurred in the remaining n stages when the current 
prior knowledge of II is (x, y). Then, the problem is formulated by dynamic programming as 
follows: 

(2) G,,(k, 1; x, y) = min{G~(k, li x, y), G~(k, li x,y)} 

for n = 1,2,3,··· and Go(k,lix,y) = 0, where 

(3) G~(k,lix,y) = R(x,y)f3n + E[Gn_l(k -l,min{l,n -l};<p(X,YiZ),1jJ(X,YiZ))lx,y] 
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and 
G~, (k, I; x, y) = {3n + Gn-I (min {k, n - I}, I - 1; x, y). 

In these equations, G~ (k, I; x, y)( i = 0, 1) denotes the minimum expected total cost incurred 
when the optimal strategy is followed after the pull of aj at the first stage. Now, consider 
the stopping property described as follows: Once al is optimal at any stage, then it is 
also optimal in the subsequent I - 1 stages. By Berry and Fristedt [1], whether or not 
this property holds for the classical bandit problem with one arm known depends upon the 
sequence «(3", (3n-I,' . " (3d· Now we define 1j = (3j + (3j-1 + ... + (31. In [IJ, the sequence 
({3n, {3n-I," " {3d is called regular if it satisfies the relation 11/12 :s; 12/13 :s; ... :s; ,n-d,n. 
For example, (an, an-I, .. " a) is regular for a> 1 since it satisfies this relation. By slightly 
modifying the proof of Theorem 5.2.2 of [1], the following theorem is obtained. 

THEOREM 1. Suppose that {3n ~ {3n-1 ~ ... ~ (31) 0 and «(3n,{3n-I," .,(3I) is 
regular. Then, if a) is optimal in the first stage of (n; k, I; x, y), al will also be optimal in 
the subsequent 1 - 1 stages. 

Now, let the set of the sequences ({3n, (3n-l, .. " (31) which satisfies both the stopping 
property and the relation {3n ~ /1n-1 ~ ... ~ (31 > 0 be denoted by En. If «(3n, (3n-l,"', (31) E 
En, then 

n n-I 
G~(k,l;x,y)= L {3j +R(x,y) L{3j 

j=n-I+I j=1 

whenever GO (I. l- x y) > G I (k l- x y) and n " " - n " , 

n n-I 
G~,(k,l;x,y):s; L (3j+R(x,y)L{3j 

j=n-I+I j=1 

whenever G~(k,I;;[',y):s G~(k,l;x,y). Therefore (2) is rewritten as follows: 

n n-I 
(4) G,,(k, I; x, y) = mini G~(k, I; x, y), L (3j + R(x, y) L {3j} 

j=n-I+l j=1 

n 

where L (3j = 0 if m > n. 
j=m 

3. Optimal strategy. 

Let 
n n-I 

HII(k,l;x,y),=G~(k,l;x,y)- L {3j-R(x,y)L{3j 
j=n-I+I j=1 

for n ~ 1, (k, I) E Cn and (x, y) E S. Then, ao is optimal if Hn(k, I; x, y) :s; 0 and 
al is optimal if Hn(k,l;x,y) :::: O. We define Ho(O,O;x,y) = 0 for (x,y) E S and also 
H,,(O,n;x,y) = ° and Hn(n,O;x,y) = 0 for 11 ~ 1 and (x,y) E S. Furthermore, let 
H;;(k,l; x,y) = min{Hn(k, I;x,y), O} for k ~ 0, 1 ~ 0, 11 ~ 0 and (x,y) E S. If we define 
{30 = 0, the following lemma is derived. 

LEMMA 1. For 11 ~ 1, (k, I) E Cn, (x, y) E Sand ({3n, (3n-I,' . " (31) E En, 

(5) Hn( k, I; x, y) ={ R(x, 1/) - 1 H{3n - (3n-l) 

+ E[H;;_l (k - 1, mini 1,11 - I}; cp(x, y; Z), t/,(x, y; Z))lx, y). 
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PROOF. Since Cl =: {(1, 1)}, the assertion is trivial for n = 1. Suppose that (5) holds 
for some n ::::: 1. Then, for (k, I) E Cn+l, 

n+l n+l-1 
H"+l(k,l;x,y) = G~+I(k,l;x,y) - L (3j - R(x,y) L {3j 

j=n-l+2 j=1 

from which 

Hn+l (k, I; ;c, y) =:R(x, y){3n+l + E[Gn(k- 1, min{ I, n}; cp(x, y; Z), 1/J(x, y; Z))lx, y] 
n+l n+l-1 
L (3j - R(x,y) L {3j. 

