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Abstract The problem of apportionment is to allocate the seats of a House of Representatives or Diet
to states or constituencies proporticnally to their respective populations. This paper reviews the problem,
its background and pitfalls, and the various approaches that have been applied to its analysis.

0. Introduction

The problem of apportionment possesses a deceptively innocent air : to allocate
seats in a House of Representatives, Parliament, National Assembly or Diet to states,
constituencies, or regions proportionally to their respective populations seems so simple a
task!! Proportionality is no mystery : the only seemingly minor complication is the need
to allocate integer numbers of seats.

And yet, . . ., repeated errors of judgement, implicit and erroneous assumptions,
misleading ideas and downright false statements have hounded the problem over the two
hundred years of its history. A recent paper [12] that appeared in this journal? is no
exception. It is subject to pitfalls similar to ones that have trapped distinguished students
of the problem in the past, and so motivated the writing of this survey which attempts to
set the record straight.

The aim of this paper is to point out that the innocent face of the problem hides a
surprising subtlety of behavior, to summarize some of the salient results and to correct
certain misunderstandings and errors. Implicit is the plea that at least some of the by now
well established concepts be used to test any new idea or new method that is formulated
before it is formally proposed.

In section 1 the problem is defined formally, and in section 2 its background and the
best known of the methods used to find solutions are presented. Section 3 describes the
"optimization approach” and its difficulties. Section 4 explains the idea of axiomatization
as a practical approach to finding equitable methods. An example of the axiomatic
approach to arriving at a reasonable concept of "constrained proportionality” in reals
- the concept of the "fair shares”™ of the states - is given in section 5. Section 6 reviews
the axiomatic theory of apportionment. In section 7, Huntington’s pairwise comparisons
analysis is presented In order to compare it with Oyama’s [12] "average ratio pairwise
transfer” idea whose shortcoming is discussed in Section 8. In section 9 it is shown why
a subelass of the divisor methods, the "parametric divisor methods,” do not, as has been
claimed, adequately “cover” all of the divisor methods. Section 10 takes up the concept
of the bias of a method and explains why it is inadequate to analyze one problem and to
deduce from it conclusions concerning which method is most equitable. Finally, in section
11, a characterization of Webster’s method heretofore never explicitly stated - a "folk
theorem” - is proven, and the evidence in support of Webster’s method is summarized.

'In another guise the problem is to allocate seats to political parties proportionally to their respective vote
totals.
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1. The problem

A problem of apportionment (p,f,c, h) is given by : an s-vector of populations p = (p;) >
0, an integer house size h > 0, and integer s-vectors f = (f;) > 0 of floors and ¢ = (¢;) > 0 of
ceilings. An apportionment (of h) is an s-vector of integers a = (a;) satisfying
(1) Yia; = h, f,' <ay S C¢ fOI‘ all 7.

A problem is feasible if there exists an integer vector a satisfying (1). Necessary and
sufficient conditions for feasibility are that f; < ¢; and £if; < k < Zie;. In most practical
instances ceilings are not present. However, floors often are : in the United States House
of Representatives each state has a floor of 1, in the French Assemblée Nationale each
département has a floor of 2, and in the Canadian Parliament the provinces have variable,
historically determined floors. Presumably, each constituency of Japan must receive at
least one seat.

Letting p* = %;p; be the total population, define the quota of state i to be ¢ =
pi/p*. If there were no integer requirement and no floors or ceilings then the desired
apportionment is the proportional solution : a=q. But if there are floors and ceilings
and no integer requirement, then what? A reasonable idea is to say that the solution
should be proportional except to meet a floor or ceiling : the fair share of h of state i,
denoted r;, is defined to be
(2) v =mid{ f;,p:/2, ¢;} with r > 0 chosen so that T;r; = h,
where mid{z,y,z} = y if < y < :. Sometimes it will be convenient to use the notation r;(h)
to indicate the fair share of house size h. The ideal solution is the vector of fair shares
r= (r;) which, in the absence of floors and ceilings, is equal to the vector of the quotas. A
more solid axiomatic justification for this definition of the fair shares is given in section 5.

A method of apportionment & is a rule or correspondance that assigns at least one
apportionment of & to every feasible problem (p,f,c,h). The central question is : what
method of apportionment @ should be chosen ?

2. Background

The history of the problem is natural enougli : necessity breeds invention [8]. In 1792, in
response to the first census taken in the United States, Thomas Jefferson and Alexander
Hamilton proposed competing but apparently reasonable methods. Jefferson’s favored his
state of Virginia, then the most populous of the states, the Virginians held the power, so
Jefferson’s method was chosen (after a first use of the presidential veto) and then used for
the ensuing fifty years to apportion the United States House of Representatives.

Both methods are easily explained®. Hamilton’s method is : first, give to each state the
integer part of its fair share, [,]~; then, assign the seats not yet allocated, one per state,
to those states having the largest fractions or remainders r; — [r;]~. Notice that it is entirely
possible for there to be several solutions in cases of "ties” in the remainders.

