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Abstract Suppose there are n objects in a row and we want to choose as good an object as possible. We 
are allowed to observe one by one starting at an end. We may stop at any point and take the object there, 
but going back is not allowed. The stopping rule is based on the relative rank of the object among those 
observed so far. The cost of observation, k, is considered to be either zero or positive. This paper presents 
a basic theory on this problem as well as a set of algorithms which give the optimum stopping rule for given 
nand k, and the characteristics of the rule. 

1. Introduction. 
Suppose there are n objects and they are ranked from l(the best) to n(the worst) without 

any tie. They are arranged in a row. We are allowed to observe them one by one starting at 
an end. Let the (absolute) rank of the i-th object be Xi. Then 

(1.1 ) X1,X2,"',X n 

is assumed to be a random permutation of 1,2, ... ,n. When we have observed first i objects, 
the relative rank of the i-Ht object is: 

(1.2) Yi = (number of Xl, ... ,Xi-l less than xi) + 1. 

Now, we consider the s topping rules of the following form: 

Rule The stopping criteria SI, S2,'" ,Sn are pre-determined. For i = 1,2"", right 
after observing the first i objects, if the relative rank Yi of i-th object is less than or 
equal to Si, then we stop there and select the i-th object. Otherwise we continue the 
observation. 

It is to be noted that the choice of the i-th object is possible only when we have just 
completed the observation of the first i objects. In other words, if we go on without deciding 
at that time, it is not allowed to come back later and take the i-th object. 

About the stopping criteria, the condition that 

(1.3) 

would not make any harm. Namely, our criteria are such that the condition gets milder as 
we go, and if we happen to come to the last object, we are to take the last one in any case. 

Possible practical applications would include: 

(a) Bathing beauties - There are n beauties in a row at a beach. One walks along, and 
offers a date to someone he hopes to be of a high rank. 
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Selection by Relative Rank with Cost 

(b) Marriage - There are n candidates for a bride. One interviews one by one, and marries 
one hopefully with a high rank. Ferguson(I!l89) describes, in Section 5, an interesting 
story of Johannes Kepler(1571-1630) in this relation. 

(c) Development of a new product - There are n proposals of a new product. The 
company makes the detailed productivity and marketability study one by one, and selects 
the one hopefully with a high rank. 

(d) Infrastructure projects - There are n proposals of infrastructure development 
projects. The agency makes the feasibility st.udy and cost/benefit analysis one by one, 
and decides on one hopefully with a high rank. 

This type of problems are known also as the "secretary problem". Many papers on 
this subject in its various modifications are listed in review articles Freeman(1983) and 
Ferguson(1989). Some papers not mentioned the:cein are included in the list of references of 
this paper. . 

Here, we develop a basic theory in the case of non-negative cost. The probability distri­
bution of the number of observations until stoppmg, and the probability distribution of the 
absolute rank of the selected object are among the major topics considered. 

2. Probability distribution of the number of observations. 

When observation requires no cost, the number of observations may not mean much. But 
if some cost is required, then the number of observations until stopping becomes of interest. 
According to our rule, it is a random variable in general. In this Section, let us discuss its 
probability distribution. 

Given the stopping criteria Si( i = 1,2,· .. ,n), let us consider the probability distribution 
of the number of observations i until stopping. 

Let the absolute ranks of the first i items be Xl, X2,· .. , Xi. If we replace them with 
the relative ranks among them, then we would have anyone of the i! permutations. Hence, 
the relative rank Yi of the i-th object among them takes the value from 1 to i with equal 
probability l/i. Namely, 

(2.1 ) P(Yi =j) = l/i (j = 1,2,.··,i). 

This probability is independent of the values of Yl, ... ,Yi-l. 
Now, let us define 

(2.2) Wj =the event that stopping does not occur at the 

i-th observation or earlier, 

and let its probability be denoted by 

(2.3) Q(i) = P(JJi). 

Then the probability that stopping occurs right after the i-th observation is given by 

(2.4) p(i) = P{wi-l,Yi::; s;} 
= Q(i - 1) . sdi. 

And we get a recurrence formula 

(2.5) Q(i) = Q(i - 1)· (1 - sdi). 
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48 S. Moriguti 

Starting with Q(O) = 1 and using (2.4) and (2.5) successively, we can obtain all the values 
of p(i) and Q(i) for i = 1,2"", n. In particular, under the assumption Sn = n (cf. (1.3)), 
we get Q(n) = O. 

