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Abstract The problem of apportionment is to allocate the seats of a House of Representatives or Diet 

to states or constituencies proportionally to their respective populations. This paper reviews the problem, 

its background and pitfalls, and the variolls approaches that have been applied to its analysis. 

o. Introduction 
The problem of apportionment possesses a deceptively innocent air : to allocate 

seats in a House of Representatives, Parliament, National Assembly or Diet to states, 
constituencies, or regions proportionally to their respective populations seems so simple a 
task l ! Proportionality is uo mystery: the only seemingly minor complication is the need 
to allocate integer numbers of seats. 

And yet, ... , repeated errors of judgement, implicit and erroneous assumptions, 
misleading ideas and downright false statements have hounded the problem over the two 
hundred years of its history. A recent paper [12] that appeared in this journaP is no 
exception. It is subject to pitfalls similar to ones that have trapped distinguished students 
of the problem in the past, and so motivated the writing of this survey which attempts to 
set the record straight. 

The aim of this paper is to point out that the innocent face of the problem hides a 
surprising subtlety of hehavior, to summarize some of the salient results and to correct 
certain misunderstandings and errors. Implicit is the plea that at least some of the by now 
well established concepts be 'l/.$cd to test any new idea or new method that is formulated 
before it is formally proposed. 

In section 1 the problem is defined formally, and in section 2 its background and the 
best known of the methods ltsed to find solutions are presented. Section 3 describes the 
"optimization approach" and its difficulties. Section 4 explains the idea ofaxiomatization 
as a practical approach to Ending equitable methods. An example of the axiomatic 
approach to arriving at a reasonable concept of "constrained proportionality" in reals 
- the concept of the "fair share,;," of the states - is given in section 5. Section 6 reviews 
the axiomatic theory of apportionment. In section 7, Huntington's pairwise comparisons 
analysis is presentpd in order to compare it with Oyama's [12] "average ratio pairwise 
transfer" idea whose shortcoming is discussed in Section 8. In section 9 it is shown why 
a subclass of the cli\,isor methods, the "parametric divisor methods," do not, as has been 
claimed, adequately" cover" all of the divisor methods. Section 10 takes up the concept 
of the bias of a mpthod and explains why it is inadequate to analyze one problem and to 
deduce from it conclusions concerning which method is most equitable. Finally, in section 
11, a characterization of \V('bster's method heretofore never explicitly stated- a "folk 
theorem" - is proven, and the evidence in support of vVebster's method is summarized. 

I In another guise the prohlplll is to allocatp seats to polit.ical parties proport.ionally to their respective vote 

t.otals. 
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1. The problem 

A problem of apportionment (p,f,c, h) is given by : an s-vector of population" p = (Pi) > 
0, an integer house size h ~ 0, and integer s-veetors f = (I;) ~ 0 of floors and c = (Ci) ;:. 0 of 
ceilings. An app01·tionment (of h) is an s-vector of integers a = (a;) satisfying 
(1) Liai == h, /; ~ aj ~ Cj for all i. 

A problem is feasible if there exists an inte;g;er vector a satisfying (1). Necessary and 
sufficient conditions for feasibility are that /i ~ Cj and L;/i ~ h ~ LjCi. In most practical 
instances ceilings are not present. However, floors often are: in the United States House 
of Representatives each state has a floor of 1, in the French Assembh~e Nationale each 
departement has it floor of 2, and in the Canadi,an Parliament the provinces have variable, 
historically determined floors. Presumably, each constituency of Japan must receive at 
least one seat. 

Letting p' == ~;;p; be the total populatioll, define the quota of state i to be qj == 
p;jp'. If there were no integer requirement and no floors or ceilings then the desired 
apportionment is the proportional solution : a==q. But if there are floors and ceilings 
and no integer rf'quirement, tllPn what? A r.~asonahle idea is to say that the solution 
should be proportional excppt to nlPet a floor or ceiling: the fair share of h of state i, 

denoted rj, is defined to be 
(2) 1'; ==mid{Jj.p;/x,cj} with ~.;:. 0 chos"n so that Ljrj == h, 

where mid{x,y,.:} == y if x ~ y ~.:. Sometimes it will be convenient to use the notation ri(h) 

to indicate the fair share of house size h. Thp ideal solution is the vector of fair shares 
r== (l'i) which, in the absence of floors and ceilings, is equal to the vector of the quotas. A 
more solid axiomatic justification for this definition of the fair shares is given in section 5. 

A method of apportionment cl> is a rule or correspondance that assigns at least one 
apportionment of h to every feasihle problem (p,f,c, h). The central question is : what 
method of apportionment cl> should be chosen '? 

2. Background 
The history of the problpm is natural enough: necessity breeds invention [8]. In 1'i'92, in 

response to the first census takpn in the United States, Thomas Jefi'erson and Alexander 
Hamilton proposed competing hut apparently reasonable methods. Jefi'erson's favored his 
state of Virginia, then the most populous of t:tw states, the Virginians held the power, so 
Jefi'erson's method was chosen (after a first use of the presidential veto) and then used for 
the ensuing fifty years to apportioll tllf' U llitf'd States House of Representatives. 

Both met.hods are easily explainecP. Hamilton's method is : first, give to each state t.he 
integer part of its fair share, [1';)- ; then, assign the seats not yet allocated, one per state, 
to t.hose states having tllf' largest fradiolls or remainders ri - h]-. Notice that it is entirely 
possible for there to be several solutions ill cases of "ties" in the remainders. 

An ent.irely different reasoning is found in Jefferson's method: find a "divisor" x {a real 
number) so that the sum of the integers obtained by dividing the populations by x and 
rounding down f!"ives the requirpd house size It, except to meet a floor or ceiling; that is, 

choose x;:' ° so that ~i((i == h when' (1, ==mid{fi.[p;jx]-,c;). 