An entirely different reasoning is found in Jefferson’s method : find a "divisor” z {a real
number) so that the sum of the integers obtained by dividing the populations by z and
rounding down gives the required house size h, except to meet a floor or ceiling; that is,

choose z > 0 so that %;a; = h where o, =mid{f;, [pi/x]", ¢}

3The methods are defined under the assumption that there are both floors and ceilings. These are the
definitions that result from the axiomatic theory described below. In the United States, where only the floor
of 1 is operative, the Hamilton method when used was interpreted as follows : base the procedure on the
quotas ¢; (instead of on the fair shares ;) and first give each state having ¢; < 1 one seat. This procedure

might not result in a feasible apportionement! Also, there are cases in United States history where this
slight change in procedure yields different solutions (including the United States problem of 1990).
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To be entirely correct one must here define [a]-, for n a positive integer, to be either of
the values n or n — 1, for here again there can be ties.

Both methods have been invented and invented again, Jefferson’s sometimes in clothes
that make it appear to be quite a different method, both have been and are used in one
or another country, but both were ultimately rejected in the United States because of
behavior that slowly came to light through use. Different problems, different data, yielded
differing solutions, and "patterns” and "paradoxes” arose that made reasonable political
men look for other methods to apportion seats among regions.

The historical record reveals (at least) six other methods proposed since 1792. In 1822
- in response to the exaggerated advantage that the method of Jefferson was perceived to
give to the large states - Representative William Lowndes of South Carolina proposed the
same procedure as Hamilton except to assign the seats not yet allocated, one per state, to
those states having the largest "adjusted remainders” (r; — [#])/pi. This method, clearly
advantageous to the small, has never been used. The remaining five may, with that of
Jefferson, be given a unified description [5] [8], although it must be kept in mind that
some of them were first proposed in decidedly different terms which make some of them
look rather more persuasive.

Let d be a real valued function defined on the nonnegative integers and satisfying

(3) a <d(a)<a+1, and
not {d(a) = a and d(b) = b + 1 for integers a > 0 and & > 0}.
A d-rounding [:]; of any nonnegative real munber = is an integer a defined by

(4) ] =a, if d{a—1) < z < d(a), and
-l =agora+1, ifz= d{a).

The divisor method based on d is then

(5) 4 p,fye.h) =

{a: a; = mid(fi,[pi/2]a.e) and S;a; = h for some real number z > 0}.

The so-called five traditional methods are all divisor methods defined, respectively, with
the following functions d :
Adams (1832), or smallest divisors : d(¢) = a
Dean (1832), or harmonic mean : d(a) = a(a+ 1)/(a + .5)
Hill (1911), Huntington, equal proportions or geometric mean : d(e) = {a(a + 1)}/?
Webster (1832), major fractions, odd numbers, arithmetic mean or Sainte-Lagie :
dla)y=a+ .5
Jefferson (1792), greatest divisors, d'Hondt, Hagenbach-Bischoff, or highest averages :
dla)=a+ 1.
The Marquis de Condorcet had proposed in his 1792 plan for a French Constitution the
divisor method based on d(¢) = a + 4.

The obvious difficulty is : now to choose among these? There is an infinite choice of
divisor methods since any d satisfying (3) will do!

3. Optimization

A different, supposedly more maodern approach to the problem is via optimisation. Here
the idea is to choose a feasible apportionment a to minimize some expression of the distance
between a and the ideal perfectly proportional solution. But precisely what expression of
distance ? Hamilton’s method gives solutions that minimize ¥;la; —r;|, and X;(a; —r;)?, and
indeed any L, norm |a-r|.

Webster’s method gives solutions that minimize T;p;(a; /p; —&/p*)* whereas Hill’s method
yields solutions that minimize S;a,(p;/a; — p/h)?. Oyama [12] gives the new result that the
divisor method based on d(a) = a+1 for 0 <t < 1 minimizes S;p; {(a; + ¢ - .5)/p; — h/p"}?, thus
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generalizing the formula for the Webster method to this particular class of parametric
divisor methods. However, he is quite wrong in claiming that very little has been said
concerning the optimization approach : every one of the 10 functions he discusses, except
for the above result, has been studied before {see {8], pp. 102-105).

Table 1

State Population Quota Adams Pean Hill Webst. Jeff. Hamilt.

1 107 658 39.401 38 40 40 40 41 40

2 27 744 10.154 10 10 10 10 10 10

3 25 17 9.215 9 9 9 9 9 9

4 19 951 7.302 7 7 7 8 7 7

5 11 610 5.347 6 5 6 5 > 5

6 9 225 3.376 4 4 3 3 3 4

7 3 292 1.205 2 i 1 1 1 1
Total 207 658 76 76 76 76 76 76 76

Two of his assertions are false. He states that Webster's solutions minimize W* =
Yila;/p; — h/pt| and that Dean’s solutions minimize D* = T|p;/a; — p*/h| (theorems 3.3
and 3.5). Table 1 gives a counter example. If the unique Dean solution is changed by
transferring one seat from state 6 to state 1 then D= is reduced (from 466.984 to 449.195),
wheras if the unique Webster solution is changed by transferring one seat from state 4 to
state 1 then 10°11" is reduced (from 4.036 to 2.998). His "proofs” err in assuming that if
i is favored over . that is, if «;/p; > a;/p; then a;i/p; > h/p" > a;/p;, which is, of course, not
necessarily true.