j=n-/+2 j=1 

Since 
Gn(k - 1, min{ I, n}; cp(x, y; Z), 1/J(x, y; Z)) 

= H:;;(k - 1, min{ I, n}; cp(x, y; Z), 1/J(x, y; Z)) 
n n-min{I,n} 

+ L (3j + R(cp(x, y; Z), 1/J(x,y; Z)) L (3j, 
j=n-min{/,n}+1 j=1 

the following equation is obtained by using (1), 

Hn+l (k, I; x, y) ={ R(x, y) - 1 }({3n+l - (3n+l-/) 

+ E[H;;(k - 1, min{ I, n}; cp(x, y; Z), 1jJ(x, y; Z))lx, y] 

which completes the proof. 0 

In the case of (3" = {3n-1 = ... = (31 = 1, it is derived by induction on n that 

G~(k, I; x,y) = G~_l(k, 1- 1; x,y) + 1 

for n 2 2, (k, I) E, Cn with k ~ n - 1 and (x, y) E Sn- From this equation, 

Hn(k,l;x,y) = H"_I(k,I-1;x,y). 

By using this relation subsequently, 

H,,(k,l;x,y) = Hn_1(k,I-1;x,y) =: ..• = Hk(k,l- n + k;x,y) 

This means that it is optimal for (n; k, I; x, y) to assign al at the last n - k stages. Therefore, 
we have to consider only the case of (k; k, 1- n + k; x, y) in place of (n; k, 1; x, y) at the outset. 
Also, from Lemma 1, 

Hk(k, 1- n + k; x,y) = Hk(k, k; :l:,y) 

= {R(x,y) -1} + E[Hk_l(k -1, k -l;cp(x,y; Z),1/J(x,y; Z))lx,y] 

if I=: nand 

Hk(k, I - n + k; x, y) =: E[Hi:_l (k - 1,1 - n + k; cp(x, y; Z), 1/J(x, y; Z))lx,y] 

if 1 ~ I - n + k ~ k - 1. Therefore, if 1 = n, then whether ao is optimal or not in the 
first stage depends upon (x,y). But, if 1 ~ I~; n -1, Hk(k,l- n + k;x,y) ~ 0 for n::::: 1, 
n ::::: k ::::: n - 1+1 and (.T,y) E S, that is, it is optimal to pull ao in the first subsequent 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



224 T. Hamada & s. M. Ross 

n - I stages with neglecting the existence of al. In both cases, the problem reduces to the 
classical two-armed bandit problem with finite horizon. 

In the case of f3n > f3n-l > ... > f3l > 0, let B! be the set of (f3n, f3n-l' .. " f3I) E Bn 
such that f3n > f3n-l > ... > (31 > O. Then, the following lemma gives the monotonicity of 
Hn(k, l;x,y) in x and y. 

LEMMA 2. For n ~ 1, (k,l) E en and (f3n,f3n-l," ',f3I) E B!, 

(i) Hn(k, I; x, y) is continuous and strictly increasing in x. 
(ii) Hn(k, I; x, y) is continuous and strictly decreasing in y. 

PROOF. Since H I (1, 1; "j,Y) = {R(x,y) -l}f3l' both (i) and (ii) are true for n = k = 
1 = 1. Suppose that both (i) and (ii) are true for n ~ 1, (k, l) E en and (f3n, f3n-}," " f3t) E 
B~. Then, 

Hn+l (k, 1; x, y) ={ R(x, y) - 1 Hf3n+l - f3n+1-1) 

+ J H;;(k - 1, min{l, n}; cp(x, y; Z), ~(x, y; Z))h(zlx, y)dz 

For x E Sx and Xl E Sx such that Xl > x, h(zlx',y)/h(zlx,y) :::; h(Z/lx',y)/h(z/lx,y) for 
any z < Zl, there exists at least one z* such that h(zlx',y)/h(zlx,y) < 1 if z ::; z* and 
h(zlx',y)/h(zlx,y) > 1 if z > z*. Then, 

Hn+l(k,l;x,y) ={R(x,y) -IHf3n+l - f3n+l-l) 

+ r H;;(k -1,min{l,n};cp(x,y;z),~(x,y;z))h(zlx,y)dz 
J{zlz~::>'} 

+ r H;;(k - 1, min{/, n}; cp(x, y; z), ~(x,y; z))h(zlx,y)dz. 
J{zlz>.,·} 

Since (f3n+l, f3n, .. " (31) E B~, the first term of the right hand side is strictly increasing in x. 
The nonincreasing property of the sum of the second and third terms can be proved in the 
same way as ill the proof of Lemma 1 of Hamada [3]. 0 

The sequence (f3n, f3n-l' ... , f3d has a useful property which is given in Lemma 3. 