3The met.hods are d .. fined under the assumpt.ion t.hat t.IIPre are bot.h floors and ceilings. These are t.he 

definit.ions t.hat. result from t.he axiomat if. theory descri bed below. In the U nit.ed St.ates, where only t he floor 

of I is operat.ive, flIP Hamilton nlf'thod whf'n used W<lS interpreted as follows: base the procedure on the 

quot.as qi (instead of on t.he fair sharf's 1';) and first. give each st.at.e having qi ~ lone seat. This procedure 

might not result. in a feasible apportionelllenl! Also, t.here are cases ill Vlliled St.at.es history where this 

slight change in procedure yields diff,'renl solutions (illcluding the United Stat.es problem of 1990). 
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136 M. Balinski 

To be entirely correct one must here define [n]-, for n a positive integer, to be either of 
the values n or n - 1, for here again there can be ties. 

Both methods have been invented and invented again, Jefferson's sometimes in clothes 
that make it appear to be quite a different method, both have been and are used in one 
or another country, but both were ultimately rejected in the United States because of 
behavior that slowly came to light through use. Different problems, different data, yielded 
differing solutions, and "patterns" and "paradoxes" arose that made reasonable political 
men look for other methods 1.0 apportion seats among regions. 

The historical record reveals (at least) six other methods proposed since 1792. In 1822 
- in response to the exaggerated advantage that the method of Jefferson was perceived to 
give to the large states - Representative William Lowndes of South Carolina proposed the 
same procedurp as Hamilton except to assign the seats not yet allocated, one per state, to 
those states having thp largeM "adjusted remainders" (7'; - h]-)Ip;. This method, clearly 
advantageous to the small, has never been used. The remaining five may, with that of 
Jefferson, be given a unified description [5J [8], although it must be kept in mind that 
some of them were first proposed in decidedly different terms which make some of them 
look rather more persuasive. 

Let d be a H'al valued function (kfined on the nonnegative integers and satisfying 
a::;d(a)::;a+l, and 

not {d(o) = (I and d(ll) := b + 1 for integers a> a and b 2 a}. 
(3) 

Ad-rounding [:]d of any nOllllf'gative real number:: is an integer a defined by 
= a, if d(a - 1) < :: < d(a), and 

[Z]d . 
= a or (J + 1, 1f :: = d( (J). 

(4) 

The divisor method ba.sed on d is tlH'n 
(5) <J>d( p,f,e, h) = 

{a: a; = 1l1id(fi,[)i;/~']d,c,) and ~;(Ji = h for some real number x> a}. 
The so-called fiw traditional methods are all divisor methods defined, respectively, with 
the following functions d : 

Adams (1832), or smallest chyisors : d(o) = (I 

Dean (1832), or harmonic nwan: d(a) = (I(a+ 1)/(a+ .5) 

Hill (1911), Huntington, equal proportions or geometric mean: d(a) = {a(a+ 1)}1/2 

Webster (1832), major fractions, odd llumbers, arithmetic mean or Sainte-Lagiie 
deal = a + .5 

Jefferson (1792), greatest divisors, d'Honcit, Hagenbach-Bischoff, or highest averages 
deal = a + 1. 

The Marquis cif.' Condoreet hall prnposf.'d in his 1792 plan for a French Constitution the 
divisor method based on d(a) = a + .4. 

The obvious difficulty is : :lOW to choose among these? There is an infinite choice of 
divisor methods sincf.' any d satisfying (3) will do! 

3. Optimization 
A different, snpposedly more rnoclern approach to the problem is via optimisation. Here 

the idea is to choose a feasihk apportionment a to minimize some expression of the distance 
bet.ween a and t.he ideal perfectly proportional solution. But precisely what expression of 
distance? Hamilton's met.hod gin's solutions that. minimize ~j laj - rj I, and ~j (aj -- rj)2, and 
indeed any Lp norm la-rl. 

Webster's method gives solutions that minimize ~jpj(ajlpj_hlp·)2 whereas Hill's method 
yields solutions that minimize ~j(/j(l'jloj - p' Ih)". Oyama [12J gives the new result that the 
divisor method based on d( a) == (I + I for 0 ::; t ::; 1 minimizes ~jPj {( aj + t - .5 )/pj - hip' F, thus 
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generalizing the formula for the \:Vebster method to this particular class of parametric 
divisor methods. However, he is quite wrong in claiming that very little has been said 
concprning the optimization approach: everyone of the 10 functions he discusses, except 
for the above result, has been studied before (:;ee [8], pp. 102-105). 

Table 1 
-

State POpt) atioll Quota Adams I :Iean Hill Webst. Jeff. Hamilt. 
-

1 10 658 39401 38 40 40 40 41 40 
><-t---

2 2 744 10.154 10 10 10 10 10 10 

3 2 i 17 9,215 9 9 9 9 9 9 

4 1 ' 9.')1 7.302 7 7 7 8 7 7 

5 1 6lO 5 .. l17 6 5 6 5 5 5 

6 ! 225 3.:17G 4 4 3 3 3 4 

7 292 1.205 2 1 1 1 1 1 

Total 20 7 658 7G 76 76 76 76 76 76 
-

Two of his asscrtiolls are false. He states that \Vebster's solutions m1l11mlZe W* = 
~jlaj/l'j - h/p"1 awl that Dean's solutions minimize V* == Ejlpj/aj - p"/hl (theorems 3.3 
and 3.5). Tahle 1 gives a C()llnter example. If the unique Dean solution is changed by 
transferring OIll' ,~('at from state G to state 1 then D" is reduced (from 466.984 to 449.195), 
wheras if the unique \Yehstn solution is chall~;ed by transferring one seat from state 4 to 
state 1 thcn I()"" " is rcdwed (from 4.056 to 2.(98). His "proofs" err in assuming that if 
i is favored O\"er .i. that is. if adp; > ajll)j thell (I;/pi > hip" > aj/pj, which is, of course, not 
necessarily tnH.'. 

\Vhile it is of decidecl interest to know what measure of distance yields what method, 
the optimizatioll approach has no more force in resolving the question of what solutions 
to choose hec<lllsf' onc(' again t lwI'<' is an infinity of choice with no criteria by which to 
judge. 