While it is of decided interest to know what measure of distance yields what method,
the optimization approach has no more force in resolving the question of what solutions
to choose because once again there is an infinity of choice with no criteria by which to
judge.

4. Properties

Over the course of many vears, however, as practical interested men witnessed the nature
of the different solutions that came from changing census data and looked for arguments
to sustain their opposition to or support of one or another method, properties concerning
the behavior of methods began to he identified. The Jefferson method was abandoned
because it was scen to unduly "favor™ the largest states : by the United States census
populations of 1830, for example. New York with a fair share of 38.593 was accorded 40
seats whereas Vermont with a fair share of 5.646 was accorded 5. In the second half of the
19th century the law stipulated that the "Vinron method of 1850™ was to be used? - which
was nothing other than Hamilton's method. But beginning with the census of 1882 the
infamous Alabama paradox exasperated political men's frustrations with mathematics : it
was noticed that with that method an increase of the size of the house (with no change
in populations) could result in a decrease in the nunber of seats allocated to a state -
the state of Alabama in that case.

And thus it came to be an accepted “precedent” that the only methods that are
admissable for the apportionment of the U.S. House of Representatives are methods that
avold the "Alabama paradox.” The notion of having a method that favors neither the

4In fact, contrary tc the assertion in [12]. the details of history reveal that the 1850 law was never strictly
followed (see [8], pp 37-42).
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large states nor the small ones but is somehow even-handed between small and large
always hovered in the background. This combination of desires led directly to another
fundemental error of judgement concerning apportionment.

The debate among mathematicians and others in the 1920s and 1930s focussed on the
five traditional methods as being the only ones known that avoided the Alabama paradox.
{Note that by its very definition any divisor method must perforce be house monotone.)
And these could be lined up from that of Adams to that of Jefferson (as they are given
above) in an order that goes from most favorable for the small to most favorable for the
large. This has a strict mathematical sense ([8], pp. 118-119), but is easily observed on
examples. One of the key argunents for the U.S. Congress’s choice of Hill's method was
that it is the middle of the five methods : its chief advocate claimed that it “has been
mathematically shown to have no bias in favor of either the larger or the smaller States,”
a 1929 committee of mathematicians of the National Academy of Sciences concluded that
"it occupies mathematically a neutral position with respect to emphasis on larger and
smaller States,” and in 1948 another such committee (including von Neumann) stated its
preference for Hill’s method because "it stands in a middle position as compared with the
other methods” (see [8] pages 54, 56 and 78 for references). Much mirth has been elicited
over the difficulty this reasoning would have encountered if the number of methods under
consideration had been even. The fact is that no one had even hothered to define what
"neutral” or what "bias” means. "Middle” is clear enough but if instead of the five methods
the infinite class of divisor methods had been under consideration, the conclusions would
have been quite different. Moreover, an applied statistician had conclusively shown in
1927 and 1928 through extensive analysis of the historical census data, and with elaborate
tables and diagrams, that "if the main purpose is, as it probably was in the Constitutional
Convention of 1787, to hold the balance even between the large and the small States as
groups, that end is best secured by the method of [Webster]” (see [8] page 55). This claim
of the emminent mathematicians turns out to be a fundemental error in the analysis - and
an error which has heen perpetuated in practice because Hill’s method has been used to
apportion the U. S. House of Representatives since 1940, and it is biased in favor of the
small by every reasonable definition of the idea of bias that I have seen.

So long as the argument remains without fundemental "criteria” by which to judge
the relative merits of different methods the choice of which method to use (in one or
another circumstance) will remain ed hoc and arbitrary. The primitive idea of a method
that has no bias in favor of cither the large or the small is perfectly reasonable, but it
must be specified. And there are other key ideas concerning the behavior of methods that
have emerged over the yvears that need to be made precise. The role of the mathematics
is then to turn the analysis upside down : instead of studying the properties of one or
another method, impose the properties and deduce which methods satisfy them. This is
the axiomatic method used for practical ends.

5. An axiomatisation of fair shares : constrained proportionality in reals

An example of the axiomatic method at work is arriving at a definition of proportionality
when constraints are imposed {1].]2]. Given a problem (p,f,c,h) a vector r = (r;) 15 sought
that is proportional to p but that belongs to the set # = {r: Z;r; =h and f < r < c}.

Let ¥ be a correspondence defined on (p,f,c, h) with values in R. The approach consists
in postulating qualitative properties that ¥ should enjoy that translate the idea of
proportionality and then deduce the analytic definition of .

If the usual definition of preportionality works then it should be the unique solution to
the problem. Specifically. ¥ is
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ezact : if (h/Z;p,)p € R then (h/Zip))p = ¥(p,f,c, h).

Any part of a proportional vector should be proportional. If SUT is a partition of the
indices then p° represents that part of the vector p that corresponds to the indices S, and
similarly for other vectors and sets of indices. Specifically, ¥ is

consistent : if r= (r°r7) € ¥(p,f,c,h) then r® e ¥(p5f%c% =sr;), and if also t5 €
¥(pS f5,¢5 Lsry) then (t5,rT) € ¥(p,f,c, h).

