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Abstract We consider the covariance structure of an int.errupted Markov modulated Poisson process. In 
this process, periods of on-time and off-time alternate; the on-time interval has a phase-type distribution and 
the off-time interval has a general one. The off-time period represents the time during which no customers 
arrive. The on-time period on the other hand, represents the time during which customers do arrive. 
Here, the arrival rate depends on the phase condition of the on-time interval distribution. We derive the 
Laplace-Stieltjes transform for the inter-arrival time distribution. Using the results, we study the correlation 
structures of succeeding inter-arrival times. 'Vhen the on-time length distribution is hyperexponential, the 
covariance of succeeding inter-arrival lengths is positive, whereas becomes negative for Erlangian on-time 
lengths. 

1. Introduction 

An interrupted Poisson process (I P P) has been proposed as an approximate overflow 
process from the loss system M/M /5/5 by Kuczura. [4]. The inter-arrival time distribution of 
overflows from the AI / M /5/5 has a hyperexponen tial form with order 5 + 1. As the number 
of servers becomes larger, the representation becomes more complicated. On the other hand, 
the inter-arrival time distribution of interrupted Poisson arrivals has a hyperexponential form 
with order 2 and can easily be dealt with. Because of its simplicity, the interrupted Poisson 
process has been frequently used to analyze models with overflow inputs. The interrupted 
Poisson process has sufficient accuracy when its peaked characteristics are not so notable. 
As the peaked characteristics do become notable, however, the approximation errors become 
larger. Furthermore, the assumption for the interrupted Poisson process that both on-time 
and off-time interval distributions are exponential restricts the number of applications. To 
overcome this restriction, Machihara has proposed a modified interrupted Poisson process 
in which the off-time period length distribution is hyperexponential [5,6]. Tran-Gia has 
proposed a more general I PP called the "generalized interrupted Poisson process (GIP P)" 
in which on-time and off-time interval distributions are general and he derived the Laplace­
Stieltjes transform (LST) of the forward recurrence time of the inter-arrival time [9]. From 
this result, he considers the condition under which the GIP P is renewal. When the on­
time interval distribution is exponential, the GIP P becomes renewal Kingman [3] derived 
the necessary and sufficient condition that a renewal process can be expressed as a doubly 
stochastic Poisson process. Neuts et al [8] derived the condition for a Markov modulated 
Poisson process by a different approach from Kingman's. Tran-Gia's renewality condition 
can easily be derived by Kingman's result or Neuts' result. 

This paper considers an interrupted Markov modulated Poisson process (I M M PP) 
which is a more generalized process of the GIP P. In this process, the on-time interval 
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has a phase-type distribution with states {1,2, .. ·,m} and Poisson customers arrive at a 
rate Ai, when the phase state is i. Note that if the off-time interval also had phase-type 
characteristics, it would be possible to deal with the arrival process as a Markov modulated 
Poisson one. We derive the Laplace-Stieltjes transform for the inter-arrival time distribu­
tion of this process. Using the results, we study the correlation structures of succeeding 
inter-arrival times. When the on-time length distribution is hyperexponential, the covari­
ance of succeeding inter-arrival lengths is positive, whereas it becomes negative for Erlangian 
on-time lengths. 

2. Interrupted Markov Modulated Poisson Process 
We consider an interrupted Markov modulated Poisson process (I M M PP), which is a 

more generalized process of the interrupted Poisson process [4] or Markov modulated Poisson 
process [2]. 
(1) Periods of on-time and off-time alternate; the on-time interval has a phase--type distri­
bution [7] with representation (a, T, TO) and the off-time interval has a general distribution 
G*(x) and its LST is given by g(s). Furthermore, the on-time period length and the off-time 
period length are independent of each other. 
(2) In the off-time period, no customers arrive. In the on-time period, on the other hand 
Poisson customers do arrive. Here, the arrival rate depends on the phase condition of the 
on-time period length distribution. We assume that the arrival rate for the phase state i is 
Ai(> 0). When Aio = 0 for some phase state io, this phase state may be considered to be 
some sub-period of the off-time period. 

