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Abstract This study presents a DEA model without the conventional non-Archimedian infinitesimal E. 

This article also introduces a new DEA efficiency measure. Incorporating slacks in inputs and shortages in 
outputs, the new DEA measure expresses the relative efficiency of decision making units more properly than 
traditional one. 

1 Introduction and Historical Background 
In their ingenious paper [lOJ, Charnes, Cooper and Rhodes introduced a fractional pro­
gramming method to measure the relative efficiency of a Decision Making Unit (DMU), 
which was solved by transforming the fractional programming into a linear programming 
problem via the Charnes-Cooper scheme [6J. The method was referred to as DEA (Da.ta En­
velopment Analysis). The DEA model proposed in [10J maintained an assumption; all the 
weighting values to inputs and outputs were assumed to be nonnegative. In the subsequent 
"short communication" [11], Charnes et. al. changed their DEA problems and required 
that the weights be strictly positive. Thus, t.he introduction of the non-Archimedian in­
finitesimal e was anticipated to distinguish bet.ween nonnegative and positive values. ( This 
problem was already discussed in [10J implicitly.) Although the subsequent discussions can 
be found in [5], [7], and [12], and the role of e has become unclear and weakened, it is still 
frequently used in the literature (e.g., [4],[8]) and in particular, in some cases of compu­
tational situations, values such as e = 10-5 ,10-6 (single precision) or e = 10-12 (double 
precision) are conveniently employed to substitute for the non-Archimedian infinitesimal 
e. However, the approach may produce a theoretically contradicting issue. That is, we 
cannot uniquely determine what is the best~. Different e values yield different DEA re­
sults. Therefore, we need a completely e-free development of DEA from both theoretical 
and computational points of view. 

This article is organized as follows. Section 2 defines an input oriented DEA model 
based on the production possibility set. Its dual corresponds to the Charnes-Cooper­
Rhodes (CCR) model with the weights to inputs and outputs as variables. Then, we define 
a DMU as slackless if, for every optimal solution to the DEA model, it has no slack in 
inputs and no shortages in outputs. By a theorem of the alternative or the strong theorem 
of complemantary slackness, it will be proved that for a slackless DMU there is a strictly 
positive weight solution in the corresponding CCR model. Subsequently, for a DMU with 
non-zero slacks in an optimal solution to the DEA model, there exist no positive weight 
solutions in the CCR model. Section 3 defines the max-slack solution and shows a procedure 
to find it. The max-slack solution can be used for deciding whether the DMU is slackless 
or not. Then, we propose a method for finding positive weights for slackless DMUs. Thus, 
all jobs of the CCR model can be successfully achieved with no recourse to e. Section 
4 introduces a new measure of relative efficiency, based on the max-slack solution, which 
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takes account of slacks in the inputs and shortages in the outputs of the objective DMU. 
As a consequence, the new DEA measure expresses the relative efficiency of DMUs more 
properly than the traditional one. 

2 Input Oriented DEA and Slackless DMU 
We consider n decision making units (DMUs), each of which uses an input matrix X = 

[XikJ E Rmxn to produce an output matrix Y = [YjkJ E R·xn, where Xik is the amount of 
input i consumed by DMU k and Yjk is the amount of output j produced by DMU k. The 
unit k has the input vector Zk = (Xik) E Rm, representing m input components and the 
output vector Yk = (Yjk) E R' representing s output components. We assume X > 0 and 
Y> O. The production possibility set P (e.g., [2], [3], [9]) is defined by 

(1) P = {(z,y) I z ~ XA, y So YA, A ~ O}, 

where z, y and A are m-, s- and n- vectors, respectively. 
For a given DMU denoted by 0 with the input Zo and the output Yo' we consider the 

following input oriented DEA model as expressed by the linear programming (LPo ). 

(2) (LPo) min () 

subject to ()zo > XA, 

Yo < YA, 

A > 0, 

where () E R and A E Rn are variables. 
This model contracts inputs as far as possible while controlling for outputs. The dual of 
(LPo ) is: 

(3) (DF~) max y~ 1£ 

subject to ZTV = 1 o , 

vTX > uTy, 

V > 0, 1£ ~ 0, 

where v E Rm and 1£ E R' are variables. 
As is well known, (D Po) is t he linear programming version of the original CCR fractional 

programming problem. The dual variables 1£ and v are the weights for outputs and inputs, 
respectively. 

In (LPo), the slacks Sx and Sy can be defined by 

(4) 

Here let optimal solutions for (LPo ) and (DPo ) be (fr, A*, s;, s;) and (1£*, v*), respectively. 
These problems are often degenerated and the optimal solutions are not always unique. 

Definition 1 (slackless DMU) If the following condition for (LPo ): 

(5) s; = 0 and s; = 0, 

is observed at optimality, then we call the status of DMUo as slackless. 
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Theorem 1 D M Uo is slackless if and only if there exists an optimal dual solution (u', v*) 

for (DPo ) with u" > 0 and v* > o. 