LEMMA 3. For n ~ 1, (k, I) E en and (f3n, f3n-ll' . " (31) E B!, 

n n-k 
L f3j - L f3j > O. 

3=n-l+l j=1 

n n-k 
PROOF. For n ~ 1, since 0:::; n- k :::; I-I holds for (k, I) E en, L f3j -- L f3j 2 

j=n-I+l j=1 
n 1-1 
L f3j - L f3j , the right hand side of this inequality is positive because of the fact that 

j=n-I+l j=1 
(f3n, f3n-l,' . " f3d E B~. This completes the proof. 0 

LEMMA 4. Forn 21, (k,l) E en and (f3n,f3n-I,' ··,f3d E B!, 

n n n-k 
(6) R(x,y)(f3n - f3n-r) - L f3j::; Hn(k,l;x,y):::; {R(x,y) -1}( L (3j - L f3j). 

j=n-/+l j=n-I+1 j=l 
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PROOF. From (5) and Cl = {(I, I)}, (6) is trivial for n = L Suppose that (6) holds 
for some n 2 L Since 

Hn+1(I,n + l;x,y) = {R(x,y) -1}(,Bn+l - (30) 

and 
Hn+l(k,l;x,y) ={R(x,y) -1}(f3n+l - f3n+1-d 

+ E[H;;(k - 1, min{ I, n}; <p(x, y; Z), 1jJ(x, y; Z))lx, y] 

for (k, I) E Cn + l with k 2 2, it is easily derived by using the inductive hypothesis and 
Lemma 3 that 

n+l 
R(x,y)(f3n+l - f3n+l-l) - L f3j ~ Hn+1(k,l;x,y) 

j=n+l-/+l 

( 
n+l n+l-k) 

~ {R(x,y) -I} . }= f3j - L f3j , 
)=n+1-I+l )=1 

which completes the proof. 0 

The next theorem gives the existence and the uniqueness of the critical value function 
sn(k, I; y) which specifies the optimal strategy and also it shows that 81(1,1; y) is the lower 
bound of the critical value function. 

THEOREM 2. For n 2 1, (k, I) E en, y E Sy and (f3n, f3n-l,' . " f3d E B:, the 
equation, Hn(k, I; x, y) = 0, of x has a unique root 8n(k, I; y) which is strictly increasing in 
y and sn(k,l;y) 2: 81(I,I;y). 

PROOF. From Lemmas 3 and 4 and A4 , there exists Xl E Sx such that R( :rl, y) > 
n 

(Pn - f3n_d- 1 L f3j and also there exists X2 E Sx such that R(X2' y) < L From these 
j=n-I+l 

inequalities and (i) of Lemma 2, the existence and the uniqueness of 8 n ( k, I; y) is triviaL From 
Hn(k, I; 8n(k, I; y), y) = ° and (ii) of Lemma 2, sn(k, I; y) is strictly increasing in y. From the 
second inequality of (6), Hn(k, I; 81(1,1; y), y) ~ 0, which means from (i) of Lemma 2 that 
sn(k,l;y)2s1(1.,I;y). 0 

From this theorem, for the state (n;k,l;""y)ao is optimal if X ~ 8n(k,l;y) and a1 IS 

optimal if x 2 8 T1 (k, I; y). 

LEMMA 5 .. Forn 21, (k,/) E Cn with k ~ n-l, (x,y) E S, and (f3n,f3n-l,"',f3J) E 

Hn(k,l;x,y) 2 Hn(k+ I,l;x,y). 

PROOF. Since C2 = {(I, 2), (2,2), (2, In, 

H2(1,2;x,y) = {R(x,y) -1}f32 

and 
H2(2, 2; :r, y) = {R(x, y) - 1}f32 + E[H1(1, 1; <p(x, y; Z), 1jJ(x,y; Z))lx, y], 
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the assertion is true for n = 2. The assertion for n 2: 2 is immediately derived from (5). 
D 

The next theorem presents a monotonicity property of the critical value function Sn (k, I; y) 
in n, k and I. 

THEOREM 3. For n 2: 1, yE Sy and (/3n, /3n-l,·· ., (31) E B~, 

(i) sl(1,1;y)=sn(1,n;y), 
(ii) sn(n,n;y):::; Sn+l(n + l,n + l;y), 

(iii) sn(k, I; y) :::; sn(k + 1, I; y) for (k, I) E Cn with k :::; n - 1, 
(iv) sn(k, n; y) :::; sn(k, n - 1; y) for 2:::; k :::; n, and 
(v) sn_I(k,l-l;y):::; sn(k.,ljy) for (k,l) E Cn with 12: 2. 