In many cases, Si takes on the same value S for a set of i values. Under the condition 
(1.3), the set is an intervall •. If we define 

(2.6) is = min {i I Si 2: s}, 

then the interval Is can be expressed as 

(2.7) Is = {i I is ::; i ::; is+1 - I}. 

Here, Is is understood to be empty when is = is+1. Now, we can write (2.5) in the form 

(2.8) q(i) = Q(i - 1) . (1 - sji) (i EIs) 

and rewrite it as 

(2.9) Q(i). i(i - 1) ... (i - s + 1) = Q(i - 1)· (i -1)(i - 2) .. · (i - s) (i EIs). 

Using the notation 

(2.10) i(s) = i(i - 1) ... (i - s + 1), 

we can get from (2.9) 

(2.11 ) Q(i) . i(s) = const = Q(is - 1) . (is - 1)(s) (i EIs). 

In particular, applying (2.11) for i = Si+1 - 1, we have 

(2.12) 

For i E 10 = {I, 2, ... ,i1-1}, stopping never occurs and therefore Q( i) = 1. Thus Q( i1 -1) = 
1. Starting with this value, and applying (2.12) successively, we obtain 

Q(i2 - 1) = Q(i t - 1) . (it - 1)/(i2 - 1) = (it - 1)/(i2 - 1), 

Q(i3 - 1) = Q(i2 - 1) . (i2 - 1)(2) j(i3 - 1)(2) = (it - 1 )(i2 - 2)j(i3 - IP), 

(2.13) Q(is - 1) = (it - 1)(i2 - 2) ... (i s - t - s + 1)/(is - 1)(s-l). 

Hence the last term of (2.11) can now be written as 

(2.14) Q(is - 1). (is - 1)(8) = (it - 1)(i2 - 2) ... (i s- t - s + 1)(is - s), 

so that (2.11) becomes 

(2.15) Q(i) = (it - l)(i2 - 2)··· (is - s)/i(s) (i EIs). 

Remark. Formula (2.15) can be derived directly by the following considerations 
(Watanabe(1965)): ~- Relative ranks of the first i objects can appear as anyone 
of the i! permutations with uniform probability l/iL Among them, those which 
correspond to the event Wj have the characteristics that the object with relative rank 
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1 is in the first i1 - 1 positions, the object with relative rank 2 is in the first i2 - 1 
positions except the position occupied by the object of relative rank 1" ", the object 
with relative rank s is in the first is - 1 positions except the positions occupied by 
the superior s - 1 objects. The remaining i - s objects can be in any positions, in 
any order, among the unoccupied i - s positions. Hence there are 

(2.16) (i1 - l)(iz - 2)··· (is - s)· (i - s)! 

permutations corresponding to the event v..'j. This leads to the formula (2.15) for the 
probability q(i) of Wi. 

Now let us consider the expected number of observations. 
Formula (2.4) gives the probability of stopping right after the i-th observation. Using it, 

the expected number of observations until stopping is given by 
n 

(2.17) eo = Li. p(i). 
i=1 

On the other hand, since Q(n) = 0, we have for any i 

(2.18) 

whence 

(2.19) 

Q( i) = p( i + 1) + p( i + 2) + ... + p( n), 

eo = (p(l) + p(2) + p(3) + ... + p(n)) 
+(p(2) + p(3) + ... + p(n)) 

n-1 

+(p(3) + .. , + p(n)) 
+ ...... 

+ p(n)) 

= 1 + L Q(i). 
i=1 

It can also be expressed in the form 

(2.20) eo = (2i1 - 1) + (i1 _ 1) (~+ ._. _1_ + .. , + _. _1_) 
l1 11 + 1 l2 - 2 _ y: Q(is - 1) . (is - 1) 

s=3 (s-1)(s-2) . 

(See Appendix 1 for the detail.) 

Remark. Perhaps this expression is new. In "classical secretary problem" where 
observation cost is zero, the expected absolute rank of the selected object is less than 
4 however large n may be (see Chow et al. (1964)). This remarkable achievement is 
possible, however, by observing at least about n/4 objects and nearly n/2 objects 
on the average (i.e. i1 and eo is nearly equal to n/4 and n/2, respectively). It is 
observed, e.g., in Table 1 below. 