4. Properties 
Over tlw course of lllany years. hm\"('ver, as practical intprpsted men witnessed the nature 

of the different sollltions that canl(" from changing census data and looked for arguments 
to sllst.ain their opposition to or s11pport of on;> or <mother method, properties concerning 
thc lwhavior of lllet hods lwgall to 1)(' idel1tifced. The JeffersoIl method was abandoned 
because it was SI'Cll to 1lnduly "fm"or" the largest states: by the United States eensus 
populations of lS30. for pxampk. :\e\\" York with a fair share of 38.593 was accorded 40 
seats whereas Ve:'ll1<mt with a fair share of 3.Cii6 was accorded 5. In the spcond half of the 
19th ceutury the law stipulated that tll(' "Vimon method of 1850" was to be used4 - which 
WH.'-; nothing ot hfT than Hamilt Oil', mf't hod. But lwgil1ning with the census of 1882 the 
illfaIl1f)1!s Alabama paradox exasperated politl~'allIlell's frustrations with mathematics: it 
was noticed that with that method an increase of the size of the house (with no change 
in populations) ('ould H'sUlt in a decrease ill tllP lllllllber of seats allocated to a state -
the state of Alabama ill that CHse. 

And thus it came to he all accepted "precedent" that the 2!!ly methods that are 
admissa bIe for t bc a pportionmellt ()f t he LT. S. House of Representatives are methods that 
avoid the .. Ala 1>ama paradox." Thp llotion of having a method that favors neither the 

4111 fact, contrary te the ass('rtion ill [12]. tht' details of history reveal that the 1850 law was!lf.lli strictly 

followed (see [~], PP :17-42). 
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large states nor the small ones but is somehow even-handed between small and large 
always hovered in the background. This combination of desires led directly to another 
fundemental error of judgenlf'nt concerning apportionment. 

The debate among mathematicians and others in the 1920s and 1930s focussed on the 
five traditional methods as being the only ones known that avoided the Alabama paradox. 
(Note that by its very definition any divisor method must perforce be house monotone.) 
And these could b(' lined up from that of Adams to that of Jefferson (as they are given 
above) in an order that goes from most favorable for the small to most favorable for the 
large. This has a strict matlwmatical sense ([8], pp. 118-119), but is easily observed on 
examples. One of the key arguments for the U.S. Congress's choice of Hill's method was 
that it is the middle of the fin' methods: its chief advocate claimed that it "has been 
mathematically shown to hav(' no bias in favor of either the larger or the smaller States," 
a 1!)29 committee of matilf'maticians of tile National Academy of Sciences concluded that 
"jt occupies mathematically a neutral pOl;ition with respect to emphasis on larger and 
smaller States," and in 1!)48 anothcr such committee (including von Neumann) stated its 
preference for Hill's method l)('cHus(' "it stands in a middle position as compared with the 
other methods" (se(' [8] pages 54, 5G and 78 for references). Much mirth has been elicited 
over the difficulty this reasoning would haye encountered if the number of methods under 
consideration had h('en cven. Tl!e fact is that no one had even bothered to define what 
"neutral" or what "bias" meaus. "1\Iicldle" is clear enough but if instead of the five methods 
the infinite class of divisor methods had been under consideration, the conclusions would 
have been quite diff(,l'ent. Mor('ov('L an applied statistician had conclusively shown in 
1!)27 and 1928 throu/!;h C'xt('nsiw analysis of the historical census data, and with elaborate 
tables and diagrams, t hat "if t he main purpose is, as it probably was in the Constitutional 
Convention of 1787. to hold t hc halance ('vpn between the large and the small States as 
groups, that end is hest seclU'ed hy the method of [Webstcr]" (see [8] page 55). This claim 
of the emminent matlwmaticinns (nrns out to he a fnndemental error in the analysis - and 
an error which has heeu perpetnated in practice l)f'cause Hill's method has been used to 
apportion the U. S. Honse of Rcprcsentativps sinc(' 1G40, and it is biased in favor of the 
small by every reasonahle definitiou of the idea of bias that I have seen. 

So long as the argument remains without fundemental "criteria" by which to judge 
the relativ(' merits of different methods the choic(' of which method to use (in one or 
another circumstaucc) will relllain ad hoc and arhitrary. The primitive idea of a method 
that has no bias in fann' of ('it her the large or the small is perf('ctly reasonable, but it 
must be specified. And there ell'(' other key ideas concerning the behavior of methods that 
have emerged OWl' tIll' ycars t ha tucI'd to be made precise. The role of the mathematics 
is then to turn the analysis llPside down : instead of studying the propertics of one or 
another method, impose the properties and dcdnce which methods satisfy them. This is 
t he axiomatic met hod llsed fot, practical ends. 

5. An axiomatisation of fair shares: constrained proportionality in reals 
An example of the axiomatic met hod at work is arriving at a definition of proportionality 

when constraints al'(' imposed [1].[2]. Gin'n a prohlem (p,f,c,h) a vector r == (1';) is sought 
that is proportional to p but that helongs to the set H == {I': ~il'i == hand f::; r::; cl. 

Let lIt be a correspondence defined on (p,f,c, 11) with values in R. The approach consists 
in postulating qnalitati\'(' properties that lIt should enjoy that translate the idea of 
proportionali ty Rlld t hell deduce t 11(' allRlytic dcfilli tion of lIt. 

If the usual definition of proportionality works tlH'n it should be the uniqu(' solution to 
the problem. Sp{'cificnlly. lIt is 
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exact: if (h/E;Pi)P ER then (h/EiPj)p = llI(p,f,c,h). 
Any part of a proportional vector should he proportional. If S U T is a partition of the 

indices then ps represents that part of the vector p that corresponds to the indices S, and 
similarly for other vectors and sets of indices. Specifically, III is 

consistent: if r= (rS,rT ) E llI(p,f,c, h) then r' E llI(pS,fS,cS, ES"j), and if also t S E 
llI(ps,fS,cs,Esr;) then (tS,rT ) E llI(p,f,c,h). 