PROOF. (i) is the immediate consequence of 

Hn(l,n;x,y) = {R(x,y) -l}/3n 

= H1(1,1;x,y)/3n//31. 

(ii) is proved by the same way as Theorem 2.3 of Hamada [2J. From the definition of 
sn(k, n; y) and Lemma 5, 

Hn(k + 1,I;sfi(k + 1,I;y),y) = 0 

= Hn(k,l;sn(k,l;y),y) 

2: Hn(k + 1,I;sn(k,l;y),y), 

from which (iii) is easily obtained by using (i) of Lemma 2. Since 

Hn(k, n; x, y) = {R(x, y) - l}(/3n - (30) + E[H;;_1 (k - 1, n - 1; <p(x, y; Z), 1f(x, y; Z))lx, y] 

and 

Hn(k, n - 1; x, y) = {R(x, y) -1 H/3n - /3t} + E[H;;_1 (k -1, n -1; <p(x, y; Z), ~(x, y; Z))lx, yJ, 

it holds that 

Hn(k,n;x,y) - Hn(k,n -l;x,y) = {R(x,y) -1}(/31 - (30). 

This equality means that for x > sl(l, 1; y) 

H,,(k,n;x,y) 2: Hn(k,n -l;x,y), 

from which sn(k, n; y) :::; sn(k, n - 1; y) is derived by (i) of Lemma 2 and Theorem 2. (v) is 
trivial from Theorem 1. D 

This theorem describes several properties for the problem of the state (n; k, 1; x, y) with 
/3n > /3n-l > .. , > /31 : (i) denotes that ao is optimal for (n; 1, n; x, y) if and only if ao is 
optimal for (1; 1, 1; x, y ). (ii) denotes that if ao is optimal for the state (n; n, n; x, y), then it 
is also optimal for the state (n + 1; n + 1, n + 1; x, y). (iii) denotes that if ao is optimal for the 
state (n;k,l;:r,y) with 1 :::; k:::; n -1, then it is also optimal for the state (n;k + 1,I;x,y). 
(iv) denotes that if ao is optimal for the state (n; k, n; x, y) with 2 :::; k :::; n, it is also optimal 
for the state (n; k, n - 1; x, y). (v) is the property denoted in Theorem l. 
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Remark. The monotonicity of sn( k, I; y) in 1 is not true for (k, I) E Cn with n -- k+ 2 :5 
1 :S n. 

4. Case of exponential distributions. 
In this section, we consider the special case that both J(zlu) and J(zII) are den­

sities of the exponential distribution with parameters u and 1, respectively. Also, let 
g(ulw, a) is the density of gamma distribution with parameters wand a, that is, g(ulw, a) = 
{r(a)}-l wO'uO'-le- wu . Since cp(w, a; z) = w + z, 1j;(w,a; z) = a + 1, h(zlw,a) = awO'(w + 
=)-0'-1 and R(x,y) = w(a - 1)-1, assumptions Al through A4 are satisfied in this case. 
Both equations (4) and (3) are replaced by the following equations (7) and (8), respectively. 

n n-l 
(7) Gn(k, I; w,a) = min {G~(k, I; w,a), L {3j + w(a - 1)-1 L {3j } 

j=n-l+1 j=l 

and 

(8) G~(k, I; w, 0') = w(a - 1)-1 {3n + 1'>0 Gn- 1 (k - 1, mini l, n - I}; wu, a + I)au- cr- 1du. 

VI/e introduCo? the function 

n n-l 
G~*(k,l;w,a)= L {3j+w(a-I)-l L {3j· 

j=n-l+l j=1 

and the notation (ba
) for positive integers a and b as follows: 

(-b
a

) = (-a)(-a -1)··· (-a - b + 1)/(1.2 ... b). 

Then, the following theorem is derived. 

THEOREM 4. For n 2: 1, (k,l) E Cn, (w,a) E Sand ({3n,{3n-l," ·,(3d E B;, 
(9) 

n n-k 
w(a _1)-1 L {3j + I: {3j 

j=n-k+1 j=l 

Gn(k,l;w,a) = 
+ E (.~aI)Dn_j+1(k - j + I,min{l,n - j + I};a + j _I)w ll+ j

- 1
, 

J=1 J 

if 0 < w < sn(k,l;a) 
n n-l 
L {3j + w(a _1)-1 L: (3j, ifsn(k, I; a) ~ w, 

j=n-l+1 j=l 

where 

Dn(k,l;a) = CE/j- );(3j) (-(a-1)--1{Sn_1(k-I,min{/,n-I};a+I)}-0'+! 