If the off-time period length has a phase-type distribution, I M M P P is identical to a 
Markov modulated Poisson process. If we assume that Ai is constant for all i, we obtain a 
generalized interrupted Poisson process [9]. 

Of interest is the inter-arrival time distribution for I M M PP. I M M P P is a Markov 
renewal process, [1] i.e., the inter-arrival time depends on the phase states of the on-time 
period length distribution. The inter-arrival time distribution A*(x) has the following m X m 
matrix structure in the number of phase states, m. That is, 

A*(x) = (Aij(x)h~i,j~m' 

where Aij(x) = P{X ~ x,Ph(X) = j I Ph(O) = i}. 

The X is the inter-arrival time and Ph(x) is a phase state of the on-time period length 
distribution. Of course, the following is satisfied. 

for any i = 1,2, ... , m. 

m 

L Aij(oo) = 1, 
j=l 

Let Djj = 1 if i = j and C5ij = 0 if i =I- j. 

Theorem 2.1 The Laplace-Stieltjes transform (LST) A(s) of A*(x) is given by 

A(s) = {I- (sI + A - T)-lTOg(s)a} -l(sI + A - T)-l A 

= {sI + A - T - TOg(s)a} -1 A, 

where 

(2.1 ) 
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Proof 

Assume that a Poi~son call arrives at time o. There are two possibilities for how the next 
customer arrives after time 0: either there is an arrival during the on-time period which 
continues from time 0 (Case 1) or there are no arrivals during this period (Case 2). 
Case 1 The probability that a customer arrives in (x, x + dx) is given by 

exp{(-A + T)x}Adx 

Case 2 The probability that the first on-time pet·iod and succeeding off-time period end at 
u and v, respectively, and after that a customer arrives in (x, x + dx) is given by 

Now, we obtain 

o dG* (v -- u) dA * (x - v) 
exp{(-A + T)u}T d(v _ u) a d(x _ v) dx. 

dA*(x) = exp{(-A + T)x}Adx 

(X t' odG*(v - u) dA*(x - v) 
+ {lo lo exp{(-A + T)u}T d(v _ u) a d(x _ v) dudv}dx. 

Taking the Laplace-Stieltjes transform, we obtain (2.1). 0 

Remark 2.2 When m = 1, i.e., the on-time period distribution is exponential, we obtain 

A(s) = {I - (s + Al - T)-ITOg(s)a}-I(s + Al - T)-I A1 

= {S+AI-T-TOg(s)a}-- IA b 

and the process becomes a renewal one. 

3. Correlation structure of inter-arrival times 

Let TO( = 0), Tl, 72, ... denote the arrival epoc-hes of the succeeding interrupted Markov 
modulated Poisson customers. The covariance of Ti - Ti-l and Ti+j - Ti+j-l is defined as 

Cov(j) = E{(Ti - Ti-l)(Ti+i - Ti+i-l)} -- E{Ti - Ti-dEh+i - Ti+j-d· 

For sufficiently large i, we obtain 

Cov(j) = PA'(O)Aj-l(O)A'(O)e - (PA'(O)e)(PAj-l(O)A'(O)e) 

= PA'(O)Ai- 1(O)A'(O)e - (PA'(O)e)2, 

where e = t(1, 1,···,1), 
A'(O) = dA(s)/ds 18=0, 

and P is an invariant probability vector of A(O). 

The invariant vector P satisfies the equations 

and 

(:l.1 ) 

(:J.2) 
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Proof From the definition of P, P(A-T-Too:)-lA = P. Post-multiplying by A-l(A­
T - TOo:), we get (3.2). 