Proof Although the theorem is a natural consequence of the strong theorem of comple­
mentary slackness, we will show another proof. 

If DMUo is slackless, there is no solution (.\,sx,Sy) for the system: 

(6) f)'zo = x.\ + sx, 
(7) Yo y.\ - Sy, 

(8) .\ > 0, 

(9) (Sr,Sy) > o and (sr, Sy) i= o. 

By applying Slater's theorem of the alternative (see Appendix 1), modified for the non ho­
mogenous system, to the system (6)-(9), it is concluded that the system 

(10) vTX ~ u.TY, 

(11) f)*{vT zo) - uTyo + z = 0, 

has a solution v E Rm
, u E RS and z E R 

(12) z> 0, u. ~ 0, v~O 

or 

(13) z ~ 0, 1!L > 0, v> o. 

Since v T 
Zo ~ 0, there are two cases: 

Case (i) v T 
Zo > 0. 

Let v* - v/vT Z - 0, 

(14) 

(15) 
(16) 

(17) 

* - / T d * - " / T Th h· u - u v Zo an z -" v Zoo en, we ave. 

(v*f Zo == 1, 

(v*f X ~ ('U*fY, 

e* - (u*)T y" + z* = 0, 

z* ~ 0, u*·~ 0, v* ~ o. 

with 

Hence, (u*, 11*) is a feasible solution for (DPo ). By the duality relation, (16) becomes 

(18) f)* = (u*)T Yo and z* = 0, 

demonstrating the optimality of (u*, v*) for ,:DPo ). By the result of (13), it is obtained 
that u* > 0 and v* > o. 

Case (ii) vT 
Zo =: 0. 

From (10), we have ° == v T 
Zo ~ uT yo ~ 0 and, hence uT Yo = O. Equation (11) results 

in z = ° and, from (13), u > 0 and v > 0 are obtained. This contradicts with v T 
:1: 0 = 0, 

since Zo > 0 by assumption. Thus, Case (ii) never occurs. 
The reverse ils also true by the nature of the theorem of the alternative. 0 

Evidently, we have: 

Corollary 1 (DPo ) has no strictly positive optimal solution (u*, v*) if and only if (LPo ) 

has an optimal30lution (e*,.\*,s:,s~) with (Il:,s~) ~ 0 and (s:,s~) i= o. 
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3 Max Slack Solution 
The preceding Theorem and Corollary reveal the equivalence between the slackless solution 
in (LPo ) and the positive solution in (DPo )' Therefore, hereafter, we will mainly deal with 
(LPo )' since it can be more easily handled theoretically and computationally than the 
latter. Furthermore,(LPo ) does not need c:. 

Definition 2 (max slack solution) An optimal solution of(LPo ) is called as max slack, 
if it maximizes w = eT Sx + eT Sy, where the eT is a vector of ones. 

The max slack solution can be obtained by a 2-phase process as follows: 
The first phase minimizes 0 of (LPo )' Then, the second phase maximizes w = eT.'jx + eT Sy, 

while keeping 0 = 0* (the optimal 0 value). It hardly needs pointing out that DMUo is 
slackless if and only if its max slack solution satisfies w = eT Sx + eT Sy = O. From the 
definition of efficiency, it is Q, straight forward matter to state that a DMU is efficient if 
it has 0* = 1 and is slackless. Otherwise, it is inefficient. (The above procedure and the 
definition of efficiency are given in [12], as well.) 

It is important to note that in the original CCR model [10], the weights u and v were 
required to be nonnegative and then, in the subsequent paper [11], the problem was changed 
and required u and v to be positive, considering the slackness in (LPo ). Specifically, in 
[7], Charnes and Cooper introduced the non-Archimedian infinitesimal c: and replaced the 
condition u > 0, v > 0 by ~'1. 2: c:e, v 2: c:e. If the optimal solution (u*, v*) for (DPo ) 

under the latter condition happened to be Archimedian positive, then DMUo is slackless 
by Theorem 1. However, if some elements of (u*, v*) are non-Archimedian infinitesimal, 
we cannot decide from (u *, v*) whether D MUo is slackless or not. We will be free from 
this kind of information gap ~;o long as we deal with the max slack solution of (LPo ). 

A practical procedure for finding positive weights u and v for a slackless DMU is as 
follows. The problem turns out to find a feasible solution for (DPo ) with y; u == 0* and 
v 2: te and u 2: te , for sorre positive t. In order to solve it in the primal form, we will 
start from the optimal basis of the second phase above and change the objective function 
of (LPo ) to maximize t(eT Sx + eT Sy) , while keeping 0 = O*, where t is a parameter. The 
parametric (LPo ) is solved to give a positive t whose existence is guaranteed by Theorem 
1. Then, the corresponding simplex multipliers v and u give the positive weights. (See the 
forthcoming paper [16J for further details.) 