Next, under the condition Wi (cf.(2.2)), the expected number of additional observations 
until stopping is given by 

(2.21 ) ej = (1· p(i + 1) + 2· p(i + 2) + .. + (n - i) . p(n))/Q(i) 
= (Q(i) + Q(i + 1) + ... + Q(n))/Q(i). 
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From this, using (2.5), we can get a recurrence formula 

(2.22) ei-l = ei' Q(i)/Q(i - 1) + 1 = (1 - sdi). ei + 1. 

So, we can start with en = 0 and use (2.22) successively for i = n, n - 1, . ". It will be a 
better procedure for the numerical computation for finite n. (The last value eo thus obtained 
will obviously be the value of (2.17).) 

Remark. Formula (2.22) is in line with (3.24) below which is the recurrence for­
mula derived by Lindley (1961) as the backward induction formula in the Bellman's 
Dynamic Programming framework. 

3. Probability distribution of the absolute rank. 
In order to obtain the probability distribution of the absolute rank r of the selected 

object, let us first consider 

(3.1) f(i,r) = P{stop right after the i-th observation, absolute rank r}. 

The stopping probability p(i) is given by (2.4). Then the relative rank Yi of the i-th object 
is distributed as (2.1). Stopping there occurs if and only if 

(3.2) 1 :::; Yi :::; Si· 

The condition that stopping did not occur before is 

(3.3) Y1 > SI, Y2 > S2, "', Yi-1 > Si-I· 

But this event is independent of the event that Yi = j. Hence we can neglect this condition 
hereafter. 

Now let us consider the probability P(Yi = j I Xi = r), i.e. the probability of Yi = j 
under the condition Xi = r. Suppose that the absolute rank Xi of the i-th object is r. Then 
the set {Xl, X2,'" , Xi-I} of the absolute ranks of the preceding i-I objects are chosen at 
random from the remaining n - 1 values, so that there are 

(3.4) (
n - 1) 
z - 1 

possibilities. The event Yi = j implies that in the set {Xl, X2, ... , Xi-I}, there are j -1 values 
superior to Xi = r, and the remaining i - j are inferior to r. Such combination occurs in 

(3.5) (~ -1) (n - r) 
)-1 z-) 

ways. Therefore 

(3.6) P(Yi := j I Xi = r) = (~- 1) (n - ~) / (~ - 1) . 
)-1 z-) z-l 

Since the object with absolute rank r can be at any of the n positions, the probability that it 
happens to be at the position i is 1/n. Hence the probability that Xi = rand Yi = j occurs 
together is 

(3.7) P(Xi = r,Yi = j) = P(Xi = r) . P(Yi = j I Xi = r) 

= ~ . (~ - 1) (~ - ~) / (n - 1) . 
n )-1 z-) z-1 
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On the other hand, the probability of the event Yi = j is given by (2.1). Therefore the 
probability that Xi == r under the condition Yi = j is given by 

(3.8) P(:ri = r I Yi = j) = P(Xi = r,Yi = j)/P(Yi = j) 

= [~. (~- (\1 (~- ~)/(~ -1)] /~ 
n )-1) z-) z-1 z 

= (~-1) (~-- ~)/(~). 
) - 1 z -- ) z 

Probability (3.1) can now be expressed as 

Si 

(3.9) f(i, r) = L P(Wi-l, Yi = j) . P(Xi = r I Yi = j) 
j=1 

= Q(i -1). t ~(~ --1) (n -r)/(~). 
. z) -- 1 z -) Z 

J=1 

It is to be noted here that the binomial coefficients involved are non-zero only when 

(3.10) j - 1 :s r - 1 and i -- j :s n - r. 

Hence, for l' < Si the sum in (3.9) is essentially up to j = 1'. And f( i, 1') = 0 for l' > n - i +Si. 
Once the values of (3.9) are determined, the probability of l' is determined as the marginal 

distribution. Thus, the absolute rank of the selected object is r with probability 

n 

(3.11) f(1') = L f(i,r) (1' = 1,2" ··,n). 
i=;1 

In particular, for r =: 1, the sum in (3.9) reduces to a single term and we get 

(3.12) 
n 1 

f(1) = L Q(i - 1)-. 
. . n 
1=='1 

Noting that Q(il - 1) = 1 and Q(n) = 0, and considering (3.3), it becomes 

(3.13) f(l) = (eo - il + 1)/n. 

