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Abstract This paper studies interdeparture time distributions of an M/C/I queue with server vacations 
provided a class of schedules for vacations. Parametric and ordering properties of the distributions and its 
perturbations are studied concerning the adopted vacation schedule and the length of vacations. We also 
discuss the results in view of the performance evaluation of a token-passing LAN. 

1. Introduction 

In a packet-oriented network, the departure processes of queues sometimes directly char­
acterize the network performance. This is because the network congestion influences the 
communication quality through the arrival process of a packet stream at the destination ter­
minal and because the arrival to the destination is sometimes directly given by the departure 
process of a queue. Such an example can be seen in token-passing LANs [1] as described 
below. In view of studying how transmission schedules affect the arrival process to the desti­
nation terminal in the LAN, this paper studies interdeparture time distributions of M/C/1 
queues with vacations [4]. 

First we note how the arrival process at the destination characterizes the communication 
quality. In an individual communication between terminals, the quality is determined by 
the number of packets which arrive within a fixed time. For example, in case of data 
transfers between computers, if the number of the packets is less than a threshold then 
the destination terminal requires a retransmission of packets and the transfer slows down. 
In the cases of digitized voice transfers between telephones, each break of the threshold 
induces non-negligible noise. Thus, the less variability of the arrival process implies the 
better communication quality. 

Let us describe how the departure process of a vacation model arises with the LANs. 
Consider a data transfer between terminals with text files, graphics, or voice messages in 
a lightly loaded token-passing LAN with a moderate speed. The arrival process at the 
destination terminal coincides with the departure process of the queue placed at the source. 
Therefore, the arrival process to the destination can be modeled by the departure process 
of an individual class of customers in polling models [13]. At the same time, we may often 
assume that such large amount:> of data are not transported simultaneously. Thus, the packet 
stream for this data transfer can be assumed to perform the most of the traffic flow in the 
LAN, whereas the stream is loaded at the source terminal. Consequently, the arrival process 
to the destination may be modeled by the departure process of a vacation model with short 
vacation times. 

We here consider the communication quality of the LAN concerning the adopted trans­
mission schedule through the departure process of a vacation model, in which the transmis­
sion schedule corresponds to the schedule for vacations. We assume that the vacation model 

206 

© 1993 The Operations Research Society of Japan



On a Set of Interdepalture Time Distributions 207 

is an M/C/l type. As far as M/C/l type queues with schedules are concerned, the previous 
works seem to consider departure processes under a fixed schedule. Nain [9] derives the 
interdeparture time for individual classes of customers for M /C /1 priority queue under the 
preemptive-resume service schedule, whereas Stanford [11] derives the distributions under 
the non-preemptive service schedule. Because there are various transmission schedules, we 
consider the set T of interdeparture time distributions given by changing the schedule for 
vacations, and then study the parametric and ordering properties of T and its perturbation 
{Tc} near the ordinary queue. The parametric property will describe how changes of sched­
ule can vary the interdeparture time distribution in the set of all probability distributions on 
non-negative real numbers, whereas the ordering property will describe how the variability 
of the interdeparture time depends on the schedules and on the length of vacations .. These 
results may be qualitatively applied to the variability of the number of packets in a time 
interval and may give guiding information for studying LAN performances. This is because 
the interdeparture time distribution is one of the most natural one-dimensional characteris­
tics of the departure processes. Disadvantages of this approach will be mentioned in Section 
5. 

This paper is organized as follows. Section 2 describes the vacation model. A class of 
vacation schedules is fixed. Section 3 presents the parametric property of the set T. We show 
that T is given by a segment (I-simplex) in the space of probability distributions on non­
negative real numbers. Section 4 considers the convex ordering on T and on the perturbed 
sets U Te. The set T with convex order is shown to be identical to the interval [0,1] 

e near 0 
with the standard order. This result implies that the change of a vacation schedule which 
increases the number of customers in the system reduces the variability of the interdeparture 
times. We also study the increasing convex ordering along the perturbation {Tc}c>o near 
an ordinary M/C/l queue. We show that when vacation times are short, the vai1ability 
of the interdeparture time decreases if the vacation time increases, except for such case 
as the exhaustive schedule. Section 5 interprets the results to discuss the performance of 
token-passing LANs. 