Post-multiplying by (_T)-l in (3.2), we get (3.3). 0 

Now, we prepare the following equations in order to derive Theorem 3.1. 

and 

Proof From (3.3), we obtain 

From (3.4), we obtain 

o:(A - T)-lA 
0'( -T)-le 

PA-l(-T)(A - T)-lA 
PA-Ie 

PA-l(-T)(I - A-lT)-l 
PA-le 

P(I - A-lT)-IA-l(-T) 
PA-le 

(from the commutativity of A -IT and (/ - A -IT)-l) 

P(A - T)-l(-T) 
= PA-Ie . 0 

Theorem 3.1 Covariances of inter-arrival times are given by 

Cov(j) =(PA -1_ ;r'(O)O')(A - T)-l AAj-l(O)(A - T)-l(I + y'(O)T)e 

(3.4) 

(3.5) 

- {P(A - T)-l(I + y'(O)T)e}2, (3.6) 

where 

and 
y(s) = (1- g(s)o:(s/ + A - T)-lTo)-lg(s)O'(s/ + A - T)- l Ae. 

Here, y( s) is the LST of the time length distribution from the beginning epoch of the off-time 
period to the arrival epoch of the first interrupted modulated Poisson customer. 

Proof 
Equation (2.1) gives 

A(s) = (sI + A - T)-l A 
+ (1 - g(s)o:(sI -+- A - T)-lTo)-I(sI + A - T)-ITOg(s)o:(sI + A - T)-l A. (3.7) 
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By first multiplying (3.7) by P, which is an invaTlant probability vector of A(O) we obtain 

PA(s) = P(sI + A - T)-lA + x(s)a(sI + A - T)-lA. 

Then, by multiplying (3.7) bye = t(1, 1,···,1), we get 

A(s)e = (sI + A - T)-lAe + y(s)(sI + A - T)-lTo. 

Now, we have 

x(O) = (1 - a(A - T)-lTO)-l P(A - T)-lTo 

This gives 

P(A - T)-lTo 

a(A - T)-lAe 
PA-le 

a( -T)-le 

(From a(A -- T)-lTo + a(A - T)-l Ae = 1) 

(From (3 .. 5)) 

= PA-ITo. (From (3.3)) 

-PA'(O) = (P + x(O)a)(A - T)- 2A - .r'(O)a(A - T)-lA 

= (P + PA -lToa)(A - T)-2 A - x'(O)a(A - T)-l A 

= (P + PA -1 (-T))(A - T)-2 A - x'(O)a(A - T)-l A (From (3.3)) 

= (PA -1 _ x'(O)a)(A _ T)-l A. 

Since y( s) is the LST of the distribution, y(O) = l. 
Therefore, (3.9) gives 

--A'(O)e = (A - T)-2(Ae + TO) - y'(O)(A - T)-lTo 

= (A - T)-l(I + y'(O)T)e. 

Thus, we obtain Theorem 3.1 from (3.1). 0 

(3.8) 

(3.9) 

When T and A are commutative, (3.6) can be transformed into a simpler form. We now 
prepare the following equations to obtain the simpler form in Theorem 3.2. If TA = AT, we 
obtain 

(3.10) 

and 
-PA'(O) = P(I + y'(OIT)(A - T)-l. (3.11) 

Proof Since 

a(sI + A - T)-IA 

= et( -T)-le PA -l( -T)(sI + A- T)-l A (From (3.4)) 
PA-Ie 

= .n( -T)-le P(sI + A _ T)-l( -T), (From TA = AT) 
PA-le 

we get (3.10) from the definitions of :r(s) and y(s). 
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Equation (3.11) can be obtained from 

-PA'(O) = (PA-- 1 - x'(O)a)(A - T)- l A 

= {PA-- 1 _ '(0) PA -le }(A _ T)-l A 
y a( -T)-le a 

= {PA-- 1 _ y'(O)PA -1( -T) HA - T)-l A 

= PA -t(I + y'(O)T)(A - T)-l A. 

(From (3.10)) 

(From (3.4)) 

Substituting (3.10) and (3.11) into (3.6) derives following theorem. 

Theorem 3.2 If TA = AT, we obtain 

Cov(j) =P(I + y'(O)T)(A - T)-l Aj-l(O)(I + y'(O)T)(A - T)-l e 

- {P(l + y'(O)T)(A - T)-le f. (3.12) 

In particular, 

Cov(l) = P{(l + y'(O)T)(A - T)-1 }2e - {P(l + y'(O)T)(A - T)- l e}2. 