4 New Measure of Efficiency 

The traditional DEA considers 0* as the efficiency measure. However, 0* is indifferent to 
the level of slacks in inputs and outputs and hence is misleading as a practical means for 
relatively comparing DMUs. Now, we can define another type of efficiency by the following 
principles: (1) it should be the same as 0* when the DMU is slackless, and (2) it should 
be decreasing in the relative value of slacks in inputs and outputs. 

In an effort to achieve this purpose, we propose a new measure of efficiency, defined by 

(19) 

where s; and s; are slacks of the max slack solution, respectively. It is easily observed 
that 7]* defined by (19) satisfies the above criteria. Furthermore, 7]* can be rewritten as 

(20) 
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(21 ) Ze = X"\* and Ye = Y"\*. 

Theorem 2 The DMU (ze, Ye) is efficient. 

Proof. The efficiency of (Ze, Ye) is estimated by solving the following problem: 

X..\ + Sr, 

Ye Y..\ - Sy, 

..\ > 0, Sx 2 0, Sy 2 o. 

Here let a max slack optimal solution of (Ll~,) be (O;,..\:,s;e,s~J. From O·zo = :I':e + s; 
and Yo = Ye - s~, the following conditions are obtained: 

X"\; + s;e + O;s;, 
Y..\;; - s~e - s~. 

Since (O·,..\*,s;,s~) is a max slack optimal solution for (zo,Yo) and 0; :::; 1,0; = 1 , 
s;. = 0 and s~e = 0 are obtained. Thus, (Ze, Ye) is efficient. 0 

Thus, (Ze, y,,) is a projection of (Zo, Yo) onto its efficiency facet. r( can be interpreted 
as the product of the average input efficiency eTze/eTzo(:::; 1) with the average output 
efficiency eT Yo/ eT Ye(:::; 1). 

Example 

Table 1 shows the input X and the output Y for six DMUs along with the max slack 
solutions. DMlft, has O~ = 1 which seems to be better than DMU1 and DMU2 . Because 
of S;1 = 2 is observed for DMU6 , its new efficiency becomes .,,~ = 9/11 = 0.82. Thus, 
D M U6 drops to the lowest level. 

Table 1: Efficiency: Old and New 

DMU 1 2 3 4 5 6 
X 4 6 8 4 2 10 

3 2 1 2 4 1 
Y 1 1 1 1 1 1 

8;1 0 0< 0 0 0 2 

s~ 0 0< 0 0 0 0 
s· 
'1J 0 0 0 0 0 0 

O· .86 .S6 1 1 1 1 

.". [.86 .S6 1 1 1 .82 I 

Note: The new efficiency measure is not invariant to the scaling of the data (X, Y) 
if the DMU has positive slacks. We can adjust the measure by considering some weights 
Wx E Rm and Wy E RS corresponding to the relative importance of input resources and 
output products of DMUo , respectively as follows: 
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The first phase minimizes () of (LPo ). Then, the second phase maximizes, = w~ Sx, while 
keeping () = ()* (the optimal () value of the first phase). Lastly, the third phase maximizes 
w; Sy, while keeping () = ()* and w~ Sx = ,* (the optimal, value of the second phase). Let 
the optimal solution of the third phase be (A*, s;, s;). Then, a new measure of efficiency 
is defined by 

( 
WT s*) ( wTy ) * _ ()* _ ~ 'Y 0 

1] - T T T * . 
WxZ o wyYo+wysy 

(22) 

The 1]* defined above is uniquely determined for the given weights Wx and Wy and reflects 
the intention of the input oriented DEA. 

5 Concluding Remarks 
Considering the primal and the dual sides of the DEA model, this article pointed out the 
equivalence of the slackless solution in the primal and the existence of a positive weight in 
the dual. This study also proposed a new measure of efficiency. Although we have been 
mainly concerned with the input-oriented DEA, we can easily extend the results to the 
output-oriented DEA which is usually represented by: 

max ~ 
subject to Zo > XA, 

~Yo < YA, 

A > 0, 

where ~(~ 1) is the expansion factor of the outputs for DMUo ' 

Following an analogous rationale, we can define a new measure of efficiency T' for the 
output oriented DEA, using the max slack solution (C, A*, s;, s;) by the formula: 

(23) 

Several DEA models (Banker-Charnes-Cooper [3], increasing returns to scale, decreasing 
returns to scale, among others) are presented and extensively studied. (See e.g., [1]'[4].) 
The new measure of efficiency proposed in this study can be easily incorporated within 
these models as long as the models are derived from some production possibility set. 
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Appendix l(Slaster [15]) 

Let A, B, C and D be given matrices with A and B being nonvacuous. Then the system 
(1) or (II) has a solution but never both. 

(1) 

has a solution a:. 

(JI) 

Aa: > 0, Ba: 2: 0, Ba: of. 0, Ca: 2: 0, Da: = ° 

yT A + yI B + Y5 C + yI D = ° 
with Yt 2: 0, Yt i= 0, Y2 2: 0, Y3 2: ° 
or 
Yt 2: 0, Y2 > 0, Y3 2 ° 

has a solution (Yl' Y2' Y3' Y4)' 
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