2. A queue with server vacations 

We describe here a vacation model refining the definition given in [4]. A sever of a. queue 
is said to be on vacation when it stops serving, regardless of whether there are customers 
waiting in the queue or not. Consider an M/C/loo queue with server vacations. We call 
the time when a vacation starts a vacation epoch. The schedule by which vacation epochs 
are determined is called a vacation schedule. so as not to confuse it with schedules for 
service order. which we call service schedules, such as FIFa and LIFO. The length of a 
vacation is called vacation time. The vacation time sequence is assumed to be i.i.c1.. The 
arrival process, the service time sequence, and the vacation time sequence are assumed to 
be mutually independent. Let us specify classes of vacation and service schedules for which 
we study the interdeparture times of customers: 

Assumption 2.1. 

(i) The vacation schedule is assumed to be non-preemptive and multiple in the following 
sense: 

Non-preemptive. 

Multiple. 

A vacation can only start just after the completion of a service or a 
vacation. 

A new vacation starts if there are no customers waiting just after the 
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completion of a service or a vacation. 
(ii) The service schedule is also assumed to be non-preemptive. 

(iii) The available information for vacation and service schedules, at time t, is contained in 
the histories of 
· the queue length up to t, 
· the arrival times of customers up to t, 
· the lengths of the service and the vacations which started before t, 
· processes which are independent of the arrival process, the vacation time sequence, 

and the service time sequence. 
(iv) At least one customer is served if there are customers waiting just after the end of a 

vacation. 

Note that assumption (iii) requires that the service and the vacation schedules do not 
refer to the service times of the waiting customers. Let V denote the set of all vacation 
schedules satisfying (i) through (iv) in Assumption 2.1. The probabilistic structure of the 
departure process is determined by quadruplet (A, J1H, J1V, 0 where 

A: the arrival rate, 
J1H: the service time distribution defined on (0, +00), 
J1V: the vacation time distribution defilled on (0, +00), 
( the vacation schedule contained in V. 
The following notation will be used: 
R+: the set of all non-negative real numbers, 
h: the mean service time, 
v(j): the j-th moment of vacation time, 
v: = vU) (the mean vacation time), 
p: = Ah (traffic intensity), 
a: = JR+ e-J..x J1v (dx),. 

The parameters A, h, vU) (j = L 2, ... ) are assumed to be strictly positive and finite. More­
over, the quadruplet (A, IIH, J1V, 0 is assumed that the queueing behavior of this model is 
stable in the ordinary sense that the departure rate is the same as the arrival rate. A suf­
ficient stability condition under which the queue-length processes with vacation schedules 
~ E V are simultaneously stable can be given by 

(2.1 ) 
Av 

-1 - < 1 and p < L 
-p 

This sufficiency condition can be shown by combining the well-known stability result for the 
1-limited vacation schedule (e.g., [8]) and the sample-path comparison of the queue-length 
processes such as in [14]. 

3. A parametric property of the distribution set T 

Consider a triplet (A, J1H, J1v) satisfying the simultaneous stability condition (2.1) and 
fix this triplet. Let J1T be the interdeparture time distribution in the steady state. We denote 
by Q[~] the value of a quantity Q under schedule ~ E V. This paper is mainly concerned 
with the following set of interdeparture time distributions: 

T = {J1T[~ll ~ E v}. 

From here on, we use the notation 
80 : the Dirac measure supported on {O}, 
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*: the convolution operation on probability distributions. 
In addition, the integration of a function c.p with respect to a measure J1. is denoted by 

Let us begin with a renewal argument. Consider a renewal process {Tj }o~j<oo with 
TO = 0 and the inter-occurrence time distribution J1.v. Let N(t) := sup{j : Tj ~ t} for t > O. 
Let I be a non-negative exponentially distributed random variable with mean 1/ A. The 
variable I is ass11med to be independent of the renewal process {Tj }o~j<oo. Let J1.R denote 
the probability distribution of the random variable TN(1)+l' Let V*( s) denote the LST of 
J1.v. The LST of the probability distribution "~R is given by 

Lemma 3.1 (e.g. [13]). 

(3.1 ) 
V*(s) - V*(s + A) 

E[exp( -STN(1)+l)] = 1 _ V*(s + A) . 