Now, we consider two typical examples in which the on-period length distribution is 
either hyperexponential or Erlangian. 

Corollary 3.3 When the on-period length distribution is hyperexponential, the following 
is satisfied. 

Cov(l) 20 and Cov(l) 2 Cov(2). 

Cov(l) = 0 is satisfied only if Ai = A for any i, and ri are constant for any i; that is, the on­
time period length distribution is exponential or y'(O) = _A-I; that is, the off-time period 
length is zero. 

Proof 
In this case, we can wri te 

1 ::; i,j ::; 1n, 

and 
a = (kl, k2,···, km). 

Since TA = AT, from Theorem 3.2 we obtain 

C ) _~ (1-Y'(0)ri)2 (~_1-Y'(0)ri)2 
ov(l - ~p'\ - ~P'-"":--'---'--

i=1 \ Ai + ri i=1 Ai + 1'i 

m m-I (l- Y'(O)1'; l- Y'(0)r-)2 
= L L PiPj - J 

j==i+1 i=1 Ai + 1'i A) + 1'j 

_ ~~1 __ {Ai + 1'i - A} - 1'} + y'(O)(1'iA} - 1'}Ai)}2 
- ~ ~ p,p) )2()2 2 o. 

}==i+l i=1 (Ai + 1'i Aj + 1'j 
(3.13) 

Now, let us consider Cov(l) - Cov(2). 
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A(O) = (A - T)-lA + (1 - CI'(A - T)-lTO)-l(A - T)-lT°Cl'(A - T)-lA 

= (A _ T)-1 A + (A - T)- 1T°Cl'(A - T)-1 A 
CI'(A - T)-1 Ae ' 

we obtain 

Cov(l) - Cov(2) = P(I + y'(O)T)(A - T)-I(I - A(O))(I + y'(O)T)(A - T)-1e 

= P(I + y'(O)T)(A - T)-2 ( - T - ~(:(,~ ;~1:: ) (I + y'(O)T)(A - T)-le 

= P(I + y'(O)T)(A - T)-2 ( - T - TO ;i~ = ~~=~~T)) (I + y'(O)T)(A - T)-le. 

(from (3.5)) 

For any non-negative Pi and qi which satisfy 

m m 

L: Pi = 1 and L: qi = 1 
i=1 i=1 

and any non-negative Xi and Yi(i = 1,2,· .. , m), we have 

m m m 111 m-I 

LPilliXi - LPiY; L qiXi = L L (Xi - Xj)(PiqjYi - PjqiYj)· (:3.14) 
i=1 i=1 i=1 j=i+l i=1 

Substituting 
1- y'(O)rj rixi 

(P}'P2,···,Pm)=P, Xi= Ai+ri ' Yi= Ai+ri 

and 

into (3.14), we obtnin 

Cov(l) - Cov(2) = f 1:1 

Piri. PjlL(Xi - Xj)2/ f. ~ ~ O. 0 
j=i+1 ;=1 A, + r, AJ + r J 1=1 Al + q 

Corollary 3.4 When the on-period length distribution is m-Erlangian and A = AI, we 
obtain Cov(l) ::; o. Cov(l) = 0 only if In = 1; that is, the on-time period length distribution 
is exponential or y'(O) = _)..-1; that is, the off-time period length is zero. 

Proof 
In this case, we can write 

T= . 
(

-":11 

TO = t(O, 0, ...... , mIL), Cl' = (1,0, ...... ,0). 
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Since 
P = m- 1(1, 1"",1), 

it follows from Theorem 3.2 and 

(I + y'(O)T)(A - T)-l = A-1U + (I + y'(O)A)T(A - T)-I} 

that 

Cov(l) = A-2 {1 + AY'(0)}2{ P(U - T)-I( -T)(U - T)-ITo - (P(U _ T)-- ITO)2} 

/l2(1 + AY'(0))2{ m 2am
-

1 
- (\-_a~r} 

= ')? < 0, (3.15) 
,\~(A+mIL)~ -

where 
/nIL 

a - ----'--
- A + m/l' 

In particular, when m = 00, that is, the on-time period is constant, 
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