Finally, the values of a vector proportional to p should change in accordance with the 
changes in p. Specifically, III is 

monotone : if for p and q satisfying Pk > qk for some one index k and Pj = qj otherwise, 
rE llI(p,f,c, h) and t E III (q,f,c, h) then "k ~ tk' 

These three axioms are sufficient to characterize the fair shares. 
Fair .~hare chnractf.rization. The unique correspondence III satisfying exactness, consis­

tency and monot.onicity has as its values the fair shares (2). 
The proof is as follows. It is illllllf'diate to verify that the fair shares r as defined in 

(2) satisfy the three conditions. Sincf' the floors f and the ceilings c are fixed throughout 
mention of them is omitt.ed in what. follows to simplify the notation. 

Suppose, then, t.hat III satisfif's dIP properties and let r be the unique fair share vector 
(2) for the probIf'm (p,h). Df'fine A = (Ai) > 0 by 

= li/(p;/.L·) > 1 if li > Pi/J', 

if 1'; < Pi /.1'. 
= 1 if li ::; )Id of ::; 1',. 

By exactness r = \lI((AiJli).II). If Ai = 1 for all I the theorem is proved. Suppose that Ak t 1 
for somf' k, say A] > I. and that r' E 1I1((])],A:!P2,· .. ,A,p,),II). By monotonicity r~::; rI, but 
AI> 1 means "1 =/J clllel t.herefnrp /.; = 1'1 =/1' But by consistency ('·2,···,r,) and (T·~ ... ,r~) 
both belong to 1I1((A2)12 .. ·.A,)I.).h -Ill. Now use exactness to deduce that r: = rj for i:f 1 

so r = r' and l' =: 1I1((]>],A2]>2 ... ·.A./) .• ).h). Now repeat. the same argument for every Ak t 1. 

This complet.es the proof. 
It is int.f'rest.ing to not.e t.hat dIP three properties used in characterizing the fail' shares 

have their f'xact qualita.tive coul1tf'rpart.s in characterizing the most important class of 
methods of apportionment. hut they are very different anatically in that for apportionment 
the properties con(,f'1'n intf'gf'r solutions rat Iter than solutions in reals. 

6. Axiomatics : a review of the theory of apportionment 
Certain properties are com111011 to all reasonable methods. They are stated in this 

paragraph and then always a.'i.'i\1111ecl to hold without further mention. If the ideal of 
proportionality can be md thell it sh()uld lw. A method <I> is said to be exact 5 : if the fair 
shares r arc iIlt f'ger ,"alued t hCll <I> ( p,f,c. h) ::: r. The concept of proportionality demands 
that a mf'thod (p he hornogenmu .. , : if a E <p(p,f,c. 11) then a E <I>(-'p,f,c, 11) for all -' > o. By the 
necessity of failness . that the llamf'S of the .;tates should not effect their apportionments 
- a lllf't hod <P lll1lst 1)(' anonymoll .. ' : permuting the populations results in apportionments 
that are permuted ill the same way. Also. as the h01lse size grows apportionments by any 
11lf't hod should hccome "no kss proportional" : if a E <p(p,f,c, h) and a* = Aa is integer 
valued, when' U < A < 1 then a* = <P(p,f,c.h). A method that satisfies these four propert.ies 
is calleel proportional. 

The most tdlill~ properties t lw t l1<we bec:l ident ified across the years are here summa­
rized. 

5The definition given of a divisor fun(,tion in [12], rilge 189· which ignores the restriction given in (3) -

does not gual'antep t.llf' ('Xilctness of divisor lllf'thods. ilnd so is deficient in this regard. 
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A method <I> is 
h01lse monotone: if a E <I>(p,f,c, h) implies there exists a* E <I>(p,f,c,h + 1) satisfying a* 2:: 

a for all h 2:: 0 (for which the problem is feasibl( 6 ). 

That is, a method should avoid the Alabama paradox. 
A method <I> 
satisfies fair sha.re : if a E <1>( p,f,c. h) implies [1',]- ::; ai ::; [r;]+ for all i, 

where [x]- and [.1']+ are 1" roundf'd down and rounded up, respectively. In words, a method 
should always give to each stat(· either its fair share rounded down or its fair share rounded 
up. A related hut weaker pro]wrty is for a method <I> to be 

near fair .~haTf~ : if for all pairs I f. j, a E <I>(p,f,c, h) implies not {la; - rd > la; + 1- rd and 
laj - rj I > laj - 1 - l"j I} 
This simply SRyS thRt it should tw imp os si hIe to transfer one seat from one stRle to another 
and thus bring hot h RpportiollllH'llts closer to their respective fair shares. 

Problems may clwngc in ways other than simply a change in t.he size of t he house 
h. But then' are sewl"Rl possil.1e Rlteruatives in defining what should happen when the 
populations of the states challl!P. For example, it is tempting to ask that if the fair share 
of a state increases from one pro1.km to another t.hen t.he st.at.e's apportionment should 
not decrease. But it nlll 1)(' shown that no lIwthod of apportionment has this property. A 
method <I> is 

'/J)ea.kly pop'lI,lation monotone: if a E <I>(p,f,c. h) and a* E <I>(p' ,f,c. h) with pi > Pi aud 
P; == Pj for all j f. i implips ai 2:: (/" 
The trouble with this ddiniti(]ll is that it is not terribly relevRnt to real problems, for 
when the dat R of R problem cllanges it hardly ever changes ill just oup piece of data! A 
more realistic concept is for a llldllOd <I> to 1)(' 

popnlation rnon{lnton(~ : if a Eo <p(p,f,c, iI) and a* E <I>(p* ,f,c. iI) with pi > Pi and Pj > P; 
implips not {Oi > Of awl 0; > {fJ}' 

That is, no stale thiit gaius iu p"j)111iition should give up SPRts to (Hlp that loses population. 
But populatioll lllollotollicity illlplies weak population monotonicity so it is reasonRble to 
only invoke tll<' weaker conccpt if it suffices. 