+ { sn -J (k - 1, min { I, n - I}; a + I)} -0' ) 

k-2' ) - L (-.a Dn_j(k - j, min{/, n - j); a + j){sn-l(k - 1, min{l, n - I}; a + I)}j 
j=l ,J 
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and sn(k,I;O') is the unique root of the following equation ofw: 

and 

2::: _-a Dn_j+l(k-j+l,min{l,n-j+1};O'+j-l)w,,+j-l k-l( ) 
j=1 J - 1 

( 

n n-k) + _ 2::: (3j - 2::: (3j {w(O' - 1)-1 - I} = O. 
J=n-I+l J=1 

PROOF. Two cases, k = 1 and k 2:: 2, have to be considered separately. Since 
n-1 

G~(1, n; w, a) = w(o' - l)-I(3n + 2::: (3j 
j=1 

n 

G~*(l, n; w, a) = "E (3j, 
j=1 

the assertion is true in case of k = 1. For k 2:: 2, 

G~(2, I; w, a) = w(o' - 1)-1 (32 + lJO G1 (1,1; wu, 0' + I)O'u- a - 1du 

= ! w(o' _1)-1~; (3j + D2(2, I; o')w", if 0 < w < sl(I, 1; 0' + 1) 

2 1 

w(o' - 1)-1 L: (3j + "E (3j, if sl(I, Ij 0'+ 1) :S w 
j=,2 j=1 

and 
2 2-1 

G~*(2,ljw,O')= 2::: (3j+w(O'-I)-I"E(3j, 
j=2-I+l j=1 

for 1 :s 1 :s 2, where 

D2(2, lj a) = (31[-(0' -- l)-l{Sl(1, Ij 0'+ I)}-,,+1 + {SI (1, Ij 0' + I)}-a]. 

Ifw> sl(I,ljO'+ 1), then Gg(2,I;w,0') > G~*(2,I;w,a), which means s2(2,I;a):S 
SI (1, Ij a + 1). Therefore, s2(2, lj a) is the unique root of 

2 

D2(2, 1; a)w" + {w(o' _1)-1 -I} "E (3j = 0 
)=2-/+1 

and the assertion is true for n := 2 and k = 2. Suppose that the assertion is true for n 2:: 2 
and k 2:: 2. Then, for k ;:: 2, 

(10) G~+l (k, lj w, a) = w(a - 1)-1 (3n+l + lJO Gn(k - 1, min{ I, n}j WU, 0'+ I)au-,,-ldu. 

From (10) and Gn(l, - 1, min{ I, n}; wu, 0'+ 1) obtained by replacing k, I wand a of (9) by 
'e - 1, min { I, n}, W1l and a + 1, respectively, if 0 < w < Sn (k - 1, min { I, n}; a + 1), then 

r n (k-1,min{l,n};a+l)/w { n 
(ll) G~+1 (k, I; w, a) = w(o' - 1)-1(3n+1 + Jl wuO'-1 "E (3j 

1 j=n-k+2 

n-k+l k-2 (-a _ 1) _ _ 
+ 2::: (3j+2::: --I D II _j+l(k-j,min{l,n-j+I};O'+j)w"+J u"+J}O'u-,,-ldu 

)=1 )=1 J 

00 {n n-min{l,n} } 
+ _ "E (3j + wuO'-1 "E (3j O'u-,,-ldu. 

In(k-1,mm{l,n};,,+I)/W }=n--min{l,n}+1 }=1 
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After slight calculation by using the equality 

n n-min{l,n} 

l: {3j - l: {3j = 
j=n-k+2 j=1 j=n-min{l,n}+1 j=1 

in (ll), 

n+l n-k+l 
G~+I(k,l;w,a)=w(a-1)-1 l: {3j+ l: {3j 

where 

j=n-k+2 j=1 

+ ~ (.-a ) Dn+l-j+l(k _ j + l,min{/, n + 1 - j + I}; a + j _ l)wa+j.-1, 
j=1 J - 1 

Dn+l(k, I; a) = ( t {3j - n"t+l (3j) 
j=n-min{l,n}+1 j=1 

X (-(a -1)-I{sn(k -1,min{/,n};a + 1)}-a+l + {sn(k - l,min{l,n};a + 1)}-a) 

-~ (-.a) Dn+l-j(k - j,min{l,n - j + 1};a + j){sn(k -1,min{/,n};a + l)}j. 
)=1 J 

Also, if sn(k -1,min{l,n};a + 1):::; w, then 

00 {n n-min{l,n} } 
+ i l: {3j + wu:a- 1 l: {3j au-a- 1du. 

