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.4.bstract A detection law (the conditional detpctioll rate) which corrt'sponds to the model of\Vashburn's 
lateral range curve is presented in this papp]'. The detection law dealt with here is a general one which 
includes the inverse cube law and the definite range law. The lateral range curve and t.he sweep width of 
this law are derived explicitly. Two methods for estimating the paranwter;; of the law are presented and 
a set of actual data is analyzed. Applying the modeL we investigatt' the forestalling dt'tection problem in 
a search-and-search situation. Ta.king account of the forestalling dptpctioll by tllP target, tll<" generalized 
formulas of the lateral range curve and the sweep width are derived. 

1. Introduction 
In search theory, the capability of a detection device is usually presented by a 

conditional detection probability (or rate) given the distance from the searcher to 
the target. This function of conditional detection probability is called the detec­
tion law. If a detection law is given, the sighting potential of a search pattern, 
the lateral range curve and the sweep width are caluculated from it. Therefore, the 
detection law is a fundamental and essential quantity to investigate search problems. 
However, general models of detection laws have not been presented. On the other hand, 
as for the lateral range curve PL(x) , a general model is proposed by Washburn [4J : 

Xi b 
PL(x) = 1 - exp(-I -71 ), (1) 

where x is the lateral range and Xo and b are parameters. He also shows its sweep 
width Ii as 

1i=2xor(1--t), (2) 
00 

where r(·) is the Gamma function defined by r(x)=f otX-1exp(-t)dt. The formulas (1) 
and (2) have wide applicability by selecting parameters Xo and b, appropriately. 
However, he did not show any derivation of the formula and any detection law corre­
sponding to Eq. (1). If we want to calculate the sighting potential [3J of searcher's 
path or to analyze the forestalling detection problem, we must know the detection law 
instead of the lateral range curve. In this paper, we present a detection law which 
corresponds to the model of Washburn' s lateral range curve (1). 

In search theory, the definite range law, the imperfect definite range law and 
the inverse cube law have been used to investigate search problems. In these detec­
tion laws, only the inverse cube law is a decreasing function of distance. This law 
was given by Koopman [2J in his study on search theory during WW IT. ThE~ detection 
rate of the inverse cube law is defined by 

f(r) = + . (3) 
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Inverse nth Power Detection Law 

where r is the distance from the searcher to the target and k is a constant specified 
by the conditions of the circumstance and the target. Usually, k is determined by 
experiment data. According to Koopman's derivation, this law is a model of visual 
search and is obtained by assuming that the detection rate is proportional to the 
solid angle (measured from the searcher) subtended by the target. Because of the 
nicety of mathematical treatment, the inverse cube law has been used widely for rrany 
detection devices to approximate the detection function. However, since Eq. (3) has 
only one parameter k, it is difficult to approximate the experimental curve suffi­
ciently. This is the reason why we require a more general detection law. 

2. The Model of Inverse nth Power Law of Detection 
Usually, a detection device has its inherent detection capability such as the 

effective range ra in a circumstance of the search space. For the detection device, 
the distance in the search space has meaning in the normalized distance r/ ra. Further, 
usually the certainty of detection which is presented by the detection probability 
decreases with the distance, but there are ma.ny varieties of the dependency on the 
range at every detection device. Considering these features, we postulate that the 
detection rate fer) is decreasing in proportion to the inverse nth power of the 
normalized range r/ra: 1'(r)=C(r/ra)-n. Simplifying the parameters, we define a model 
of detection rate function by 

1'( r) = ( : ): k >0, n >0. (4) 

We refer to the detection law given by Eq. (4) as "the inverse nth power law." Compar­
ing Eq. (4) with Eq. (3), we note that this detection law is a natural extension of the 
inverse cube law. If a searcher searches the target being at a distance of r for time 
t independently, the detection probability is given by 

!{r, t) = 1 - exp( -l'(r) t). (5) 

Varying k and n, we show the curve of !{r,1) given by Eqs. (4) and (5) in Fig. 1. 