A method of apportionlllent is H rule of fiiir (livision. Any part of a "fair" division should 
he "fair." If s· U 'f' is a partitioll of tll(' set of states, then as represents that part of the 
vector a that COlT('spowls to the states of s, and similarly for other vectors and sets of 
sla tes. A met hod <I> is 

con8i.Qient : if a == (a'.aT ) Eo <I>(p,f,c.h) implies as E <I>(Ps,f<;.cs.~sai)' and if also 
b S E <I>(ps .r" ,c". ~,(fi) then (b' .aT ) Eo <I>(p,f,c, /1). 

In words: if Cl method apporti()n~ a' to the states in S then the same method applied 
to apportioning h, ,= ~,{f, seats <1l110Ug the states ill S with the samp data will admit 
the same result: awl Illorem-el. if t he method applied to this suhprohlem admits another 
solu bOIl thpll t hp lllet hod a ppl ied to t he ell tire prohlem also aclmi ts t he corresponding 
Rlternate solutioll. Pmportiowllity is a consistf'llt idea. But cOllsistency is very much 
more fundenwntiil. In terms of tbe the "fair divison" of an inheritance it says that if 
the distribution of houses. p(lillt iugs, autolllobiles, furniture, etc., among the inheritors is 
"fair" tlwn if any sllhgrollp of t lWln \Y('1"(' to pool what they jointly n'ceive and if the same 
rule of allocation wen' applied to t II<' pooled goods to distribute the111 among the subgroup 
then the same clistrilmtion would H'SUlt - and if ('mother also did then that would yield an 
altf'rnative soll1tioll to the eutir" pmhkm. 

"This caveat will 1I0t 1)(' rClwaf<>d Sld".(>qll('nt Jy hilt 1Il1lSt. I", understood as being present, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Apportionment 141 

In the context of the history of the problem in the United States it is clear that a method 
must be house monotone - the hoopla in Cong;ress over the Alabama paradox has set this 
precedent. However, examples show that not one of the five traditional divisor methods 
satisfy fair share: and, indeed, there is no divisor method that satisfies fair share. This fact 
made my co-author H. P. Young and me believe that the major challenge was to find a 
method that is house monotOllP and satisifies fair share. The result was the quota method 
[4] : 

(i) a = ffor house size h = ~di 
(ii) if a is an apportionment for h, then a· i:3 an apportionment for h + 1 with a k =: ak + 1 

for some one k that maximizes Pj J( aj + 1) over all j satisfying rj (h + 1) > aj, and aj = aj for 
j i- k. 

Here was the ideal rule, the one that achieved both properties that seemed the most 
important! Dismissed in [12] as "a new complicated scheme," it is easy enough to describe: 
it assigns an extra seat to that state that deserves it most - measured by the value of 
pjJ(aj + 1) - but among those who will not thereby violate the upper fair share h(h+ 1))+. 
Regretably we did not immediately investigate its other properties, and so added another 
error of judgement to the history of the problem. For after a time - after having spent some 
effort at looking at solutions and seeing something seemed odd about them - we found that 
the entire class of methods that are house monotone and satisfy fair share ([6],[13]) can be 
easily described and that not one of these methods is population monotone! (Admittedly 
finding an example exhibit.ing t.he lack of population monotonicity was not a trivial task.) 
As important, not one of them is even consistent. This was a significant lesson: the 
axiomatic approach is fine but one needs to compute and to look at the results for many 
problems and so give oneself the chance to see that perhaps other unstated axioms are 
not satisfied. This realization led us to investigate more deeply both the historical record 
to learn what properties might be important to the users and the mathematics ... and 
to reject the quota method as a method for apportioning seats. 

There is a host of results describing what methods are realized by what combinations 
of axioms (see [8]). I will only cite several of the most important. 

Impossibility theorem [5]. There is no method of apportionment that is consistent and 
satisfies fair share. 
The situation is not t.hat "~, no method has been found to satisfy [the several 'natural' 
requirements for an acceptable apportionment. method] simulaneously in the general case" 
([12], p. 188, underlining added) : it is that there is no such method, a very different 
statement. 

Divisor method characterization [5]. The only methods of apportionment that are 
consistent and weakly populatioll monotone are the divisor methods. 
This gives pO'vverful n'(1sons for ("onsidcring divisor methods as the only ones that are 
reasonable candidates for choice. 

Consistency implies of a method that if one knows how any pair of states share any 
number of seats then thE' method is completely specified. Thus the problem of how to 
fairly apportion seats among 130 pwyin("es i~ rf'duced to how to fairly share any number 
of seats betwef'I1 any pair of states, a s('emingly mudl easier problem. 

7. Pairwise comparisons 
E.V. Hunting,ton ([10],[11]) ("1uriE'd out t.he first serious study of the problem of 

apportionment. He cOl1Centratf'd on the aspect of consistency just mentioned: the equity in 
representation between each pair of states. Gwen a "trial" apportionment a, he reasoned, 
one seat shouldlw transferred from the relatil"ely over-represented state i to the relatively 
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under-represented one j - thus from i to j if a;/pi > aj/pj - whenever this decreases 
the "discrepancy" in representation between the two. If no transfer between any pair 
of states can reduce the discrepancy then this "stable" apportionment is the solution. 
The question then becomes: what measure of discrepancy? Huntington considered and 
analyzed every possible "linear" measure of the difference between a;/pj and aj/pj such as 
ladpi-aj/Pj \, Ipdai-pj/aj I, their relative difference ladpi -aj/pjl/ min{adpi, aj/pj}, Ip;/pj -adaj I, 
etc. He found that either the nlE'asure does not guarantee a stable solution (as is the case 
for the last of the measures given in the previous sentence) or the measure gives solutions 
identical to one of the five traditional divisor methods. He fixed on the relative difference 
measure because "it is clearly the relative or percentage difference, rather than the mere 
absolute difference, which is significant," and, as was described above, he claimed the 
method that resulted was "unbiased". By concentrating on pairs as he did Huntington 
restricted his study to divisor llwthods; but his choice of measures of difference between 
pairs of states llnforttllw t dy lillli teel him to consideration of only the five traditional 
methods and this seelllS ultillla tdy to have led him (and others) astray. 