1 j=n-min{l,n}+1 J=1 

n n-min{l,n} 
== w(a -1)-I{3n+l + l: {3j + w(a - 1)-1 l: {3j. 

j=n-min {I,n }+1 j=1 

On the other hand, 

n+l n+l-1 
G~!~I(k,l;w,a)= l: {3j+w(a-l)-1 l: {3j. 

j=n-/+2 j=1 

Since {3n+l > {3n > ... > {31 > 0, 

n n-min{l,n} 

l: {3j+w(a-l)-1 l: {3j 
j=n-min{l,n}+1 j=1 

n+l n+l-1 
> l: {3j + w(a _1)-1 l: {3j 

j=n-I+2 j=1 

if and only if w > SI (1,1; a). From the inequalities sn(k - 1, mini I, n}; a + 1) > 

229 

sn(k-l, mini I, n}; a) 2:: SI (1,1; a) obtained in Theorem 2, G~+I (k, I; w, a) > G~+1 (k, I; w, a) 
if w > Sn( k - 1, min {I, n}; a + 1). Therefore, .5 n+l (k, I; a) is the unique root of the following 
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equation of w : 

L ,-a Dn+1- j+1(k - j -+- 1,min{l,n -+- 1- j -+- I}; a -+- j _1)wo+ j- 1 k-l ( ) 
j=1 J - 1 

( 
n+l n+l-k) 

-+- . L: {3j-+- L {3j {w(a-1)-1- 1}=0. 
J=n+l-I+2 J=1 

This completes the proof. 0 

The special case that (3j = j for 1 :::; j :::; n is important in applications. In this case, 
tll(k,l;a) is used in place of sn(k,l;a). Then, for n 21, (k,l) E Cn and (w,a) E S, 

Dn(k, I; a) = {1(2n - 1- 1) - (n - k)(n - k -+- In/2 

x (-(a _1)-l{tn _l(k --I,min{/,n -I};a -+- 1)}-a+l 

-+-{tn -l(k - 1, min{/,n --I}; a-+- 1)}-a) 

-I: (-.a) Dn_j(k - j, mini I, n - j}; a-+- j){tn-l (k - 1, mini I, n - I}; a -+- In i 
j=1 J 

and tn (k, I; a) is the unique root of the following equation of w : 

L_-a 
Dn_j+l(k - j -+- I,min{/,n - j -+- I};a -+- j - I)wa+j -

1 k-l( ) 
j=1 J - 1 

-+- {w(a _1)-1 -- I}{I(2n -I -+- 1) - (n - k)(n - k -+- In/2 = O. 

The values of tn(k,l;a) for 1 :::; n :::; 5, (k,/) E Cn and a = 2,3,·· ·,10 are calculated and 
Table 1 is obtained. As a numerical example, consider the state (4,3,2,1.1,2), that is, n = 4, 
k = 3, 1 = 2, w = 1.1 and a = 2. Since w < t4(3, 3; 2) = 1.2967, ao is optimal at the first 
stage. Suppose that z = 0.8 is observed at the first stage. Then, the new state is (3,2,2,1.9,3) 
and t3(2, 2; 3) = 2.1962, ao is optimal at the second stage. Let z = 1.17 is observed at the 
second stage. Since the new sta_te is (2,1,2,3.07,4) and t2(1, 2; 4) = 3.0000, al is optimal at 
the third stage and therefore al is also optimal at the last stage. 

Another special case that (3j = I j - 1 for 1 :::; j :::; n is also important in application. In 
this case, 1·Il (k, I; a) is used in place of sn(k, I; a). For n 2 1, (k, I) E Cn and (w, a) E S, 

Dn(k, I; a) = h n
-

1- 1 (I -11) - (1 -In-k)}(I -/)-1 

x (-(a _1)-1{1·n _l(k - 1, min{/,n - I}; a -+- I)}-a+l 

-+- {1'n-l (k - 1, min {I, n - I}; a -+- I)} -a) 

- ~ (-,a) Dn_j(k - j, min{/, n - j}; a -+- j){rn_l(k - 1, min{/, n - I}; a -+- I)}j 
J=1 J 

and 1'n(k, I; a) is the unique root of the following equation of w : 

k-l ( ) L .--=-a
1 

Dn_j+l(A:-j-+-I,min{/,n-j-+-I};a-+-j-l)wo+ j - 1 

J=1 J 

-+- {w(a __ 1)-1 - I}(!n-I -In - 1 -+- In-k)(l -/)-1 = O. 
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Table 1. Values of tn(k, I; a) for 1 ::; 11. ::; 6, (k, I) E en and a = 2,3,· . ·,10 