It can be shown (see Appendix 2 for details) that 

(3.14) f(i,1') = Q(i - 1)/n (1:S l' :s Si), 

and 

(3.15) g(i,1') == f(i, r) - f(i, l' + 1) 

= 9 (i -. 1) (1' - 1 ) (n. - r - 1) / (n. ) 
z Si - 1 Z - Si - 1 z 

(Si :s l' :s n - i + Si). 

Therefore, for a fixed value of i, 

(3.16) 
g(i, l' + 1) 

g( i, r) 
r n - r - i + .5i 

r - Si + 1 n - l' - 1 
(Si :s r :s n - i + Si - 1) 
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and 

(3.17) (. ..) = Q( i-I) (n - Si - 1) / (n) 9 I,S. . . 1 .' 
1 I - Si - 'I 

Starting with (3.17), successive application of (3.16) will give us all g(i, r) (r == Si + 1, Si + 
2, ... ). Then, starting with f( i, r) = 0 (r = n - i + Si + 1), successive application of 

(3.18) f(i,r)=f(i,r+l)+g(i,r) (r=n-i+si'''',Si) 

will give us all the f(i, r)'s efficiently, and the coincidence of the value of f(i, Si) with (3.14) 
will work as a check. 

After getting all the values f( i, r), we can easily compute (3.11). On the other hand, 
there are another set of formulae based on the partial sum for i E Is(s = 1,2,·· .). (See 
Appendix 3 for the details.) 

Remark. Formulae (3.14), (3.15), etc. in this Section were first derived in Wata­
nabe (1965). They provide an efficient algorithm to compute the p.d.f. and c.d.f. of 
r, the absolute rank of the selected object. 

Now let us derive the expected rank of the selected object. 
Under the condition that, after the i-th observation, the relative rank Yi of the i-th object 

is j, the expected absolute rank is given, from (3.8), by 

(3.19) 

But, since 

(3.20) 

we get 

(3.21 ) 

n 

E(Xi I Yi = j) = L r . P(Xi = r I Yi = j) 
r=1 

n~j r (~ = ~) (7 = ;) / (7) 
= [j / (7) ] n~j (~) (7 = ;) . 

n~j (~) (~ _~) = (~+ 1) , 
r=j J 1- J 1 + 1 

( I .) n + 1 E Xi Yi = J = -.--j. 
1 + 1 

The expected rank of the object selected with the stopping criteria si(i := 1,2, .. ·) is 
obtained, from (3.21), (2.1)" and (2.2), as 

(3.22) 
n . 1 n + 1 Si . 

E(r) = L Q(I - 1) . "7 • -. - L J 
.. 11+1'1 '='1 J= 

= t Q(i _ 1) . . n. + 1 . Si (Si + 1) . 
. _. 1(1+1) 2 
1-11 
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Let Ci denote the expected rank under the condition Wj defined in (2.2), i.e. 

(3.23) Cj = E(r \.<};). 

Then we get, using (2.5), the recurrence formula 

(3.24 ) 
1 n n + 1 

Ci-1 = Q(i _ 1) E Q(k - 1) k(k + 1) 

n + 1 Si (Si + 1) Q(i) 
=i(i+1) 2 +(J(i_1) C

i 

_ (n + 1)Si(Sj + 1) (_ Si) . 
- 2i(i+1) + 1 i c,. 

For i=n, (3.24) gives 

(3.25 ) Cn -1 = (n + 1)/2. 

Starting with this, successive application of (3.24) will give the values of Cn -2, ... ,CO. It can 
easily be seen that Ci = co(i E ID) and the value of Co is equal to (3.22). 

4. Optimal stopping rule. 

So far, we derived various formulae for an arbitrary set of the stopping criteria si(i = 
1,2,···, n). Now let us consider optimizing the criteria. The framework we adopt here is the 
backward induction of Bellman's Dynamic Programming, i.e. determining Si at each step so 
that Ci-1 will be minimized for given Ci. 