Finally, the values of a vector proportional to p should change in accordance with the
changes in p. Specifically, ¥ is

monotone : if for p and q satisfying p, > ¢, for some one index k and p; = ¢; otherwise,
r € ¥(p,fyc,h) and t € ¥(q,f,c, k) then r, > ¢;.

These three axioms are sufficient to characterize the fair shares.

Fair share characterization. The unique correspondence ¥ satisfying exactness, consis-
tency and monotonicity has as its values the fair shares (2).

The proof is as follows. It is immediate to verify that the fair shares r as defined in
(2) satisfy the three conditions. Since the floors f and the ceilings c are fixed throughout
mention of them is omitted in what follows to simplify the notation.

Suppose, thern, that ¥ satisfies the properties and let r be the unique fair share vector
(2} for the problem (p,h). Define A = ();) > 0 hy
fil(pif2) > 1 if fi>pife,

Ai =cif(pife) < 1 if(‘,-(p,/.r,
=1 if fi <pife<en
By exactness r = ¥((A;p;).h). If A; =1 for all / the theorem is proved. Suppose that A, #1
for some k, say A, > 1, and that v € ¥((py, Aapa,---, A,ps), k). By monotonicity # < r;, but

A1 > L means »; = f; and therefore »| = = f;. But by consistency (ry,---,r,) and (ry---, 7))
both belong to ¥((Aaps---, Ape) h = fi). Now use exactness to deduce that v = » for i #1
sor =1 and r = ¥((p;, dapa.--- Ape). h). Now repeat the same argument for every X, # 1.
This completes the proof.

It is interesting to note that the three properties used in characterizing the fair shares
have their exact qualitative counterparts in characterizing the most important class of
methods of apportionment, but they are very different anatically in that for apportionment
the properties concern integer solutions rathier than solutions in reals.

6. Axiomatics : a review of the theory of apportionment

Certain properties are common to all recasonable methods. They are stated in this
paragraph and then always assumed to hold without further mention. If the ideal of
proportionality can be met then it should be. A method ¢ is said to be exact® : if the fair
shares r are mteger valued then ®(p,f,c.n) = r. The concept of proportionality demands
that a method @ be homogeneous : if a € &(p,f,c. h) then a € ¢(Ap,f,c, h) for all A > 0. By the
necessity of fairness - that the names of the states should not effect their apportionments
- a method @ must be anonymous : permuting the populations results in apportionments
that are permuted in the same way. Also. as the house size grows apportionments by any
method should become "no less proportional” @ if a € ®(p,f,c,h) and a* = Aa is integer
valued, where ¢ < X < 1 then a* = ¢(p,f,c. ). A method that satisfies these four properties
is called proportional.

The most telling properties that have beea identified across the years are here summa-
rized.

5The definition given of a divisor function in [12], page 189 - which ignores the restriction given in (3) -
does not guarantee the exactness of divisor methods. and so is deficient in this regard.
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A method @ is

house monotone : if a € ®(p,f,c, ) implies there exists a* € &(p,f,c, h + 1) satisfying a* >
a for all » > 0 (for which the problem is feasible®).

That 1s, a method should avoid the Alabama paradox.

A method ¢

satisfies foir share . if a € &(p,f,c. h) implies ]~ < a; <[] for all i,
where [z]~ and [£]t are z rounded down and rounded up, respectively. In words, a method
should always give to each state either its fair share rounded down or its fair share rounded
up. A related but weaker property is for a method @ to be

near fair share : if for all pairs i # j, a € ¢(p,f,c, k) implies not {|a; - r;] > la; + 1 - ;] and
Iaj - Tj! > I(lj -1- T‘j'}

This simply says that it should be impossible to transfer one seat from one state to another
and thus bring both apportionments closer to their respective fair shares.

Problems may change in ways other than simply a change i the size of the house
k. But there are sceveral possible alternatives in defining what should happen when the
populations of the states change. For example, it is tempting to ask that if the fair share
of a state increases from one problem to another then the state’s apportionment should
not decrease. But it can be shown that no method of apportionment has this property. A
method @ is

weakly population monotone : if a ¢ o(p,f,c.h) and a* € &(p”,f,c,h) with p; > p; and
p; = p; for all j # i implies af > a,.

The trouble with this definiticn is that it is not terribly relevant to real problems, for
when the data of a problem changes it hardly ever changes in just one piece of data! A
more realistic concept is for a method @ to be

population monontone : if a € o(p,f,c,h) and a* € o(p~,f,c.h) with p; > p; and p; > p}
implies not {¢; > «; and a} >q,}.

That is, no state that gains in population should give up seats to one that loses population.
But population monotonicity rnplies weak population monotonicity so it is reasonable to
only invoke the weaker concept if it suffices.

A method of apportionment is a rule of fair division. Any part of a "fair” division should
be "air.” If SUT is a partition of the set of states, then a¥ represents that part of the
vector a that corresponds to the states of S, and similarly for other vectors and sets of
states. A method @ is

conswstent : if a = (a¥a”) ¢ o(p,f,c.h) implies a® ¢ o(p*.f.c’
b¥ € &(p°.f9.¢% Tya;) then (b¥.aT) € d(p,f,c. h).