1.0 rr,,""-----, 1.0 

p(r.1) p( r,1) 

0.5 0.5 

o L......--'>-....::......;:::""'O;;:::..;~ 

o 20 40 60 00 100 
r 

oL......-,-........,"";::"""",--,-........:J 

o 20 40 60 00 100 
r 

Sensitivity of k Sensitivity of n 

Fig.1 The detection probabi li ty !{r,1) 

From these curves, we can see the role of the parameters k and n in Eq. (4). As seen 
in Fig.l, the curve of !{r,1) increases in size as k increases (k is the scale param­
eter of the curve), and the falling gradient of the curve becomes steeper as n in­
creases Cn is the shape parameter). Hence, the inverse nth power law can be expected 
to approximate correctly the actual detection law by selecting these parameters k and 
n appropriately. 
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92 K. Iida 

Here, we derive the lateral range curve FL(x) of the inverse nth power law. 
Considering the searcher traveling with speed v along the infinite straight line with 
CPA (the closest point of approach) x from the target (x is called the lateral range), 
we obtain the sighting potential F(x) of the target as 

F() f oo k' dt - k'Mr(~u-1V2) 
x = -00 C.?+ l? t2 ) n/2 - V X n r(n 2) . (6) 

From EQ. (6), the lateral range curve FL(x) is obtained by 

__ k'.[1ir( (u-12L2) 
FL(x) - 1 - exp(-F(x»- 1 - exp(- vlX1" t r(n/2} ). (7) 

Varying the parameters k, 11 and v, we show the curves of FL(x) in Fig. 2. 
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x x x 
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Jiig.2 The lateral range curve FL(x) 

Integrating the lateral range curve FL(x) with respect to x over (-00,00), we have 
the sweep width rY of the inverse nth power law. 

(8) 

Sens i t i vi ty of the parameters k, n and v to the sweep w id th rY are shown In Fig. 3. 
Here, we define Xo as 

_ ~r{(u-l)LZl 1/ (n- l) 

Xo - { vr(n7Z) }. (9) 

Then, FL(x): Eq. (7) and rY: Eq. (8) are rewritten as the following simple expressions. 
n- 1 

FL(x) = 1 - exp(-( fxI) ), (10) 

rY = 2xor( ~r ). (ll) 

Eqs. (10) and (ll) are exactly identical with Washburn' s model given by Eqs. (1) and 
(2). Here if we set n =3 in Eqs. (7) and (8), we obtain FL(x) and rY of the inverse 
cube law, and if we cons ider the 1 imi t n--'>OO remaining Xo constant, we have FL(x) and 
rYof the definite range law. Therefore, the inverse nth power law is a general detec­
tion law by which a wide range of detection laws, not only the decreasing type laws 
but also the cookie-cutter type laws, can be approximated if the parameters k and n 
are selected appropriately .. 

3. Estimation of the Parruneters kand n from an Experiment 
In this section, we discuss two methods for estimating the parameters k and n in 

Eq. (4) from a set of experiment data. The experiment considered here is as follows. 
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Fig.3 The sweep width fi 

The searcher approaches the target from far away along a straight line with 
lateral range x =0. When the searcher detects the target, he records the detection 
range R, then turns back to the starting point and repeats the same trial again and 
again. Let r; be the detection range on the ith trial, i=l, 2, ... , H, and wi thout any 
loss of generality, we assume ri'?cri+lt rN+l=O. 

The expected values of {rJ and {rj2} are calculated by 

£o(m = 2: i~i ,. (12) 

& (If) = 2: i f/--. (13) 

The curve of cumulative fraction is defi~ed as a piecewise linear curve con­

structed by connecting points Go(r,), i=l, 2, ... , N, sequentially given by 

Go (r;) = ~ • (14) 

Go(r;) is the experimental c. d. f. (tail) of detection range: Pr(R '?cr;)=Go(r;). 
Assuming Eq. (4) and calculating the sighting potential of the course (y,oo) with 

x =0, we obtain the theoretical c. d. f. of the detection range corresponding to Go(r;) 
given by Eq. (14) as follows. 

6(y)= 1 - exp( - f: 1\/) dr) 1 - exp( - V{n-lf1 yl n 1 ). (15) 

From Eq. (15), p.d.f. g(y) is obtained by 

__ ~L k"_ _ _ k" 
g(y)- dy - VlYln exp( Yen-Dlyln I). (16) 

Using Eq. (16), we can calculate the first and the second order moment of the detec­
tion range corresponding to Eo (m; Eq. (12) and Ec. (If); Eq. (13), respectively. 
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94 K. lida 

00 k' 1/ (n-1) Ir2 
E(l?) = f oyg(y) dy ={ V\Irl) } r( Ir 1)' n >2, (17) 

00 k' 2/(n-l) Ir3 
E(1f) =f o/g(y)dy ={ V(Irl) } r( Ir1)' n >3. (18) 

Here, we consider methods for estimating (~n). Although we examine the least 
squares method to Eq. (15), it seems to be impractical since equations to the least 
square estimators (k, n) al'e very comp] icated. We propose here two methods: the maxi­
mum likelihood method and the moment matching method. Hereafter we call them simply 
the ML and the MM method, respectively. 
A. The ML method. 