8. Average ratio pairwise tl~ansfer 
Oyama [12] takes the saul<' j a('k as Huntingtou but restricts its application to the case 

when one state is on>r-representcd ilbsolutely and the other under-represented absolutely, 
that is, when a;fpj ~ h/~iJlI ~ Cj/pj. He remarks that it "possibly implies that our stable 
region is 'larger than' Huntington's one" and that "our new rule provides deep insights 
to t.raditional apportionn1f'ut methods" (sP<' [12], p. 194). Consider the example given in 
table 2. Let ti = (ai/Pi) x HP. In this eXilmpk the most over-represented down to the most 
under-represented state by tllP commOll solution of the methods of Adams, Dean, Hill and 
'Vebster are 

t5 = 2.232 > t4 = 1.998> t3 = 1.9% > (h/~jPi) x 103 = 1.701 > t1 = 1.700> t2 = 1.667. 

It is impossible to lllilke a tramfer of 011(' seat from anyone state to any other and thereby 
reduce lai/Pi-aj/pjl sin('e' this is a ''''ebster solution. Consider, however, the apportionment 
a' = (50, .'i1, 2, 2. 2), for which t1 = I.GG() lmd t2 := 1.700: it also is "stable" by Oyama's "average 
ratio pairwise transfer" criterion· so indeed his stable region is not pos,~ibly larger, it is 
larger - but does one wish to admit as "stable" an apportionment which gives more seats 
to one state t.han to another one with larger population'? The only effect of restricting 
the possibility of transfers to pairs of states one of which is under-represented and the 
other over-represented is to allow additional apportionments as in this example: it admits 
alternative solutions that ignore inequities among the over-represented states or among the 
under-represented OlWS. How this new rule provides insights, let alone deep ones, remains 
an unexplained myst.f'ry. 

Table 2 

State Population Quota Adams=Dean=Hill= Webst Jefferson 

1 30007 51.045 51 52 

2 29994 51.023 50 52 

3 1 002 1.705 2 1 

4 1 001 1.703 2 1 

5 896 1.524 2 1 

Total 62900 107 107 107 
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9. "Parametric divisor methods" 

Table 3 

State Population Quota Hill tE t E t E 

[0, .388] [.389, .425] [.426,1] 

1 42444 1.434 2 2 1 1 

2 73470 2.482 2 3 3 2 

3 134 148 4.532 4 4 5 5 

4 164343 5.552 6 5 5 6 

Total 414405 14 14 14 14 14 

A parametric divisor method [12] is a divisor method based on a function d of form 
d(a) = a+t, wlwrp 0::; t ::; I, which is a special case of (3). Thus of the "traditional five" the 
met.hods of Adams (t. = 0), vVebster (t = 0.5) and Jefferson (t = 1) are parametric methods; 
and Condorcet's (t = 0.4) is as well. The sil;.lplicity of the mathematical definition of 
such a method spems to hp its chif'f feature for there is no qualitative characterization 
that distinguishes a parametric divisor method from the general class of divisor met.hods. 
However, we are told that "the parametric method covers all the six traditional methods 
... by changing the parameter t from 0.0 to 1.0" ([12], p. 214, underlining added). What 
"covers" means is left undefined. It seems tha t in some sense the reader is to feel that it 
"suffices" to cOl1s:,der these methods; presumably they produce all reasonably conceivable 
solutions. And yet, tlwre arf' problems for which there is a divisor method apportionment 
that is unattainable hy any parametric divisor method. Table 3 gives an example of a 
problem where the unique Hill apportionment can be obtained by no parametric divisor 
method. It is a simple exercise to prove that if a is an apportionment of h for two parametric 
divisor methods, one based on t, and the other on 12 (2: t,), then it is also an apportionment 
of h for all paranlPtric divisor methods based on t, where t, ::; t ::; 12. Thus, the table contains 
all parametric divisor method solutions. 

10. Bias 
Oyama [12] carries out extensiye analyses of the various different apportionments of 

the 512 seats of tlH:' House of Representatives among Japan's 130 political constituencies 
according to the 1985 populations. On the basis of his analysis he concludes: 

"We helieve t.hat the [method of Hamilton] is the most unbiased method." (p. 2(6) 
A parametric method "should he taken into account for the parameter" 0.3 ::; t ::; 0.5 

since7 t larger than 0.5 makf's solutions "too favorable to larger constituencies" and t 

smaller than 0.3 "too favorahle to smaller constituencies" (p. 207). 
"We would like' to strongly rf'('Ol1lmend [the parametric divisor method] with parameter 

value" 0.46 ::; t ::; 0.48 (p. 214). 
In making these assertions he falls into the same traps as others have before him. There is 
no definition of what is meant by an "unbiased" method, no specific criterion is given by 
which to judge whether a method is too favorahle for one or another class of constituencies, 
the entire analysis concerns the or/,/? specific problem in question and no others. Therefore, 
given another prohlem it is impossible to know what conclusions might he drawn - perhaps 
Webster's method would seem the "most unbiased," perhaps a parameter value below 
0.4 and above 0.55 would make solutions t.oo favorable for the smaller or the larger 

70yama [12] defines paramet.ric divisor met.hods as 1I'>.re but. t.hen swit.ches t.erms by talking about 1 - t 
rather than t. This "xplains t.he ahhl't'viated citat.ions. 
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constituencies respectively, perhaps it would be better to chose a parametric method 
with parameter value 0.51 S t S 0.53. Nor could one know what judgements would result if 
another specific prohkm were in hand for no criteria are defined. 