It is well known that the idle probabilities measured at arrivals, at departures, and at 
an arbitrary time are the same for the M/GJ/l/oo queues whose schedule never refers to 
the 'future' (e.g. [3]). Then, let p denote the idle probability measured at the customer 
departure epochs. We use e[resp. 11] E v to denote the exhaustive [resp. I-limited] vacation 
schedule [7]. Recall that the exhaustive schedule means that the server continues to serve 
waiting customers until the queue becomes empty, while the I-limited schedule means that 
the server starts a new vacation just after each service completion. The goal of this section 
is to prove the following characterization of T. 

Proposition 3.2. The set T of all interdeparture time distributions J1.T[e],e E V, can be 
characterized as follows: 
(i) The set Tis given by a segment with vertices {J1.T[1I], J1.T[e]} , i.e., 

(3.2) T = {(I - C)J1.T[ll] + CJ1.T[e] I 0 ~ c ~ I}. 

(ii) The ratio c for schedule ~ E V is given by 

(3.3) 

where 

(3.4) 

c[~] - p[~] - p[1I] 
- p[e]- p[ll]' 

p[II] = (~-I) C ;vp 
- :~), p[e] = (I-a)(I-p). 

AV 

(iii) The vertices {J1.T[ll], J1.T[e]} are given by 

(3.5) J1.T[ll) = J1.H * ((1 -- p[II))ILV + P[ll]J1.R), 

(3.6) 

Remark 3.3. Equalities (3.4) and (3.6) are ,een in the literature and not new (see [13]). 
The emphasis of Proposition 3.2 is laid on the geometric property (3.2) and the relation 
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(3.3) between the ratio c and the idle probability p. This result means that the parametric 
structure of the distribution set T is quite simple. Moreover, the vacation schedule is seen 
to influence the interdeparture time distribution only through the idle probability. 

Proof of Proposition 3.2. Consider an arbitrary customer A. The interval between the 
departures of customer A and the subsequent customer (called B) consists of the closed 
interval J beginning with A's departure and ending with the starting epoch of B's service. 
Let f1.J denote the probability distribution of the length of J. Assumption 2.1-(iii) implies 
that B's service time and the length of J are mutually independent. Thus 

(3.7) f1.T = PH * PJ 

Let us determine IlJ. There are three disjoint cases at A's departure: 
Case 1. The server begins to serve B. 
Case 2. A new vacation starts and the server leaves behind the customers which have 

not been served. 
Case 3. The system becomeE. empty. 

The probability of Case 3 is given by p. Let q denote the probability of Case 2. The interval 
J consists of, respectively, 

Case 1, one point (A's departure time), 
Case 2, the interval of the new vacation, 
Case 3, the idle period and the remaining interval of the vacation which is detected by 

B at the arrival. 
Here, we note that Assumption 2.1-(iv) implies that only one vacation occurs in interval J in 
Case 2. Now we must determine the length of J in Case 3. According to the assumption (iv), 
interval J consists of the vacations started just after A's departure and before B's arrival. 
Assumption 2.1-(iii) implies that the idle period (the interval beginning with A's departure 
and ending with B's arrival) is exponentially distributed with mean 1/ A, and is independent 
of the i.i.d. sequence of vacations. Hence the length of J in Case 3 is distributed with PR. 
Thus 

(3.8) PJ = (1 - p - q)80 + qpV + PPR, 

I.e., 

(3.9) f1.T = P,H * ((1 - p - q)80 + qpV + PPR). 

Let us determine q. From Lemma 3.1, we have 

(3.10) r xpR(dx) = _v_. 
lR+ 1 - (J" 

Substituting (3.9) and (3.10) into the balance equation 

we have 

(3.11 ) 

r XllT(dx) = 1/ A, 
lR+ 

1 - p 1 
q= -- ---po 

AV 1 - (J" 
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Now, (3.4) follows form (p + q)[ll] = 1, q[e] = 0, and (3.11). Hence (3.5) and (3.6) follow 
from (3.4), (3.9), and (3.11). From (3.4), (3}'i), (3.6), (3.9), and (3.11) for all e E V, 

( 
p[~] - P[111) (p[~l- p[lll) 

1 - p[el _ p[111 JlJ[ll] + p[e]- p[ll] JlJ[e] = JlJ[e]· 

Comparing the coefficients of 80 in the both sides of this equality, we have, 

o < p[~] -- p[ll] < l. 
- p[e]-- p[ll] -

Hence, we have (3.3) and 

T C {(I - c)JlT[ll] -+- CJlT[e] I 0 ~ C ~ I}. 