Since p.d.f. of the detection range is given by Eq.(16), the joint density func­
tion of {ri} (Likelihood) is derived as 

k'N -n k' I-n 

L({r;}) = n ig(r;) = --yrr- (rI JJ exp(- vrn=n L; irj ). 

To obtain the estimators k and n maximizing L({rJ), log L({r;}) is partially differ­
entiated with respect to k and ~ and then those are set to zero. We have 

a logL({rj}) _ O. Nn - nl.n-I L;v<.rjl - n - 0 
ak --. k 11 Irl) - , (19) 

a lOg~(~rJ) " 0: Hlog(A)-L; jlog(rJ- V(~l)2[(Ir1)L; j{rjl-nlog(k/rJ}-L; Jjl-n]=o. 

(20) 
Solving k from Eq. (19), we have 

k = ( {1.!1~ ).1/n (21) 

Substituting Eq. (21) into Eq. (20), we have 

M'Irl) L; j{rjl-nlog(rJ}+HL; jr/-n-(Irl) L; irjl-nL; jlog(rJ=O. (22) 

Unfortunately, Eq. (22) of n cannot be solved analytically, therefore it must be 
solved numerically, e. g., by Newton method, and then k is obtained from Eq. (21). 
B. The MM method. 

In the MM method, we use conditions: Eo(l?)=E(l?) given by Eqs. (12) and (17) and 
BQ(If)=E(If) given by Eqs. (13) and (18). These conditions are written as 

k" 1/ (n-l) Ir2 
{ ~~D } r( Ir1 ) = BQ(l?), (23) 

k' 2/(n-1) Ir3 
{ v(Irl) } r( Ir1 ) = BQ(If), n >3. (24) 

k is solved from Eq. (23) as 
BQUll n-1 I/n 

k = [v(Ir1){ r«Ir2)!(Ir1))} J. (25) 

Substituting k into EQ. (24), we have the next equation. 
Ir2 2 Ir3 _ _ ~(l?)2 r( Ir1 ) - arc Ir1 ) - 0, a - ~). (26) 

To solve Eq. (26) numerically, r(·) is approximated by a polynomial expression and 
Eq. (26) is solved for n by applying Newton method. Then, k is obtained by substitut­
ing n into EQ. (25). 

4. An Example 
In this section, the ML and the MM methods are applied to a set of actual data 

which is obtained from an experiment of an airplane searching for a small target on 
the sea by a radar. The data are shown in Table 1. 

Applying the ML and the MM methods to the data given by Table 1, we obtain the 
estimators k and n shown in Table 2. The accuracy of the Newton method for n is 10-4

• 
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Condi tions 

Detection 
range 

Summary 

Inverse nth Power Detection Law 

Table 1. Data of detection range 

Target: a small buoy with 
Detection device: a radar 
Height of the searcher: 15 
Sea state: 3. 

37,37,28,34,30,30,37,37,25 
37,36,32,31,42,35,31,37,37 
42,45,38,42,30,31,39,40 nm 

#=44, max. range=45 nm, m 
E($=35.9 nm, E(lf)=1311 

the corner reflector. 
of aircraft. 
00 ft. Search speed: 200 kt. 

,30,37,37,37,34,42,35,37,33, 
,31,35,32,39,41,36,40,42,43, 

(nautical mile). 

in. range=25 nm, 
nm 2

, a=0.985. 

Table 2. Estimated k and n 
-

k n MSD 

The ML method 52. 7 8.3 7. 234X10- 3 

The MM method 47.9 12.1 3.676XlO- 3 

-

In order to comfirm the fitness of 00 and G, we examine the Kolmogrov-Smirnov test at 
the 0.05 level. Consequently, they are not rejected by the test. In Table 2, MSD (the 

mean square deviation) of 00 from 0 is also shown. 

MSD = ~ j{Oo(r)-CV:JJ..: . 