In words : if a method apportions a¥ to the states in S then the same method applied
to apportioning hy = Yga; scats among the states in $ with the same data will adimnit
the same result; and moreover. if the method applied to this subproblem admits another
solution then the method applied to the entire problem also adinits the corresponding

Ysa;), and if also

alternate solution. Proportionality is a consistent idea. But consistency is very much
more fundemental. In terms of the the "fair divison™ of an inheritance it says that if
the distribution of houses. paintings, automobiles, furniture, etc., among the inheritors is
“fair” then if any subgroup of them were to pool what they jointly receive and if the same
rule of allocation were applicd to the pooled goods to distribute them among the subgroup
then the same distribution would result - and if another also did then that would yield an
alternative solution to the entire problem.

“This caveat will not be repeated subsequently but mmust be understood as being present.
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In the context of the history of the problem in the United States it is clear that a method
must be house monotone - the hoopla in Congress over the Alabama paradox has set this
precedent. However, examples show that not one of the five traditional divisor methods
satisfy fair share; and, indeed, there is no divisor method that satisfies fair share. This fact
made my co-author H. P. Young and me believe that the major challenge was to find a
method that is house monotone and satisifies fair share. The result was the quota method
4]

(i) a = f for house size h = E; f;

(ii) if a is an apportionment for &, then a* is an apportionment for A+ 1 with a} = a; +1
for some one k that maximizes p;/(a; + 1) over all j satisfying r;(h+ 1) > g;, and a} = q; for
itk
Here was the ideal rule, the one that achieved both properties that seemed the most
important ! Dismissed in [12] as "a new complicated scheme,” it is easy enough to describe :
it assigns an extra seat to that state that deserves it most - measured by the value of
pi/(a; + 1) - but among those who will not thereby violate the upper fair share [r;(h + 1)]*.
Regretably we did not immediately investigate its other properties, and so added another
error of judgement to the history of the problem. For after a time - after having spent some
effort at looking at solutions and seeing something seemed odd about them - we found that
the entire class of methods that are house monotone and satisfy fair share ({6},{13]) can be
easily described and that not one of these methods is population monotone ! (Admittedly
finding an example exhibiting the lack of population monotonicity was not a trivial task.)
As important, not one of them is even consistent. This was a significant lesson : the
axiomatic approach is fine but one needs to compute and to look at the results for many
problems and so give oneself the chance to see that perhaps other unstated axioms are
not satisfied. This realization led us to investigate more deeply both the historical record
to learn what properties might be important to the users and the mathematics . . . and
to reject the quota method as a method for apportioning seats.

There is a host of results describing what methods are realized by what combinations
of axioms (see [8]). I will only cite several of the most important.

Impossibility theorem [5]. There is no method of apportionment that is consistent and

satisfies fair share.
The situation is not that "as vet, no method has been found to satisfy {the several 'natural’
requirements for an acceptable apportionment method] simulaneously in the general case”
([12], p. 188, underlining added) : it is that there is no such method, a very different
statement.

Divisor method characterization [5]. The only methods of apportionment that are
consistent and weakly population monotone are the divisor methods.

This gives powerful reasons for considering divisor methods as the only ones that are
reasonable candidates for choice.

Consistency implies of a method that if one knows how any pair of states share any
number of seats then the method is completely specified. Thus the problem of how to
fairly apportion seats among 130 provinces is reduced to how to fairly share any number
of seats between any pair of states, a seemingly much easier problem.

7. Pairwise comparisons

E.V. Huuntington ([10}.]11]) carried out the first serious study of the problem of
apportionment. He concentrated on the aspect of consistency just mentioned : the equity in
representation between each pair of states. Given a "trial” apportionment a, he reasoned,
one seat should be transferred from the relatively over-represented state i to the relatively
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under-represented one j - thus from i to j if a;/pi > a;j/p; - whenever this decreases
the “discrepancy” in representation between the two. If no transfer between any pair
of states can reduce the discrepancy then this ”stable” apportionment is the solution.
The question then becomes : what measure of discrepancy ? Huntington considered and
analyzed every possible "linear” measure of the difference between a,/p; and a;/p; such as
lai/pi—a;/p;|, \pi/ai—p;/a;}, their relative difference |a;/p;—a; /p;{/ min{ai/pi, a;/p; }, 1pi/p; —aifa;},
etc. He found that either the measure does not guarantee a stable solution (as is the case
for the last of the measures given in the previous sentence) or the measure gives solutions
identical to one of the five traditional divisor methods. He fixed on the relative difference
measure because "it is clearly the relative or percentage difference, rather than the mere
absolute difference, which is significant,” and, as was described above, he claimed the
method that resulted was "unbiased”. By concentrating on pairs as he did Huntington
restricted his study to divisor methods; but his choice of measures of difference between
pairs of states unfortunately lmited him to consideration of only the five traditional
methods and this seems ultimately to have led him (and others) astray.