If the cost of observation is negligible, then our objective will be to minimize Co, the 
expected absolute rank of the selected object. In order to achieve this, we ought to choose 
such value Si at each step i that will minimize (3.24). Rewriting (3.24) in the form 

(4.1 ) 1 s, (71 + 1 . ) 
Ci-1 = Ci + -:- E -:---1) - Ci , 

t j=1 1 + 
it becomes obvious that Si is to be chosen as the largest integer j which satisfies 

(4.2) 

namely 

(4.3) 

n + 1. --) < c· i + 1 - I, 

Si = trunc [:: ~ . Ci] , 

where trunc[x] means the truncated value, that is the greatest integer not exceeding x. (Note 
that, for given Ci, (4.1) will be minimized when all the positive terms are excluded from the 
summation. ) 

Starting with Sn = n,cn -1 = (n + 1)/2, and using (4.3) and (3.24) alternately, we can 
get Si, Ci-1 (i = n - 1, n - 2, ... ,1) which give us the optimal stopping rule and the expected 
rank Co attained by that rule. This result coincides with what has long been known (see 
Chow et al.( 1964), for instance). 

Next, let us consider the case where the cost of observation is not negligible. Put 

( 4.4) 
k = cost of observing one object 

loss of getting one lower expected rank' 
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and let our objective be to minimize 

(4.5) to = Co + k . eo. 

(Strictly speaking, Co - 1 would be the real loss. But there will be no harm in considering 
only Co, and call to the total "loss" including the expected cost of observations.) 
In order to achieve this, we combine Ci in (3.23) and ei in (2.21) and put 

(4.6) 

Then the recurrence formula for ti is obtained from (3.24) and (2.22) as 

(4.7) . _ (n + I)Si(Si + 1) k (1 _ Si) . 
tl-l - 2i(i + 1) + + i t l · 

Then, by similar argumentil as (4.1) through (4.3), the value of Si which minimizes ti-l is 
given by 

(4.8) [ 
i + 1 ] s· = trunc __ to . 

• n + 1 I 

Starting with tn-l = (n+ 1 )/2+k, and using (4.8) and (4.7) alternately, we can determine 
Si, ti-l (i = n -1, n - 2, ... , 1). The result will be the optimal stopping rule and the optimized 
expected "total loss". 

This treatment was done by Watanabe(1965) probably for the first time. 

5. Numerical examples. 

For values of n which are not extremely large, the computation discussed above can be 
done easily with computer. Here we present the results obtained for n = 25 with k = 0 and 
0.5, together with some graphs. 

Please note that the cumulative probabilities 

(5.1 ) F(r) =: f(l) + f(2) + ... + f(r) (r = 1,2,···, n) 

are also shown in the tables and the graphs. 

Note. For some reasons, s( i), c( i), e( i) and t( i) are used in the Tables and Figures 
for Sj,Cj,ei and tj. 

In Table 1 and Fig. 1, it is interesting to note that Si = 0 for i = 1,2, ... ,7, so that one 
should keep observing about 1/4 of the population without taking any action (just getting 
information). Then, Sj = 1 up to i = 13, meaning that one takes an object only if it turns 
out to be the best among all those observed so far. At the end of this phase, one has already 
observed about half the population. After that the criterion gets milder and milder. 

The behaviour of pj and Q( i) may appear to be a little irregular at first glance. But if 
one notices the change of s, at certain points, that feeling will probably disappear. 

Fig. 2 differs from Fig. 1 in several features, due to the cost of observation. First, 
"information only" period reduces considerably, and the criteria get milder much sooner. 
Second, both Cj and tj decrease for small i and turn to increasing at a certain value of i. 
About the seeming irregularity of Pi and Q( i), the same comments apply here as in the case 
of Fig. 1. 
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Table 1. Computed results for n = 25 and k = O. 

1 8(11 c(i-1) e(1-1) t(1-1) Q(i) p(l) 

1 0 3.1167 14.4586 3.1167 1.0000 .0000 
2 0 3.1167 13.4586 3.1167 1.0000 .0000 
3 0 3.1167 12.4586 3.1167 1. 0000 .0000 
4 0 3.1167 11.4586 3.1167 1.0000 .0000 
5 0 3.1167 10.4586 3.1167 1. 0000 .0000 
6 0 3.1167 9.4586 3.1161 1.0000 .0000 
7 0 3.1167 8.4586 3.1167 1.0000 .0000 
8 1 3.1167 7.4586 3.1167 .8750 .1250 
9 1 3.1492 7.3812 3.1492 .1778 .0972 