To complete the proof, we must show that for a given, c, 0 ~ C ~ 1, there exits a schedule 
ec E V satisfying 

p[ec] - p[ll] 
c= 

p[eJ- p[ll] . 
(3.12) 

This is accomplished by the Bernoulli schedule [10]. Let us describe the schedule. Consider 
again A's departure. If the system becomes empty (Case 3), the subsequent service process is 
uniquely determined by Assumption 2.1-(iv) Now, consider the complementary case. The 
occurrences of Case 1 and Case 2 are determined by the vacation schedule. A Bernoulli 
schedule chooses these two cases according to a Bernoulli sequence. Let b, 0 ~ b ~ 1, be the 
probability that. Case 1 is chosen. The idle probability under this schedule is given by 

p = 1 _ 1 - p[e] 
a+(I-a)b' 

which is monotonically increasing in b. The value of the right-hand side at b = O[resp. b = 1] 
is equal to p[ll)[resp. p[e]]. Hence, for a given c,O ~ C ~ 1, there exists b,O ~ b ~; 1, such 
that (3.12) holds with ec assigned to the Bernoulli schedule with parameter b. Thus we have 

T::J {(I - c)JlT[ll] + CJlT[e] I 0 ~ C ~ I}. 0 

Remark 3.4. For a stationary and stable G/GI/l/oo queue with i.i.d. vacations, the 
above argument is available except for the idle time distribution. That is, let la be the idle 
time measured at a customer departure. The equalities 

(3.13) 

(3.14) 

JlT = JlH * ((1- p - q)bo + qJlV + p(bo - Jlv) * FG''lV)) , 

1 -- p r 
q= ----p, 

AV v 

can be obtained similarly, where 

Fa(x) := P[Ia ~ x], 

(FaT/v)(dx) := Fa(x)T/V(dx) 

r:= )~+ x((80 - Jlv) * (FaT/v))(dx), 

"Iv: the measure on R+ associated with the renewal process {Tj }o~j<oo 
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defined by 

(3.15) 1]V(C~,t]) = E[N(t) -- N(s)J for each 0 < s:S; t < +00,1]V({0}) = O. 

The idle time distribution seems difficult to characterize in general and seems sensitive to 
the vacation schedule ~ if the arrival process is not Poissonian. The parametric property in 
Proposition 3.2 is a consequence of the insensitivity that the idle time is independent of the 
schedule ~ if the arrival process is Poissonian. 

4. Ordering properties of the distribution set 7 

This section investigates the ordered structure on the set 7 to describe how the variability 
of interdeparture times depends on the vacation schedule and the length of vacations. 

Let us recall the notion of the ordering of probability distributions (see e.g. [12]). Let 
Fcx[resp. FicxJ be the set of all convex (measurable) functions [resp. increasing and convex 
functionsJ on non-negative real numbers R+. Let /1 and v be probability distributions on 
R. The distribution /1 is said to be larger than v in the convex order [resp. increasing 
convex order]' denoted by Il :S;(X v[resp. /1 :S;icx v], if and only if (rp,/1) :s; (rp,v) for all 
rp E Fcx[resp. rp E Ficx], where, for divergent cases, the inequality means that if (rp, v) 
+oo[resp. (rp, /1) = -ooJ then (rp. /1) = +oo[resp. (rp, v) = -00]. 

The following theorem describes how the variability depends on the vacation schedule. 

Theorem 4.1. For a given triplet (A, IlH, /1v) satisfying the simultaneous stability 
condition (2.1), 
(4.1 ) 
(1- ct)/1T[IIJ +clllT[eJ :S;cx (I-C2),lT[llJ+C2llT[eJ if and only if Cl :s; C2 for all Cl, c2 E [0, IJ. 