8. Average ratio pairwise transfer

Oyama [12] takes the same tack as Huntington but restricts its application to the case
when one state is over-represented absolutely and the other under-represented absolutely,
that is, when a;/p; > h/Sipi > ¢;/p;. He remarks that it "possibly implies that our stable
region is 'larger than’ Huntington’s one” and that "our new rule provides deep insights
to traditional apportionment methods” (see [12], p. 194). Consider the example given in
table 2. Let ¢; = (a;/p;) x 10%. In this example the most over-represented down to the most
under-represented state by the common solution of the methods of Adams, Dean, Hill and
Webster are

15 =2232> 1y = 1.998 > t5 = 1.996 > (h/T;pi) x 103 = 1.701 > ¢, = 1.700 > ¢4 = 1.667.
It is impossible to make a transfer of one seat from any one state to any other and thereby
reduce |a;/pi —a;/p;| since this is a Webster solution. Consider, however, the apportionment
a* =(50,51,2,2,2), for which ¢, = 1.666 and ¢, = 1.700 : it also is "stable” by Oyama’s "average
ratio pairwise transfer” criterion - so indeed his stable region is not possibly larger, it is
larger - but does one wish to admit as "stable” an apportionment which gives more seats
to one state than to another one with larger population? The only effect of restricting
the possibility of transfers to pairs of states one of which is under-represented and the
other over-represented is to allow additional apportionments as in this example : it admits
alternative solutions that ignore inequities among the over-represented states or among the
under-represented ones. How this new rule provides insights, let alone deep ones, remains
an unexplained mystery.

Table 2

State Population Quota Adams=Dean=Hill=Webst Jefferson

1 30 007 51.045 51 52

2 29 994 51.023 50 52

3 1 002 1.705 2 1

4 1001 1.703 2 1

5 896 1.524 2 1
Total 62 900 107 107 107
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9. »Parametric divisor methods”

Table 3
State Population Quota Hill te te te
[0,.388] | [389,.425 | [426,1]
1 42 444 1.434 2 2 1 1
2 73 470 2.482 2 3 3 2
3 134 148 4.532 4 4 5 5
4 164 343 5.992 6 5 5 6
Total 414 405 14 14 14 14 14

A parametric divisor method [12] is a divisor method based on a function d of form
d(a) = a+t, where 0 <t < 1, which is a special case of (3). Thus of the "traditional five” the
methods of Adams (¢ = 0), Webster (¢t = 0.5) and Jefferson (¢t = 1) are parametric methods;
and Condorcet’s (t = 0.4) is as well. The simplicity of the mathematical definition of
such a method scems to be its chief feature for there is no qualitative characterization
that distinguishes a parametric divisor method from the general class of divisor methods.
However, we are told that “the parametric method covers all the six traditional methods
... by changing the parameter t from 0.0 to 1.0” ({12], p. 214, underlining added). What
"covers” means is left undefined. It seems that in some sense the reader is to feel that it
"suffices” to consider these methods : presumably they produce all reasonably conceivable
solutions. And yet, there are problems for which there is a divisor method apportionment
that is unattainable by any parametric divisor method. Table 3 gives an example of a
problem where the unique Hill apportionment can be obtained by ne parametric divisor
method. It is a sirnple exercise to prove that if a is an apportionment of h for two parametric
divisor methods, one based on ¢, and the other on t, (>t ), then it is also an apportionment
of h for all parametric divisor methods based on ¢, where ¢; <t < t». Thus, the table contains
all parametric divisor method solutions.

10. Bias

Oyama [12] carries out extensive analyses of the various different apportionments of
the 512 seats of the House of Representatives among Japan’s 130 political constituencies
according to the 1985 populations. On the basis of his analysis he concludes :

"We believe that the {method of Hamilton] is the most unbiased method.” (p. 206)

A parametric method "should be taken into account for the parameter” 0.3 <t < 0.5
since’ t larger than 0.5 makes solutions "too favorable to larger constituencies” and t
smaller than 0.3 "too favorable to smaller constituencies” (p. 207).

"We would like to strongly recomumend [the parametric divisor method] with parameter
value” 0.46 < ¢ < 048 (p. 214).

In making these assertions he falls into the sarne traps as others have before him. There is
no definition of what is meant hy an “unbiased” method, no specific criterion is given by
which to judge whether a method is too favorable for one or another class of constituencies,
the entire analysis concerns the one specific problem in question and no others. Therefore,
given another problem it is impossible to know what conclusions might be drawn - perhaps
Webster’s method would seem the "most unbiased,” perhaps a parameter value below
0.4 and above 0.55 would make solutions too favorable for the smaller or the larger

“Oyama [12] defines parametric divisor methods as here but then switches terms by talking about 1 —1¢
rather than t. This axplains the abbreviated citations.
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constituencies respectively, perhaps it would be better to chose a parametric method
with parameter value 0.51 <t < 0.53. Nor could one know what judgements would result if
another specific problem were in hand for no criteria are defined.