10 1 3.2179 7.1789 3.2179 .7000 .0778 
11 1 3.3128 6.8654 3.3128 .6364 .0636 
12 1 3.4274 6.4520 3.4274 .5833 .0530 
13 1 3.5572 5.9476 3.5572 .5385 .0449 
14 2 3.6988 5.3599 3.6988 .4615 .0769 
15 2 3.8820 5.0866 3.8820 .4000 .0615 
16 2 4.1042 4.7153 4.1042 .3500 .0500 
17 3 4.3628 4.2460 4.3628 .2,882 .0618 
18 3 4.6786 3.9416 4.6786 .2402 .0480 
19 4 5.0669. 3.5299 5.0669 .1896 .0506 
20 4 5.5515 3.2046 5.5515 .lS17 .0379 
21 5 6.1655 2.7557 6.1655 .1156 .0361 
22 7 6.9843 2.3043 6.9843 .0'788 .0368 
23 9 8.1335 1. 9130 8.1335 .0480 .0308 
24 12 9.8800 1.5000 9.8800 .0240 .0240 
25 25 13.0000 1.0000 13.0000 .0000 .0240 

circle:s(i), sqUare:c(i) 
25broken line:t(i) 1 bar:p(i), line:Q(i) 

20 

15 

10 

5 

o 0 

} 

.El ~ 
OC)00 

;;'0-
,00: 

0 

10 15 20 2 

.8r--r-Tr--r~r-~ 

.6r--r~~-r~--~ 

. 4 t--t--t---'I<:---t----t 

.2r--r~r--r~--~ 

5 00 5 

r f(r) F(r) 

1 .29834 . ~~9834 
2 .22834 .fi2669 
3 .16595 .69264 
4 .11412 .80676 
5 .07264 .87940 
6 .04284 .92223 
7 .02533 .94756 
8 .01538 .96294 
9 .00995 .97289 

10 .00632 .97921 
11 .00401 .98322 
12 '.00316 .98638 
13 .00204 .98842 
14 .00101 .98942 
15 .00098 .99040 
16 .00096 .99136 
17 .00096 .99232 
18 .00096 .99328 
19 .00096 .99424 
20 .00096 .99520 
21 .00096 .99616 
22 .00096 .99712 
23 .00096 .99808 
24 .00096 .99904 
25 .00096 1.00000 

1 bar:f(r), 1 ine:F(r) 
/ 

.8 

.6 

.4 

.2 

/ 
I 
I. 

lllh I .. 
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r 

Fig. 1. Graphical presentation of Table 1 (n = 25, k = 0). 
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Table 2. Computed results for n = 25 and k = 0.5. 

1 s (1) c(i-l) e(1-1) t(1-1) Q(1) p( 1) r f(r) F(r) 

1 0 4.9722 6.1872 8.0658 1.0000 .0000 1 .16749 .16749 
2 0 4.9722 5.1872 7.5658 1.0000 .0000 2 .15082 .31831 
3 1 4.9722 4.1872 7.0658 .6667 .3333 3 .13198 .45029 
4 1 4.2083 4.7808 6.5987 .5000 .1667 4 .11228 .56257 
5 1 3.8777 5.0411 6.3982 .4000 .1000 5 .09285 .65542 
6 1 3.7638 5.0513 6.2895 .3333 .0667 6 .07500 .73042 
7 1 3.7737 4.8616 6.2045 .2857 .0476 7 .05951 .78993 
8 2 3.8610 4.5052 6.1136 .2143 .0714 8 .04685 .83679 
9 2 3.7036 4.6736 6.0403 .1667 .0476 9 .03689 .87367 

10 2 3.6474 4.7232 6.0090 .1333 .0333 10 .02909 .90276 
11 2 3.6729 4.6:;,40 5.9999 .1091 .0242 11 .02303 .92579 
12 2 3.7669 4.4660 5.9999 .0909 .0182 12 .01829 .94408 
13 3 3.9203 4.1Ei92 5.9999 .0699 .0210 13 .01445 .95853 
14 3 3.9821 4.1069 6.0355 .0549 .0150 14 .011:32 .96985 
15 3 4.1226 3. 9~i42 6.0998 .0440 .0110 15 .00879 .97865 
16 4 4.3408 3.6928 6.1872 .0330 .0110 16 .00672 .98537 
17 4 ,4.5132 3.5904 6.3084 .0252 .0078 17 .00502 .99039 
18 4 4.7908 3.3874 6.4845 .0196 .0056 18 .00364 .99403 
19 5' 5.1822 3.0696 6.7170 .0144 .0052 19 .00252 .99656 
20 6 5.6401 2.8087 7.0444 .0101 .0043 20 .00165 .99820 
21 6 6.2001 2.5839 7.4921 .0072 .0029 21 .00098 .99918 
22 8 7.0257 2.2174 8.1343 .0046 .0026 22 .00050 .99969 
23 9 8.1335 1.9130 9.0900 .0028 .0018 23 .00020 .99989 
24 12 9.8800 1.5000 10.6300 .0014 .0014 24 .00006 .99994 
25 25 13.0000 1.0000 13.5000 .0000 .0014 25 .00006 1.00000 
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Fig. 2. Graphical presentation of Table 2 (n = 25, k = 0.5). 
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As for the distribution of r, both Fig. 1 and Fig. 2 show the same feature of skewness 
like geometric distribution. But the achievement is poorer in Fig. 2 than in Fig. 1, reflecting 