MSD is a measure of fitness of the estimators to the experimental data Go. Hence,the 
MM method is better than the ML method in this case. 

Fig.4 shows c.d.f. of detection range &Xr) given by Eq.(l5) using the estimated 
parameters by the MM method. In this figure, the points plotted by . are the points 

1.0 r---1---
ff

-: 1-2.-1-0 

G(r) 

0.5 

Jc::47.9 
y::200 

• : Go 

20 40 60 00 100 
l' 

Fig.4 Otr) estimated by the MM method 
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96 K. Iida 

of experiment data {Go(r;)} given by Eq.(14). It should be noted that the theoretical 

c.d.f. Ocr) of the inverse l~h power law agrees well with the experiment values. 
If the parameters of the inverse cube law and the definite range law are esti­

mated from the experiment data so as to equate the theoretical mean detection range 
with the mean of the experiment data, we obtain the estimators (~n) as shown in 
Table 3. In Table 3, we also show the sweep width h' calculated by Eq. (8). The curves 

of Ocr) with the parameters. given by Table 3 for each detection law are visualized in 
Fig. 5. As seen in Fig. 5 and Table 3, the inverse nth power law agrees very well with 
the experiment data beyond comparison with the other detection laws. Furthermore, 
it should be noted that an inappropriate detection law leads to considerable error 
in the sweep width, even J.f the parameter is estimated by actual data of detection 
range. Therefore, it is very important to determine the detection law correctly when 
we analyze a search problem. 

Table ~L Comparison of detection laws 

Detection law Parameters MSD of Go h' 

Inverse nth power law k=47.9, iF12.1 3.676XlO- 3 87 nm 

Inverse cube law k=54.8, iF3 4.807X10- 2 144 

Definite range law xo=35.9, fFOO 2.890XlO- 2 72 

1.0 1.0 

G(r) PL(x) 

~5 ~5 

20 4(1 60 00 100 
o L-.... .......... ~-'-"~-'---'--' 

o 20 40 60 00 100 
r x 

i;(r) PL(x) 

Fig.5 Comparison of detection laws 

5. The Lateral Range Curve and the Sweep Width in Two-Sided Search 
Analysis of the forestalling detection problem in a two-sided search situation 

is an important application of the detection law. Koopman [2,3J derived the fore­
stalling lateral range curve and the forestalling sweep width in an encounter of the 
searcher with the target using detection devices of the inverse cube law. In this 
section, we generalize the model to the inverse nth power law. We consider a two­
sided search situation in which the searcher and the target are searching for each 
other using detection devices of the inverse nth power law with parameters Us, n) and 
(k~~, respectively. The searcher is assumed to approach to the target along a 
straight line with the lateral range x. The probability of forestalling detection in 
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(27) 

where the origin of time is taken at the ePA time and time before ePA is defined as 
negative. Integrating Ps(x, t) with respect to t over (-00,00), the forestalling lateral 
range curve is obtained. 

(28) 

The forestall ing sweep width is derived by integrating PLs(x) with respect to x 
over (-00, 00). 

Frs( a ) = f 00 PLsCi) dx. (29) 
-00 

Here, we consider a search-and-search situation in which when the target fore­
stalls the searcher in detection, the target immediately reacts in either of two ways, 
as a friend or a foe. Then, the parameter ks of the searcher's detection device is 
assumed to change to f3 ks during the rest of t.he encounter. If the target is a friend, 
such as a victim in the ocean waiting for rescue, the detectability of the searcher's 
detection device is improved by the target's reaction, and then f3 >1. On the other 
hand, if it is a hostile target, the detectability of the searcher is decreased by 
the target's alertness, then 0~f3~1. In this situation, the searcher can detect the 
target before the forestalling by the target, but another way of detection is also 
possible, in which the target forestalls the searcher in detection and get into alert 
status and then the searcher detects the target during the rest of the encounter. The 
detection probability PLs(x) of the former is given by Eq. (28) and the detection 
probability PLTS(X) of the latter is obtained by 

_ 00 00 ( (3 ks ) n 
PLTS(x) - f_

oo
PT(x,t){l-exp(-f t (XZ+II2?)n72 dz)}dt. (30) 

where PT(X, t) is given by interchanging Us, n) and (kT, m) in Eq. (27). (The more 
general expressions of PLs(x) and PLTS(x) are discussed by Iida [l].) Therefore, the 
generalized lateral range curve PL(x) of the searcher is derived by 