Table 4

Constituency Population Fair share Fair share te t=25

(of 512) (of 16) [.46, .48]
SITM-1 1 526 507 6.452 6.502 6 7
AITI-1 1 057 501 4.470 4.504 4 5
IWTE-2 586 719 2.480 2.499 3 2
NGNO-1 585 569 2.475 2.494 3 2
Total 3 756 296 16 16 16

It turns out that all parametric divisor method apportionments for the 1985 Japan Diet
problem for ¢ in the range 0.46 < t < 0.48 are one and the same, and it differs from the
Webster apportionment (¢ = 0.5) in exactly 4 constituencies as shown in table 4. It seems
that the range 0.46 < ¢ < 0.48 is preferred because "it gives almost the same assignment as
[Hamilton’s method]” (p. 214) - and it agrees with Hamilton’s in the four constituencies
of table 4. But this range of parameters will not necessarily coincide in the same manner
for another problem. Looking at the fair shares of the 512 seats it does indeed seem as
though the apportionment (6,4,3.3) is less "biased” than the apportionment (7,5,2,2); but
a closer look at what the fair shares of the 16 seats that are shared among the four gives
a different picture. Since the methods are consistent the solutions to the subproblem of
table 4 must be the same. Still more to the point is the way each pair of constituencies
share the number of seats they get together. The corresponding fair shares are given in
table 5.

Table 5
Constituency Population Fair share (of 9)
SITM-1 1 526 507 6.501
IWTE-2 586 719 2.499
Constituency Population Fair share (of 9)
SITM-1 1 526 507 6.505
NGNO-1 585 569 2.495
Constituency Population Fair share (of 7)
AITI-1 1057 501 4.502
IWTE-2 586 719 2.498
Constituerncy Population Fair share (of 7)
AITI-.1 1057 501 4.505
NGNO-1 585 569 2.495

Viewed in this light the parametric methods with range 0.46 < t < 0.48 look less attractive.
In every instance the Webster apportionment rounds the fair shares of the total each
pair of constituencies receive together by the usual rule to determine apportionments;
namely, round them to the closest integer. In this sense Webster’s is the "most similar” to
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Hamilton’s. Moreover, it is the only divisor method identical to it over all 2 and 3 state
problems.

The essence of the idea of "bias” concerns the behavior of methods over many problems.
Every one problem is full of inequities. For example, the fair share (under the assumption
that each constituency must have at least one seat) of the Japanese constituency labelled
TKYQO-6 is 3.419 and yet every apportionment calculated in Oyama’s paper gives 3 seats to
this constituency : so are all those methods biased against TKYO-67 Clearly the methods
have nothing against TKYO-6! The data of the problem in question is such that in this
case this constituency will receive fewer seats than its fair share. But one can hope that
in another case the same constituency will receive more than its fair share, so that over
the "long run” it will receive on average the average of its fair shares. A method & is

unbiased : if the average of the apportionments of each constituency is equal to the

average of its fair shares.
This leaves the question : average over what set of problems? It is a thorny question
because there is no large pool of problems to analyze and there is no natural probability
distribution from which to draw random problems. In the face of this difficulty various
"models” have been studied.

It is trivial to propose an unbiased method : assign the h seats at random with
probabilities proportional to the fair shares. In this case none of the other desirable
properties is guaranteed. It is easy to argue that the method of Hamilton is unbiased :
the magnitudes of the fractional remainders of the fair shares are independent of the
magnitudes of their integer parts so there is no tendency for a larger or a smaller state
to be advantaged. But Hamilton’s method fails to satisfy basic properties, most notably
consistency and several monotonicity concepts.

If consistency is accepted as a rock bottom requirement then knowing how any two
states share any number of seats is enough to specify a method. One approach to "bias”
is to fix a pair of populations p; > p, > 0 and to assume that each number of seats between
0 and p; + p» are equally likely to be shared beitween them. Taking averages over this set
of two state problems one has the result that the only divisor method that is unbiased
for all choices of (p,.ps) is Webster's. The advantage of this model is that no assumption
need be made regarding the distribution of the populations. Its disadvantage is that the
average is taken over sizes of house that are not realistic.

A more reasonable approach is to fix an apportionment a and to consider the set of all
problems R(a) whose fair shares give the apportionment a for a particular divisor method
¢

R(a) = {r>0:d(¢;} > r; > d{a; — 1)}

Assume that everv choice of r within the "box” R(a ) is equally likely. This is equivalent
to assuming that every normalized population p for which a € ®(p,f,c, k) is equally likely.
It means one is assuming a uniform distribution locally, so again no assumption is made
regarding the overall distribution of apportionment problems.

Characterization of unbiased method [7],[8]. Webster’s is the unique unbiased divisor
method.

No one model or definition can establish beyond all doubt that one method or another is
"unbiased” : the conclusion depends upon the model and the definition. Nevertheless, the
evidence that Webster's method is indeed unbiased is overwhelming both on theoretical
and experimental grounds. An experimental estimate of the "bias” of an apportionment
solution a to a problem with fair shares r can be made as follows (see [8], p. 126-128). If
x is a vector and T a subset of the iudices, define zr = Zrz;. Let S be the set of the [s/3]-
smallest states and I the set of the [s/3]" largest states. The set of states S is collectively
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better represented than the set of states L if as/rs > ar/rp and less well represented if the
inequality is reversed. The percentage bias in favor of the small of any apportionment is
defined to be the relative difference between those terms, that is, 100(as/rs —ar/rr)/(ar/rL).
Applying this to the 21 House of Representatives apportionment problems of United States
history one can count the

Table 6. Number of times the small favored over 21 problems of U.S. history.