Table 4 
Constituency Population Fair share Fair share t E t =.5 

(of 512) (of 16) [.46, .48] 

SITM-1 1 526 :')07 6.452 6.502 6 7 

AITI-1 1 057 ri01 4.470 4.504 4 5 

IWTE-2 586 719 2.480 2.499 3 2 

NGNO-1 585 ;)69 2.475 2.494 3 2 

Total 3 756 :~96 16 16 16 

It turns out that all parametric divisor method apportionments for the 1985 Japan Diet 
problem for t in the range 0..16 :S t S 0.48 are one and the same, and it differs from the 
Webster apportionment (t = 0.5) in exactly 4 constituencies as shown in table 4. It seems 
that the range 0.46 S t S 0.48 is preferred because "it gives almost the same assignment as 
[Hamilton's method]" (p. 214) - and it agrees with Hamilton's in the four constituencies 
of table 4. But this range of parameters will not necessarily coincide in the same manner 
for another problem. Looking at. the fair shares of the 512 seats it does indeed seem as 
though the apportionment (6,.1,3.3) is less "biased" than the apportionment (7,5,2,2); but 
a closer look at what the fair share" of the 16 seats that are shared among the four gives 
a different picture. Since the met.hods are consistent the solutions to the subproblem of 
table 4 must be the same. St.ill more to the point is the way each pair of const.ituencies 
share the number of seat.s tlwy get t.ogether. The corresponding fair shares are given in 
table 5. 

Table 5 
Constituency Population Fair share (of 9) 

SITM-1 1 526507 6.501 

IWTE-2 586 719 2.499 

Constituency Population Fair share (of 9) 

SITM-1 1 526 507 6.505 

NGNO-l 585 569 2.495 

Constituency Population Fair share (of 7) 

AITI-1 1 057 501 4.502 

IWTE-:2 586 719 2.498 

Constituency Population Fair share (of 7) 

AITI-1 1 057 501 4.505 

NGNO-J 585 569 2.495 

Viewed in this light the panmwtric methods with range 0.46 S t :S 0.48 look less attractive. 
In every instance the i.Vebstf'l' apportionment rounds the fair shares of the total each 
pair of constituencies rf'ceive together by the usual rule to determine apportionments; 
namely, round tlwlll to t IH' clOfwst intpger. In this sense i.iVebster's is the "most similar" to 
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Hamilton's. Moreover, it is the only divisor method identical to it over all 2 and 3 state 
problems. 

The essence of the idea of "bias" concerns the behavior of methods over many problems. 
Everyone problem is full of inequities. For example, the fair share (under the assumption 
that each constituency must have at least one seat) of the Japanese constituency labelled 
TKYO-6 is 3.419 and yet every apportionment calculated in Oyama's paper gives 3 seats to 
this constituency: so are all those nlf'thods biased against TKYO-6? Clearly the methods 
have nothing against TKYO-6! The data of the problem in question is such that in this 
case this constituency will receive fewer seats than its fair share. But one can hope that 
in another case the sanle constituency will receive more than its fair share, so that over 
the "long run" it will receive on average the average of its fair shares. A method <I> is 

unbiased: if thp average of the apportionments of each constituency is equal to the 
average of its fair :,11ares. 
This leaves the q1lestion : average over what set of problems? It is a thorny question 
because there is no large pool of problems to a::mlyze and there is no natural probability 
distribution from which to draw randolll problems. In the face of this difficulty various 
"models" have been studied. 

It is trivial to propose an llnbiased method : assign the h seats at random with 
probabilitips proportional to the fair shares. In this case none of the other desirable 
properties is guaranteed. It is easy to argue t hat the method of Hamilton is unbiased : 
the magnitudes 0; the fractional remainders of the fair shares are independent 0:: the 
magni tlldes of their integer parts so there is no tendency for a larger or a smaller st ate 
to be advantaged. But Hamilton's method faib to satisfy basic properties, most notably 
consistency and sf\'pral monotollicity concepts. 

If consistency i;; accepted as a rock bottolll rpquirement then knowing how any two 
states share any n1lmber of seats is enough to specify a method. One approach to "bias" 
is to fix a pair of populations Jil > J!2 > 0 and to assume that each number of seats between 
o and PI + P2 arc equally likely to lw sl13red hE';wecn them. Taking averages over this set 
of two state prohlems O1W has the result that the only divisor method that is unbiased 
for all choiccs of (/I] ,}J:!) is \Vehstl'r ·s. The advCt [ltage of this model is that no assumptioIl 
need be made regarding the distrilmtiOll of the populations. Its disadvantage is that the 
average is taken over sizes of house that arc not realistic. 

A more reasonable approach is to fix an apportioIlment a and to consider the set of all 
problems R(a) whose fair shares give tlw apportionment a for a particular divisor method 
<l>d : 

R(a) = {r> 0: d(I';) ~ 1'; ~ d(a; - I)} 

Assume that every choice of r within tlw "box" R( a ) is equally likdy. This is equivalent 
to assuming that ('very normalized populatiou p for which a E <l>d(p,f,c, il) is equally likely. 
It means onp is a,;suming a uniform distrilmti(ln locnlly, so again no assumption is made 
regarding tlw overall distribution of apportioument problems. 

Characieriza.tiorl, ofnnbia.$ed method [7].[8], \Vebstpr's is the unique unbiased divisor 
method. 

No one model 0::' definition can estahlish l)('yond all doubt that one method or another is 
"unbiased" : the conclusion depends upon the model and the definition. Nevertheless, the 
evidence that \Vehster's mcthod is indeed unhiased is overwhelming both on theoretical 
and experimental grounds. An expcrinlPntal p;;timatp of the "bias" of an apportionment 
solution a to a pl'Ilblem with fair shares r can bp made as follows (see [8], p. 126-128). If 
x is a vector and T a subset of the iudices. dcflne XT = ~1'X;. Let 5 be the set of the [s/3]­
smallpst states aud [. the set of the [sf:ll- larg<''it statf's. The set of states 5 is collectively 
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better represented than the set of states L if as/rs > adrL and less well represented if the 
inequality is reversed. The percentage bias in favor of the small of any apportionment is 
defined to be the relative difterence between those terms, that is, 100(as/rs -aL/rd/(aL/rL}. 
Applying this to the 21 House of Representatives apportionment problems of United States 
history one can count the 

Table 6. Number of times the small favored over 21 problems of V.S. history. 