Remark 4.2. Together with the parametric property in Proposition 3.2, Theorem 4.1 
means that the ordered space (7, :S;cx) can be naturally identified with the standard interval 
([0, IJ, :s;). Hence, the order :S;cx is total (i.e., all pairs (/1, v)/1, v E 7 are comparable) and 

/1T[lIJ = inf 7, /1T[eJ = sup T. 
~cx ~cx 

Moreover, let e(k)[resp. g(k)J E V be the k-limited exhaustive [resp. gatedJ vacation schedule 
[7J. Note that e = e(oo), 1l = e(1) = g(I). It is shown that for k = 1,2,3"", 

(4.2) p[e(k)J :s; p[e(k + 1)],p[g(k)] :s; p[g(k + 1)], and [p(k)J :s; p[e(k)J 

in a manner similar to Tedijanto [14J (by which the first assertion was treated). From (3.3), 
for k = 1,2,3"", 

and consequently, for k = 1,2,3,· .. , 

CT[e(k)J :s; CT[e(k + 1)],CT[9(k)J :s; CT[g(k + 1)], CT[g(k)J:S; CT[e(k)], 

where CT denotes the coefficient of vacation of the interdeparture time. 

For convenience, the following notation will be used 

() 
-AX eXPA x := e , 
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Proof of Theorerr~ Put r(c) := (1 - C)I1T[llJ + CI1T[eJ for 0 :::; c:::; 1. Let Cl, c2 E [0, IJ. 
Because the ordered space ([0,1], :::;) is total and the mapping r : [0, IJ --+ T is bijective from 
(3.2), it suffices to show that r(cI) :::;cx r(C2). Put II(c) := (1- c)I1J[llJ + CI1J[eJ (see (3.8)) 
for 0 :::; c :::; 1. From r(c) = I1H * II(c), we have 

(cp, r(c)) = (cp(. + • ),ltH ® II(c)), 

where cp(. +.) denotes the function (x,y) t-t ~,(x + y). Note that the function y t-t (cp(y + 
.), It H) belongs to Fcx. Now, it suffices to show II( cd :::;cx II( C2) which is equivalent to 

(4.3) (cp, II( cd) :::; (cp, II( C2)), for all cp E Fcx. 

Here, we may assume cp(O) = O. From (3.4),(3.5), and (3.6), we have 

for all cp E Fcx satisfying cp(O) = O. Hence (4.3) is reduced to the inequality 

(4.4) 
1 

(~"ltR) ?: --(CP,I1V), for all cp E Fcx satisfying cp(O) = O. 
I-a 

For convenience, we consider 17v : = 150 + 1)V 0 From the renewal theory (e.g. [2]), 17v is 
characterized by 

(4..5) 

and hence 

(4.6) 

From (3.1), (4.6) implies 

(4.7) 

17v = 80 + I1V * 17v, 

1 
(exps,17v) = 1 _ V*(s) 

On the other hand, as the derivative of cp is monotonically increasing, 

(4.8) cp(x + y) ?: y(x) + cp(y). 

Hence, 

(CP,ltR) =: (cp, (exPA17v) * ((1 - eXPA)I1V)) (by (4.7)) 

;:: f (cp(x) + cp(y))e--xx 17v(dx)(1 - e- AY )l1v(dy) (by (4.8)) 
lR+xR+ 

=: (cpexPA,17v)(I-exP-x,l1v) + (cp(l-exPA),l1v)(exPA,17v) 

From (4.6), we have 

(409) 
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Substituting (4.5) and tp(O) = 0 into (tpexPA'ryv), (4.8) also implies 

(tpexPA' ryv) = (tpexPA' 1]V * (exPAJiV)) 

2: (exPA' Jlv)(tpexPA' rlV) + (exPA' ryv)(tpexPAJlV) 
_ 1 

= a(tpexPA' 1JV) + --(tpexPA' JlV). 
I-a 

Hence, 

(4.10 ) 
1 

(exPA' ryv) 2: (1 _ 0')2 (tpeXPA' JlV). 