Adams Dean Condorcet Hill t =046
(t=0) (t=04)
21 16 16 14 11
t =048 Webst er t =0.52 t = 0.54 t=06 Jefferson
(t=0.5) (t=1)
10 8 7 6 4 0

number of times the small states are favored (table 6) and compute the average bias over
the 21 problems (table 7). The 0.31% bias of the Webster method in favor of the large
states is surprisingly close to the predicted value of 0.0%.

Table 7.
Average of the percentage biases in favor of the small over 21 problems
of U.S. history.

Adams Dean Condorcet Hill t=0.46
(t=0) (t=0.4)
17.50 4.36 3.96 2.55 1.61
t =048 Webster t=0.52 t=0.54 t=106 Jefferson
(t=0.5) (t=1)
0.58 -0.31 -0.91 -1.16 -3.02 -16.55

Of course, the choice of the sets of small states and large states is arbitrary : different
choices give different numerical results, but by and large one obtains the same qualitative
results. Also, one should beware of the statistical significance of these numbers because
the choice of house size changed over history and it was undoubtedly correlated with data
concerning the populations of the states.

Applying the same analysis to the one Japanese problem studied in [12] one obtains
the results given in table 8. This one problem appears indeed to "force” solutions that are
biased in favor of the large instead of the small, so the parametric method with t = 0.46
or 0.48 seems indeed "better” than t = 0.3. But taking the parametric method with t =
0.4 is even "better” than thar. so why not choose it instead of Oyama’s recommendation
of t = 0.46 or 0.48"! The fact is that every single problem is biased : the analysis and the
choice of a method must depend on its behavior over many problems. Oyama concludes :
”Although Balinski and Youug say that [Webster’s method] is the only unbiased divisor
method, we believe that generally [Webster’s method] is still more favorable to larger
constituencies since most numerical ezamples violate the [fair share] property” ([12], p.
214, italics added). But to analyze either a single problem or many problems or "all”
problems via some model that incorporates the sense of "all” one needs a precise concept
of what one means by "bias™ and no such concept is defined in [12]! On what does "we
believe” depend”
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Table 8.
Percentage biases in favor of the small in Japans House,
current populations, h=512.

Adams Dean Condorcet Hill t=0.46

(t=0) (t=04)
15.68 3.78 -0.48 -0.48 -1.88
t==0.48 Webster t=0.52 t=0.54 t=0.6 Jefferson
(t=0.5) (t=1)
-1.88 -4.65 -4.65 -4.65 -6.02 -14.01

Where Oyama has observed that "most numerical examples violate the quota property”
is another mystery : I am not aware of a single problem defined on the basis of actual
population data where a Webster apportionment violates fair share. Indeed, the "box
model” (based on the distribution of seats in the United States House by the census data
of 1970) was used to estimate the probability of each of the five traditional divisor methods
to violate fair share by Monte Carlo simulation ([8], p. 81 and pp. 131-132) : whereas the
Adams and Jefferson methods violate fair share practically every time, Webster's does
with (estimated) probability 0.00061. No divisor method simultaneously violates upper
fair share in one state and lower fair share 111 another, so a most unusual distribution of
populations would be required for Webster’s method to violate fair share (in contrast to
Adams’s and Jefferson’s highly biased methods).

11. Webster’s method

Conceptually it seems a much easier problem to decide how two states or constituencies
should share a fixed number of seats between them than to decide how three, or fifty or
a hundred and thirty states should share a fixed number of seats among them. And I
believe that most people would agree that the best way, the fairest way, and the most
intuitive way to share a fixed munber of seats between two states is sitmple rounding, i.e.,
to compute their fair shares and round to the closest integer. Let us say that a method is
consistent with simple rounding if in each of its apportionments every two states share the
number of seats they receive together by simple rounding. A very powerful argurnent in
favor of Webster’s method 1s that it is the only method consistent with simple rounding.

Formally, let [[x]) be the closest integer to r, and [[n + 1/2]] be either » or n 4+ 1 when n is
integer. Say that

(ai,a;) is a suimple rounding of the problem (p,f,c.h) if

ap = mid{fi, [[%]].cx} where . = pe{la; +a;)/{pi +p;)} for k =14, ;.

A method @ is

consistent with simple rounding : if a € ®(p,f,c, h) implies (a;,¢;) is a simple rounding of
the problem for every pair i, j.

Characterization theorem. Webster's is the unique method of apportionment that is
consistent with simple rounding.

The proof is immediate : Webster’s method is consistent, and Webster’s method applied
to two states is simple rounding.

The weight of the evidence thus suggests that the method of Webster is most appropriate
for the apportionment of representation to constituencies, states or districts :

o It is the unique method that apportions seats so that each one state receives its fair
share of the total shared with every other state rounded in the usual way (that is, rounded
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at 0.5).

e It is the unique method that is consistent, proportional and unbiased.

e It is the unique method that is consistent and is near fair share.

o It 1s house monotone and population monotone.

o It fails to satisfy fair share only with a negligibly small probability.

Therefore, for all practical purposes, it does indeed satisfy all of the desirable properties.
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