(n'''~,l1\a 2 3 4 5 6 7 8 9 10 

(1, 1, 1) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(2,2, 1) 1.1716 2.1962 3.2065 4.2121 5.2158 6.2183 7.2201 8.2215 9.2226 
(2, 2, 2) 1.1010 2.1172 3.1240 4.127'8 5.1303 6.1319 7.1332 8.1341 9.1:349 
(2, 1, 2) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(3,3, 1) 1.2967 2.3425 3.3632 4.37,5,1 5.3829 6.3884 7.3925 8.3957 9.3982 
(3, 3, 2) 1.2399 2.2766 3.2929 4.3022 5.3082 6.3124 7.3155 8.3179 9.3199 
(3, 3, 3) 1.1822 2.2125 3.2260 4.23:3.7 5.2388 6.2423 7.2449 8.2470 9.2486 
(3, 2, 2) 1.1716 2.1962 3.2065 4.2121 5.2158 6.2183 7.2201 8.2215 9.2226 
(3, 2, 3) 1.1270 2.1465 3.1548 4.1593 5.1623 6.1643 7.1657 8.1669 9.1678 
(3, 1,3) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(4,4,1) 1.3963 2.4605 3.4909 4.5089 5.5210 6.5297 7.5362 8.5413 9.5454 
(4,4,2) 1.3496 2.4055 3.4314 4.4466 5.4568 6.4640 7.4694 8.4736 9.4'770 
(4,4,3) 1.2997 2.3477 3.3697 4.3826 5.3911 6.3972 7.4017 8.4053 9.4081 
(4,4,4) 1.2508 2.2935 3.3133 4.3249 5.3326 6.3380 7.3421 8.3453 9.3479 
(4,3,2) 1.2967 2.3425 3.3632 4.37.5,1 5.3829 6.3884 7.3925 8.3957 9.3982 
(4,3,3) 1.2599 2.3000 3.3178 4.3281 5.3347 6.3394 7.3429 8.3456 9.3478 
(4,3,4) 1.2156 2.2509 3.2668 4.275,9 5.2818 6.2860 7.2891 8.2915 9.2935 
(4,2,3) 1.1716 2.1962 3.2065 4.2121 5.2158 6.2183 7.2201 8.2215 9.2226 
(4,2,4) 1.1390 2.1600 3.1688 4.17:3.7 5.1768 6.1790 7.1805 8.1817 9.1827 
(4,1,4) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(5,5,1) 1.4798 2.5600 3.5992 4.62:3,2 5.6395 6.6513 7.6603 8.6674 9.6732 
(5,5,2) 1.4401 2.5127 3.5478 4.5690 5.5833 6.5936 7.6015 8.6077 9.6127 
(5,5,3) 1.3976 2.4628 3.4938 4.5124 5.5249 6.5339 7.5407 8.5461 9.5;')04 
(5,5,4) 1.3531 2.4113 3.4389 4.45.';.4 5.4664 6.4743 7.4803 8.4850 9.4888 
(5,5,5) 1.3104 2.3643 3.3900 4.40.~,3 5.41.56 6.4230 7.4286 8.4330 9.4:366 
(5,4,2) 1.3963 2.4605 3.4909 4.5089 5.5210 6.5297 7.5362 8.5413 9.5454 
(5,4,3) 1.3658 2.4246 3.4521 4..1683 5.4791 6..1869 7.4927 8.4972 9.5009 
(5,4,4) 1.3264 2.3791 3..1035 4..1119 5.4275 6.4343 7..1394 8..1434 9..1,166 
(5,4, .5) 1.28.58 2.3344 3.3571 4.3704 5.3793 6.3857 7.3904 8.3942 9.3971 
(5,3,3) 1.2967 2.3425 3.3632 4.37.';,1 5.3829 6.3884 7.3925 8.3957 9.3982 
(5,3,4) 1.2695 2.3111 3.3297 4.3404 5.3474 6.3523 7.3559 8.3587 9.3610 
(5,3,5) 1.2339 2.2718 3.2888 4.2986 5.3050 6.3095 7.3129 8.3155 9.3176 
(5,2,4) 1.1716 2.1962 3.2065 4.2121 5.2158 6.2183 7.2201 8.2215 9.2226 
(5,2,5) 1.1459 2.1677 3.1768 4.1819 5.1851 6.1874 7.1890 8.1902 9.1912 
(5, 1,5) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
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Table 2. Values of rn(k, I; a) for 1 ::; n::; 6, (k, I) E en and a = 2,3"",10. 