Substituing (4.10) into (4.9), we have 

This completes the proof of (4.4). 0 

In view of the application described in Section 1, the vacation time may be short. In 
this case, we can describe how the variability depends on the length of vacation with the 
aid of the infinitesimal calculus. For a given triplet (A, JlH, Jlv), we consider a perturbation 
(A,JlH,Jl'{r) with a small c 2: 0 from the ordinary M/C/I queue characterized by (>',JlH)' 
That is, we define Il'{r by 

(tp, Jl'{r) = r tp(cx)Jlv(dx). 
lR+ 

For a quantity Q defined for (.\, JlH, Jlv), QC denotes the corresponding quantity defined for 
(A,JlH,Jl'{r)· For c = O,Jl} == PJlH + (1 - P)JlH * MA, which is the interdeparture time 
distribution of the ordinary M /G /1 queue. Let a be the probability that the server leaves 
behind no customers at an arbitrary vacation epoch. For a schedule ~ E V, consider the 
expansIOn 

(4.11) a C = 1- (3. >.vc + o(c), as c -t +0. 

For the schedule with (3[~1 = 0, we further consider 

(4.12) 

Since a C 
::; 1, we have (3, I ~~ O. Let Jlit denote the recurrence time distribution of the 

vacation time defined by Ilit(dx):= ~Jlv[x,oo)d:r, and let C k denote the set of all functions 

tp on strictly positive real numbers having a continuous k-th derivative tp(k) and a limit 
tp(k)(O+). We now present how the variability depends on the length of vacations. 

Proposition 4.3. For a quadruplet (A, JlH, IlV, ~), the perturbations {Jl~ }c2:0 are compa­
rable for small c in the following sence: for 1/; E :F';,cx n C 3 with 

(1p + 1/;', Jlit * MA * JlH) + (1/;, JlV * JlH) < 00, 

(i) if (3[~1 > 0, then there exits a > 0 such that 

(4.13) 
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(ii) if ,8[~] = 0 and ~ - (~~r < [resp. >h[~]' then there exists a > 0 such that 

(4.14) 

We note that the assumption for 'IjJ is used to apply Lemma 4.5, where the condition is used 
to guarantee convergences of the terms produced by the integration by parts. 

Remark 4.4. For the typical vacation schedules, the coefficients in the expansions (4.11) 
and (4.12) are given by 

(4.15 ) 
00 p 

,8[e] = O,,[e] = O,,8[g] = I:(1- un) and ,8[11] = -1 -, 
n=O - p 

where 9 E V denotes the gate schedule characterized by 9 = g(oo), the sequence {'Un}~=o is 
defined inductively by Uo := H*(>"), Un := H"(>" - >"Un-I) for n = 1,2,3··· (see [6]). More 
generally, from (4.2) and p = (1 - p)(1- a)a/>..v ([6]), 

( 4.16) ;3[e(k + 1)] ::; ,8[e(k)], ,8[g(k + 1)] ::; ,8[g(k)] for k = 1,2,3··· 

Because of Schwartz's inequality, ~ - (~~n 2 > O(if v(2) < 00). Thus Proposition 4.3 

implies for all 'IjJ E Ficx n C3 with ('IjJ, Itv * M), * ItH) < 00 

(4.17) 

if the vacation times are very short. The range of vacation times under which (4.17) above 
hold may depend on the function 'IjJ. 

To prove Proposition 4.3, we need the asymptotic expansion of the integration (cp, Ilk). 

Lemma 4.5. If cP E Ficx n C3 with cp(O) = IP'( +0) = 0, and (cp + cp', Ilv * MA) < 00, then 
(I cp I, Ilk) < 00 for all 0 ::; c ::; 1 and 

(4.18) ( 

v(2) v(3) ) 
(cp, Ilk) = (cp, M>..) 1 + 2v2 >..vc T 6v3 (>..vc)2 + o(c2), as c -+ +0. 

Proof of Proposition 4.3. Consider again the equality IlT = IlH * IlJ as described in the 
proof of Proposition 3.2. Because ('IjJ,ttT) = ('IjJ(e + e), IlH ® ttJ), it suffices to show (4.13) 
and (4.14) for (1pO,IlJ) instead of ('IjJ,Il'T) where 

Note that 

'ljJo(y) = ('IjJ(e+Y),IlH) E Ficx n C 3
, 

Il~ = pbo + (1 - p)M>.. 

('ljJo + 'IjJ~,ttv * M),) + ('ljJo,llv) < 00. 