Co =: 5 for k = 0.5 versus Co =: 3 for k = O. 

6. Final remarks. 
The "basic" theory of selection by relative rank with cost is now complete. Generalization 

in various directions are conceivable and has already been done rather extensively. (See the 
list of references, especially review articles Freeman (1983) and Ferguson (1989)). 

Although the results developed here are based on a rather simple se-up, they will hope­
fully be useful in more general cases also, in setting the directions to go when observation 
cost is not negligible. 

The asymptotic theory when n -+ 00 has only partly been done (e.g. Chow et al. (1964)). 
The author believes that the cases for low, medium, and high cost must be handled separately. 
(It is suggested by Moriguti (1992).) Those results will be published successively in the near 
future. 

Appendix 1. Derivation of formula (2.20) 
Formula (2.19) can be rewritten as 

n 

(ALl) eo = 1 + L :[ Q(i), 
s=O ;'0:1. 

by dividing the set of all values of i into sets Is( 8 = 0, ... ,n) as defined in (2.7). 
Since Q( i) = 1 for all i E 10, we have 

(Al.2) L Q(i) = (il - 1) . 1 = i1 - l. 
iElo 

For s = 1, (2.1[i) becomes Q(i) = (il - l)/i (i E h), so that 

(Al.3) L Q(i) = (il - 1) L ;. = (il _ 1) (~ + _. _1_ + ... + _. _1_) . 
iEIl iElt Z II II + 1 Z2 - 1 

For s ~ 2, using (2.15), we get 

(A1.4) 

But 

(Al.5) 
1 

L i(i-.l) ... (i-s+1) 
tEI, 

= ~ ~ 1 L [( i-I) ... ~ i - s + 1) - i( i-I) ... \ i - s + 2)] 
IEls 

I [I I] 
= ~ - I (is - 1) ... (is - s + 1)- (is+l - I) ... (is+l - s + 1) . 

Substituting (Al.2), (Al.3) and (AI.4) into (ALl), and using (Al.5), we get 
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(A1.6) 

eo=1+(il-1)+(il-1)(~+-. _1_+ ... +_. _1_) 
11 ZI + 1 12 - 1 t 1 [ (il-1)(i2- 2)···(is -s) (i 1 -1)(i2 -2) ... (i s -s)] 

+ s=2 s -1 (is -l)(is - 2)· .. (is - s + 1) - (is+l -l)(is+l - 2)··· (is+l - s + 1) 

.. (1 1 1) (il-1)(i2-2) = /1 + (/1 - 1) -:- + -. - + '" + -. - + -'----. -'-'------'-
/1 /1 + 1 /2 - 1 12 - 1 

E [ __ 1_. (il - 1)(i2 - 2) ... (is-l - s + 1) _1_. (il - 1)(i2 - 2) ... (is - s) ] 

+ s=3 s - 2 (is -l)(i" - 2)··· (is - s + 2) + s -1 (is -1)(is - 2) ... (is - s + 1) . 

Now, the quantity between the last brackets can be transformed into 

(Al.7) 

(il - 1)(i2 - 2)··· (i s - 1 - s + 1) . . 
(s _ l)(s - 2)(is -1)(is _ 2) ... (is _ S + 1) {-(o5 - l)(/s - oS + 1) + (05 - 2)(/8 - o5)} 

Q( is - 1) . (is - 1) 
(s-1)(s-2) , 

(cf. (2.13)). Also, 

(Al.S) 
(il-1)(i2 -2) (. ) il-1 
-----'---'----"- = /1 - 1 ---

i2 - 1 i2 - l' 

Hence (A1.6) becomes 

(Al.9) 
. . ( 1 1 1 ) ~ Q( is - 1) .. (is - 1) 

eo = (21.\ - 1) + (11 - 1) -:- + -. - + ... + -. - - L ' 
1.11.1+ 1 12-2 s=3 (s-1)(o5-2) 

which is (2.20). 