PLex) = PLs(x) + PLTS(x). (31) 

The generalized sweep width taking account of the forestalling detection by the 
target is obtained by integrating PLex) with respect to x over (-00,00). 

wc a, (3) = f 00 PLex) dx. (32) 
-00 

Unfortunately, we cannot obtain the integrations of Eqs. (28), (30) and (32) in 
closed form. Hence, we must culculate them numerically. Here if the detection devices 
of the searcher and the target are same kind sensors such as visual, usually the 
shape parameters [} and m of the detection law have almost same value. If we assume 
[} =10, then we can derive the explicit formulas. Specifically, setting n =m in Eqs. (27) 
and (28) and calculating the integral, we obtain 

_ 00 ( ) _ ksn [ «ksn+kTn).["1Cr«n--1)/2) )] 
PLs(x)-f_aF" x, t dt - ksn+kTn 1-exp -- vlxln 1J'(ii!2) • 

Rewriting k i by Ifi given by Eq. (8) (the sweep width in one-sided search) respectively, 
and setting a=lfT/WS, we obtain the simplified expression of the above. 

1 "" n-1 
PLs(x) = a---n=Ttl [l-exp{-(a n

-
1 +1)( 2.r«n--2)7(n--l)lxl) }]. (33) 

Substituting PLs(x) into Eq. (29), we have 
k n (n-2)/(n-1) 1 (n-2)/(n-0 

Ifs(a) = fII~( ksn+kTn) Ifs( an 1+1). (34) 
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98 K. Iida 

If we substitute n =3 in Eqs. (33) and (34), we obtain the formulas of PLs(x) and 
"'s(a) of the inverse cube law given by Koopman [2J. 

Calculating Eq. (30) by setting n =m and rewriting ki by "'i and a=yM"'s, we obtain 

a n- I 8 n n-I "" n-I 
PLTS(x) an 1+1 [1+ an 1_{jn+l exp(-(a +1)( 2r«n-2)/Cn-l))\x\) (35) 

a
n
-

I
+1 n "'s n-l)J t'f an-I-Dn+l+0, 

- an 1_{jn+l exp(-{j (2r«n-2)/Cn-l))\x\ ) p "t-

n-I "" n-I 
PLTS(x) = acx" 1+1 [l-exp(-(a n

-
I +l)( 2f«n-2)/(n-l))lxl) J 

( a "'s ) n- I « n- 1 ) ( "'s ) n-l) 
- 2f(Cn-2)/(n-l)\x\ exp - a +1 2r«n-2)/Cn-l)\x\ 

if a n- 1 _f3n+l=0. 

Substituting Eqs. (33) and (35) into Eq.(31), we obtain 

_ 1-8 n . n-l "" n-I 
PL(x) -1- an 1-{:ln+l exp(-(a +1)( 2fCCn-2)/fn-l)Hxr) (36) 

- an ~~~+1 exp(_{jn( 2rCCn-2)f(n-l))\x\ )n-l) if a n- 1-{jn+l *0, 

"" n-l "" n-l 
PL(x) = 1-(1+( 2fCCn-2)/Cn-l))\x\) )exp(-(a

n
-

1
+1)( 2fC(n-2)/(n-l))\xr) 

if a n- L {:l n+ 1 = 0. 

Fig.6 shows the sensitivity analysis of the parameters n, a and (j for PL(x) given 
by Eq. (36). As seen in this figure, the curves of PL(x) have a shape such as a two­
step function for n =8 and 12. We shall discuss this distinctive feature of PL(x) 
curves later in Section 6. 

1.0 ~~--------, 

PL(x) 

0.5 

o 

a =1.0 
12 {3=0.5 

x/lis 
Sensitivity of n 

1. 0 ........ r-<:----------r 1.0 ......--.-'""'"------, 

PL(x) 

0.5 

o 

PL(x) 

0.5 

o 

Sensitivity of a 

xl lis 

Sens i t i v i ty of {3 

Fig,.6 Sensitivity analysis of PL(x) 
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Substituting Eq.(36) into Eq. (32), we have 

- (1--8 )(an-l+1)1/(n-l)+an-18_n/(n-O 
Ft{a,8)-~---anLtln+1 - II's ifa n- I -8 n+1t0, (37) 

_ ~rr2) a n-l+ (rrl) 
- - - £T l'f a n-l_ C! n+1=0. -~-1 (an l+l)ln-Z'/(n I) "s fJ 

To see the sensitivity of a and 8 In JKa, 8), curves of It{a, 8) normalized 
by II's are shown in Fig. 7 for n =4 and 12. 