Put cp(x):= 'ljJo{x) - 'ljJo(O) - 'IjJ~(+O)x. Then cp E Ficx n c3,cp(O) = cp'(+O) = 0, and 

(cp + cp',llv * M>.) + (cp,llv) < 00. 
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The equality 
(r.p, Mj) = (lfJo, Mj) -lfJo(O) -lfJ~( +0)(1/ A - h), 

implies that 1 (lfJ,MT) 1< 00 (Lemma 4.5) and that it suffices to compare (r.p,Mj). From the 
Fuhrmann-Cooper decomposition [6J, p = (1 - p)(l - a)a/ Av. Then we have 

( 
v(2) v(3) ) 

pE = (1 - p) 1 - -2 ') AVe + -3 (Ave)2 (1 - f3AVe - ,(Ave)2) + o(e2), 
v'· 6v 

{ = (1 - p)(f3 + ,Ave) + O(e). 

Therefore, 

(r.p,Mj) = qE(r.p,MV) + pE(r.p,MR) 

= (1 - p)(f3 + 'rAVe + O(e»o(e) + pE(r.p, MR) 

( 
v(2) v(3) ) 

= (1 - p) 1 - 2v2 AVe + 6v3 (Ave)2 (1 - f3AVe - ,(Ave)2)(r.p, MR) 

+ f3o(c) + o(c2
). 

From Lemma 4.5, we have 

(4.19 ) (r.p, Mj) := (r.p, M.x)(l - p)(l - f3. AVc) + o(c), 

as c ----+ +0. If f3[~] = 0, 

(4.20) (r.p,Mj) = (r.p,M.x)(l-p)(l + (~~~ - (~~~r -,). (Avc)2) +o(e2
), 

(3) (2») . as e ----+ +0. Assume f3[~J > 0 or ~ - ~ < [resp. >h[~J. There eXIsts a > 0 such that 

(r.p, Mj) is non-increasing [resp. non-decreasingJ in c E [0, aJ. This completes the proof. 0 

Proo f of Lemma 4.5. Consider the renewal process {Tj }o~j<co used for the definition of 
MR. For x 2=: 0, let Ox denote the time shift defined by Tj a Ox = TN(x)+j - x for j = 0,1,2, .. '. 
By definition 
(4.21 ) 

(r.p,MR) = E[r.p(TN{I)+t>] = E[ f r.p(TN(x)+l)M.x(dx)] = E[ f r.p(Tl a Ox + x)M.x(dx)]. 
lR+ lR+ 

Note that r.p,r.p' 2=: 0 because r.p E:: Ficx and r.p(0) = r.p'(0) = O. Let us first show (r.p,ILR) < 00. 

From integration by parts, 

E[ f r.p(Tl aOx +x)M.x(dx)J = lim (he-.x X
) (l/X r E[r.p(Tl aOy +Y)Jdy) 

lR+ x-+co lo 

+A lim r(Axe-.xX )(l/X r E[r.p(T1aOy+y)]dy)dx. 
U-+CO lo lo 

By the ergodicity of the renewal process and Theorem 1.3.12 in [5], the first term is given by 

lim (Axe-.x X
) (l/x fX E[<p(Tl a ()y + y)]dy) = lim (Ae-.x X

) r (r.p(u + Y),Mv- (du»)dy. 
x-+co lo X-+CO lo 
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The right-hand side is finite (it converges to 0) as (rp',J-lv * M>.) < 00. Similarly, the 
convergence of the second term is identical to the convergence of the integration 

.\ lim r (.\e->.x) ( r (rp(u + y),J-lv(du))dy)dx 
z ..... oo 10 10 

= - lim (Ae->'X) rx (rp(u + Y),Jlv' (du))dy + (rp,J-lv' * M>.). 
x ..... oo 10 

Hence (rp, JlR) < 00. As rp is non-decreasing, this implies (rp, J-llz) < 00 for all 0 < e ~ 1 while 
the case of e = 0 is trivial. Now, we show the asymptotic properties. Applying Taylor's 
expansion to (4.:n), 

(4.22)(rp,J-llz) = (rp, M>.) +eE[((T1 o 8(e/€»)rp', M>.)] 

2 2 1 " 3 (r' (3) 1 2) + e E[((T1 0 8(eM) 2rp , M>.)] + e E[( 10 rp (ey + -)2(1'1 - y) dy 0 8(e/e), M>.)]. 