a 

n, k, I 
2 3 4 5 6 7 8 9 10 

(1, 1, 1) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(2, 2, 1) 1.6418 2.6758 3.6889 4.6960 5.7004 6.7034 7.7055 8.7072 9.7085 
(2, 2, 2) 1.6417 2.6757 3.6889 4.6959 5.7003 6.7033 7.705.5 8.7072 9.7085 
(2, 1,2) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(3, 3, 1) 1.89:{0 2.9844 4.0254 5.0490 6.0644 7.0753 8.0834 9.0897 10.0947 
(3, 3, 2) 1.89:n 2.9845 1.0254 5.0490 6.0644 7.0753 8.0834 9.0897 10.0947 
(3, 3, 3) 1.7394 2.7913 3.8132 4.8255 5.8334 6.8390 7.8431 8.8462 9.8487 
(3, 2, 2) 1.5406 2.5784 3.5933 4.6013 5.6063 6.6098 7.6123 8.6142 9.6157 
(3, 2, 3) 1..5822 2.6188 3.6:131 4.6408 5.6456 6.6488 7.6512 8.6530 9.6545 
(3, 1, 3) l.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(4, 4, 1) 2.0044 3.1378 4.2031 5.2429 6.2698 7.2893 8.3041 9.3158 10.3252 
(4, 4, 2) 2.0043 3.1378 4.2031 5.2429 6.2698 7.2893 8.3041 9.3158 10.3252 
(4, 4, 3) 1.9480 3.0585 4.1103 5.1410 6.1615 7.1762 8.1872 9.1958 10.2028 
(4,4,4) 1.8026 2.8736 3.9060 4.9252 5.9379 6.9470 7.9539 8.9593 9.9637 
(4,3,2) 1.72:lO 2.8101 :3.8495 4.8724 5.8874 6.8980 7.9059 8.9120 9.9169 
(4,3,3) 1.7898 2.8793 3.9196 4.9430 5.9583 6.9691 7.9771 8.9834 9.9883 
(4,3,4) 1.6973 2.7540 3.7782 4.7918 5.8006 6.8068 7.8113 8.8148 9.8176 
(4,2,3) l.4775 2.5163 3.5317 4.5400 5.5452 6.5488 7.5.514 8.5534 9.5549 
(4,2,4) 1.5369 2.5748 3.5898 4.5978 5.6028 6.6063 7.6088 8.6107 9.6122 
(4, 1, 4) l.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
(5, 5, 1) 2.0617 3.2228 4.3063 5.3590 6.3957 7.4228 8.4437 9.4604 10.4740 
(5, 5, 2) 2.0617 3.2228 4.3063 5.3590 6.3957 7.4228 8.4437 9.4604 10.4740 
(5,5,3) 2.0347 3.1821 4.2565 5.3026 6.3343 7.3576 8.3754 9.3895 10.4009 
(5,5,4) 1.9799 3.1040 4.1644 5.2011 6.2260 7.2441 8.2579 9.2687 10.2775 
(5,5,5) 1.8480 2.9340 3.9751 5.0000 6.0170 7.0294 8.0388 9.0463 10.0523 
(5,4, 2) 1.8046 2.9234 3.9818 5.0174 6.0415 7.0591 8.0724 9.0829 10.0913 
(5,4,3) 1.8809 3.0061 4.0676 5.1051 6.1305 7.1489 8.1629 9.1740 10.1828 
(5,4,4) 1.870.5 2.9794 4.0:308 5.0615 6.0819 7.0966 8.1077 9.1164 10.1233 
(5,4,5) 1.7657 2.8398 3.8738 4.8938 5.9071 6.9167 7.9239 8.9295 9.9340 
(.5, :3, 3) 1.6295 2.7115 3.7489 4.7706 5.7848 6.7949 7.8024 8.8082 9.8129 
(5,3,4) 1.7173 2.8041 3.8435 4.8663 5.8812 6.8918 7.8997 8.9058 9.9107 
(5, 3, 5) 1.6608 2.7202 3.7458 4.7603 5.7696 6.7762 7.7810 8.7848 9.7877 
(5,2,4) 1.4325 2.4712 3.4867 4.4951 5.5004 6.5040 7.5067 8.5087 9.5102 
(5,2,5) 1.5004 2.5390 3.5M3 4.5625 5.5677 6.5712 7.5738 8.5757 9.5773 
(5,1,5) 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 
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The values ofrn(k,l;a) for 1::; n::; 6, (k,l) E en and a = 2,3,·· ·,10 are obtained in Table 
2. 
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