Adams Dean C'ondorcet Hill t = 0.46 

(t =0) (t=O.4) 

21 16 16 14 11 

t = 0.48 Websit'r t = 0.52 t = 0.54 t = 0.6 Jefferson 

(t = Cl,») (t = 1) 

10 8 7 6 4 0 1 
number of times the small states are favored (table 6) and compute the average bias over 
the 21 problems (table 7). The 0.31 % bias of the vVebster method in favor of the large 
stat('s is surprisingly close to the predicted value of 0.0%. 

Table 7. 
A verage of the percentage biases in favor of the small over 21 problems 

of V.S. history. 

Adams Dean Condorcet Hill t=0.46 

(t=O) (t=O.4) 

17.50 4.36 3.96 2.55 1.61 

/ = 0.48 \Vebstcr / = 0.52 t = 0.54 t = 0,6 Jefferson 

(/ =O,r.) (t = 1) 

0.58 -0.31 -0.91 -1.16 -3.02 -16.55 

Of course, the choice of the sets of small states and large states is arbitrary: different 
choices give different l1l111lf'ricall'es11its, but by and large one obtains the same qualitative 
results. Also, one should beware of the statistical significance of these numbers because 
the choice of h011se size changed oyer history and it was undoubtedly correlated with data 
concerning the populations of the states. 

Applying the same analysis to the one Japanese problem studied in [12J one obtains 
the results given in table 8. This Ollf' problem appears indeed to "force" solutions that are 
biased in favor of the large ill stead of the small, so the parametric method with t = 0.46 
or 0.48 seems indeed "hetter" than t = 0.5. But taking the parametric method with t = 
0.4 is even "]wtter" than thai, so why not choose it instead of Oyama's recommendation 
of t = 0.46 or 0.48! The fact is that every single problem is biased: the analysis and the 
choice of a method must dq)('ud on its hehavior over many problems. Oyama concludes: 
"Although Balinski and Ymlllg say that [\Vebster's method] is the only unbiased divisor 
method, we belie"e that gellf'rally [\Vebster's methodJ is still more favorable to larger 
constituencies ,~ince mo,~t nll:rnerical example,~ violate thr; ffair share] property -, ([12], p. 
214, italics added). Ent to aualyze eit.her a single problem or many problems or "all" 
problems via some model that. incorporates the sense of "all" one needs a precise concept 
of what one means by <'bias" and no snch concept is defined in [12J! On what does "we 
believe" depend'? 
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Table 8. 
Percentage biases in favor of the small in Japans House, 

current populations, h=512. 

[ 
~8 

~ 
8 

; 

Adams Dean 

(t=O) 

15.68 3.78 

Webster 

-4.65 

Condorcet Hill t=0.46 

( t=0.4) 

-0.48 -0.48 -1.88 

t=0.52 t=O.54 t=0.6 Jefferson 

( t=0.5) (t=l) 

-4.65 -4.65 -6.02 -14.01 
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Where Oyama has observed that "most numerical examples violate the quota property" 
is another mystery: I am not aware of a sillgle problem defined on the basis of actual 
population data where a Webster apportionment violates fair share. Indeed, the "box 
model" (based on tlw distribution of seats in the United States House by the census data 
of 1!)70) was used to estimate the probability (If each of the five traditional divisor methods 
to violate fair share by .tvlonte Carlo simulation ([8], p. 81 and pp. 131-132) : whereas the 
Adams and .J efferson methods violate fair share practically every time, Webster"s does 
with (estimated) probability 0.00061. No divisor method simultaneously violates upper 
fair share in one state and lower fair share in another, so a most unusual distribution of 
populations would he required for \Vehster's method to violate fair share (in contrast to 
Adams's and JeJferson's highly biased methods). 

11. Webster's method 
Conceptually it seems a nmch easier problf'l11 to decide how two states or constituencies 

should share a fixed lHllllber of seots hetween them than to decide how three, or fifty or 
a hundred and thirt.y states should share a fixed number of seats among them. And I 
believe that most people would agree that the best way, the fairest way, and the most 
int.uit.ive way t.o share a fixed nmnher of seat:, between two states is simple roundi'ng, i.e., 
to comput.e t.heir fair shorps and ronnd to thE' closest integer. Let us say that a method is 
consistent with simple rounding if in each of its apportionments every two states share the 
number of seats they rpceive together by simple rounding. A very powerful argument. in 
favor of vVehster's method is that it is the ollly met.hod consistent with simple rounding. 

Formally, let [[J~ll be the closest integer to J', and [[n + 1/2]) be either n or n + 1 when 11 is 
integer. Say t.hat 

(ai.aj) is a ,~irnple rounding of the problem (p,f,c,h) if 
ak =: mid{/;., [hll.r,.} where 1'1':::: Pi' {(o, +aj)/(p, +pj)} for k:::: i,j. 

A method <I> is 
consi$tent 'With ,~im.ple rO'unding: if a E <I>(p,f,c, h) implies (ai,aj) is a simple rounding of 

the problem for {'very pail' i, j. 

Characterization theorem.. vYehster's is tle unique method of apportionment that is 
consistent with simple rounding. 

The proof is immediate: vVphster's met.hod is consistent, and Webster's method applied 
t.o two states is simple rounding. 

The weight of the eyidencp thus suggests tbat the method of Webster is most app1"opriate 
for the apportionment of repre8e7ltai£on to constit'uencies, states or districts: 

• It. is the uniqne method that apportions seats so t.hat each one state receives its fair 
share of t.he total shored with (,\'P1'Y ot.her state rounded in the usual way (that is, rounded 
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at 0.5). 
• It is the unique method that is consistent, proportional and unbiased. 
• It is the unique method that is consistent and is near fair share. 
• It is house monotone and population monotone. 
• It fails to satisfy fair share only with a negligibly small probability. 
Therefore, for all practical purposes, it does indeed satisfy all of the desirable properties. 
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