Ks(a,p)IKs Ks( 0:, P ) I Ks 
4 4r---------------------~~--~ 

n=4 n=12 

3 3 2.5 

2.0 

2 
1.5 2 1.5 

1.0 

1 
\.0 

0.5 
lr---~~----------------~0.-5~ 

0 1.0 2.0 3.0 4.0 5.0 0 2.0 3.0 4.0 5.0 
a a 

Fig.7 Sens i ti vi ty analysis of It{ a, 8) 

Here, we consider special cases of a and 8. If we set a =0 in Eqs. (36) and 
(37), we obtain Eqs. (7) and (8), respectively. Since a=O means the blind target, the 
search situation becomes the one-sided search. Hence this result is natural. Eqs.(7) 
and (8) are also obtained by setting 8 =1 in Eqs. (36) and (37). 8 =1 implies that the 
target's forestalling detection is ineffective to change the searcher's detection 
capability. Hence, this case also becomes the one-sided search. Next, we examine the 
case 8 =0. Setting 8 =0 in Eqs. (36) and (37), we obtain Eqs. (33) and (34), respec­
tively. This results are not surprising'since 8=0 implies the searcher's detection 
device becomes ineffective by the target's forestalling detection and the searchE,r's 
detection is restricted to his detection before the forestalling by the target. 

From the above, we can say that Eqs. (36) and (37) are the generalized formulas 
including Eqs. (7), (33) and Eqs. (8), (34), respectively, as the special cases of the 
parameters. 

6. Discussions 
In this section, several discussions are presented concerning the results 

obtained in the previous sections. 
(1) As seen in Fig.6, the curves of PL(x) have a shape as a two-step function for 
n =8 and 12. To explain this figure, we examine the components of PL(x); PLs(x) and 
PLu(x) for n =12,. a =1. 0, 8 =0. 5. These are shown in Fig.8. We can elucidate the 
distinctive feature of PL(x) by this figure. As seen in Fig.8, the curves of PLs(x) 
and PLTs(x) decrease from 1/( a n-l+ 1) and a n- 1 I( a n-l+ 1), respectively, to zero wi th 
a steep slope if 11 is large, and the range xiII's of PLTs(x) is reduced considerably 
compare with PLs(x). As shown in Eq. (31), the curve of PL(x) is the summation of 
these two curves: PLs(x) and PLTs(x) , and therefore, the curve of PL(x) exhibits a 
shape as a step function. 
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1.0 ~---------, 1.0 .--------, 

0.5 r---------...\ 0.5 

o 0.5 o 
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PLTS(x) 

0.5 
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1.0 ,--,------------, 
a=l.O 
(3 =0.5 
0=12 

Pl(x) . 

0.5 -

o 0.5 1.0 x/Ws 
xl lis 

Pl(x) 

Fig. 8. PLs(x) , PLTs(x) and PL(x) 

(2) Washburn discussed in Chapter 4 of his book: Search and Detection [4J that the 
generalized lateral range curve given by Eq. (1) could be measured experimentally by 
generating a sequence of straight line encounters with the target for each of which 
"detection" or "non-deteetion" are recorded. Then, the ML method will be used to 

estimate the parameters Xo and b in Eq. (l). However, this method may be impractical 
in real world applications since it needs too many data to obtain PL(x) curve experi­
mentally at many is. The remarkable thing of the method described in Section 3 of 
this report is that we can estimate the parameters k and n of the detection law 
without considering any lateral ranges other than x =0 and can derive the lateral 
range curve by caluculation from the estimated (~n). 
(3) In Section 4, we analyze the set of actual data applying the inverse nth power 
law. As shown in Table 2" the MM method gives a smaller MSD than the ML method in 
this case. However, this conclusion is not always valid. In other cases, the ML 
method is better than the MM method. Therefore, the method of the best estimator 
must be investigated in future. 
(4) In some actual detection device, sometimes the detection at range zero is not 
certain. In this case, the inverse nth power law discussed here cannot be applied to 
formulate the detection capability. Furthermore, the detection capability of some 
detection device may depend on the aspect of the target in addition to the distance. 
In these cases, we must investigate another model of detection law and it is an 
important problem to be studied in future. 
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