Appendix 2. Derivation of (3.14) and (3.15) 
In (3.9), for r ~ Si, the sum is essentially up to r, and since there holds 

(A2.1) t (~ - 1) (n - ~) = (n - 1), 
. )-1 1.-) /-1 )=1 

(3.9) becomes 

(A2.2) f(i,r) = Q(i -1)· ~(7 ~:) / (7) 
= Q(i - 1)/n (1 ~ r ~ Si) 

which is (3.14). 
Next, for Si ~ r ~ n - 1, we get from (3.9) 

(A2.3) g(i, r) = f(i, r) - f(i, r + 1) 

= Q(i:-1) t [(~-1)(~-~) _ (. r )(n-:-r~l)]/(n). 
1 .1=1 ) - 1 / - J J - 1 / - J / 
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But 

(A2.4) 

t [(~ - 1) (11 -~) _ (.' ) (11 ~ I' ~ 1)] 
j=1 J - 1 l - J J - 1 Z - J 

= (~-,) _ (11 ~- , - 1) + t [(~ - 1) (11 -~) _ {(I: -1) + (~ - I)} (11 ~ , ~ 1)] 
z - 1 Z - 1 j=2 J - 1 l - ) J - 1 J - 2 z - J 

= (11 ~ , - 1) + :t [(~ -1) {(~ - ~) _ (11 -~ , ~ I)} _ (~ -1) (11 ~' ~ 1)] 
z - 2 )=2 J - 1 Z - J I - J J - 2 Z - J 

= (11 ~' - 1) + :t [(r: - 1) (~ -, - 1) _ (1: - 1) (11 ~' ~ 1)] 
Z - 2 J - 1 Z - J - 1, - 2 Z - J 

)=2 • 

= (, - 1) (11 - l' - 1). 
Si - 1 l - Si - 1 

Therefore, (A2.3) becomes 

(A2.5) g(;,~):=Q(i-. 1)(,-1)(11. -,-1)/(11.) • , (Si ::::: ' ::::: 11 - i + Si), 
Z Si - 1 Z - Si - 1 l 

which is (3.15). 

Appendix 3. Another Set of Formulae 
On the Distribution of the Absolute Rank 

(3.11) can also be written as 

n 

(A3.1) f(,) = L L f(i,,) 
s=1 iEl, 

(cf. (2.7)). 
Accordingly, its backward difference becomes 

n n 

(A3.2) g(,) == f(,) - f(, + 1) = L L {J(i,,) - f(i" + I)} = L L g(i, ,). 
8=1 iEl, s=1 iEl, 

Since, for i EIs, g(i,,) is not zero only for, which satisfies S ::::: ' ::::: 11 - i + s, the outer 
summation in (A3.2) is to be done only for s which satisfies 

(A3.3) 1 ::::: S ::::: r and is - " ::::: 11 - ,. 
For such s, we get 

(A3.4) 

L g(i,,) = L Q(i :-1) (, -1) (~-' -1)/(~) 
iEl, iEl, Z S - 1 Z - S - 1 l 

{
" }(,-1) 1 (11-,-1)! i!(I1-i)! 

= z/-/) ---!l( s-1 L i(s+I)(i-s-1)!(I1-,-i+s)! 11! 
/-1 IEl, 

= {fl(i/-/)} (, = 1) (11 - ',- I)! L(n _ i)(r-s). 
/=:1 sIll. iEl. 
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But 

(A3.5) 

S. Moriguti 

i.+I-l (n _ i + l)(r-s+l) _ (n _ i)(r-S+l) L (n - i)(r-s) = L 
'1 " r-8+1 lE, .=1, 

(n - is + l)(r-s+1) - (n - is+l + l)(r-s+l) 

r-8+1 

Hence (A3.4) becomes 

(A3.6) 
. _ {s. } (r -1) (n - is + l)(r-s+l) - (n - is+l + l)(r-s+l) 

L g(z,r) - II(zl-l) -1 (r+l)( _ + 1) . 
iE1, 1=1 8 n r 8 

These formulae will be useful for very large n, and also when discussing the limit as 
n --t (Xl. 
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