Let us estimate t.he second term. Put F(x) := 1 - e->'x = 1 - exp>.(x). Integration by parts 
yields 

Using a similar ergodic argument, 

ln
XI€ v(2) 

lim e (1'10 8y)dy = -x. 
€ ..... O+ 0 2v 

r v(2) 
Put g(x) = 10 (1'10 8y )dy - 2v x. Integration by parts again yields 

( 
(2) ) 

((1'10 8(e/€)h/, M>.) = - r eg(X/e) + ~)x (rp'(x)F'(x))'dx 
lR+ ,.v 

v(2), l lnxle "" = -(rp ,Ah) - e e g(y)dy(rp (x)F (x)) dx, 
2v R+ 0 

lim r e rle: g(y)dy(rp'(x)F'(x))"dx = ( lim ~ rt g(y)dy) r x(rp'(x)F'(x))"dx 
e ..... O+ lR+ Jo t ..... oo t 10 lR+ 

= _( !im ~ rt g(y)dy) r (rp'(x)F'(x))'dx = ( lim ~ rt g(y)dy) (Arp'(O)) = 0, 
t-+oo t 10 lR+ t-+oo t 10 

(rp', M>.) = .\(rp,M>.). 

These equalities yield, 

( 4.23) 

Similarly, 

(4.24) 
2 21 " 1 v(3) 2 2 

E E[((T1 0 8(ele:») -rp , M>.)] = --3 (rp, M>.)(Ave) + O(e ), 
2 6 v 

(4.25) 
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Substitution of (4.23) through (4.25) into (4.22) yields (4.18). 0 

Finally, let us summarize the ordering property on the perturbed sets U ye where 
e near 0 

the set ye converges to one point {Ii~} as c -+ O. Theorem 4.1 and Proposition 4.3 can 
be combined and represented a5 Fig. 1. For an increasing convex function 'Ij;, consider the 
function (cp,.): U ye =3 Ii -+ ('Ij;, Ii). The function ('Ij;,.) increases along the directions 

e near 0 
represented by arrows in Fig. 1, whereas the function is constant along the dotted curve. 

,L/[ll ] 
T 

Fig. 1. The increasing convex order of interdeparture time distributions. 

5. Concluding discussion 

Here, we interpret the results in terms of the LAN s. Consider the data transfer between 
terminals in the lightly-loaded token-passing LAN as described in Section 1. The maximum 
time during which a terminal can transmit packets consecutively is called the token holding 
time [1] of a terminal. The number k in the vacation model with the k-limited schedule 
may correspond to the token holding time of the source terminal whereas the increase in the 
vacation time means that the traffic intensities or the token holding times increase at other 
terminals. Based on the studie~. of the set of interdeparture time distributions, we have the 
following consequences. 

• The inter-arrival times of packets to the destination becomes less variable if the token 
holding time at the source terminal is reduced (Theorem 4.1). 
• This effect is accelerated if the traffic intensities or the token holding times increase at 
other terminals ((4.16) and (4.19)). 
• An increase in the traffic intensities or the token holding times of other terminal makes the 
inter-arrival times less variable for most transmission schedules, whereas this effect is accel­
erated if the token holding time at the source terminal is sufficiently restricted (Proposition 
4.3 and (4.19)). 

Here, the traffic intensities and the token holding times of other terminals are limited to be 
sufficiently small values because Proposition 4.3 and (4.19) are asymptotic results. These 
results indicate that the variability of the arrival process and hence the communication 
quality may behave similarly. Further studies in departure processes are expected to confirm 
the quality behaviors. 

Finally we note the disadvantages of choosing the interdeparture time distribution as the 
characteristic of the departure processes. First of all, we cannot apply those results directly 
to the performance under medium, heavy, or bursty traffic environments. This is because the 
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inter-arrival times may be correlated so strong under these traffic environments that the inter­
arrival time distribution is inadequate to charaderize the number of arrivals in time intervals. 
On the other hand, according to the proof of Proposition 3.2, the set of inter-departure time 
distribution T can be completely para.metrized by the Bernoulli schedules. Therefore, the 
important differences between the k-limited schedule and the Bernoulli schedules are not 
described in this study. 
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