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Abstract This paper investigates a discrete-time system with Markov modulated batch Bernoulli process 
(MMBP) inputs, general service times, and a finite capacity waiting room (queue). The FIFa and space 
priority service rules are considered. The main motivation for studying this type of queue is its potential 
applicability to time-slotted communication systems in broadband ISDN (B-ISDN). Applying the supple­
mentary variable technique and the matrix analysis approach, we obtain the steady-state distributions of 
the number of customers in the system as well as loss probabilities under individual service rules. 

1. Introduction 

There are a lot of practical systems that operate on a discrete-time basis. Classical 
examples are synchronous communication channels, e.g. slotted ALOHA [13]. More recent 
examples are packet switching systems and ATM (Asynchronous Transfer Mode) systems in 
broadband ISDN's (Integrated Service Digital Networks), see e.g. [6, 7]. In such systems, 
all events (arrivals and departures) are allowed only at regularly spaced points in time. 
Performance issues in these systems then necessitate discrete-time queues. 

A common feature in recent communication :,ystems is that we frequently encounter a 
single-server queueing situation with priority or without priority where the input process is 
not renewal but correlated. For example, it is well known that the input process of packetized 
voice traffic at a statistical multiplexer (at a single-server) does not form a Poisson process 
(nor renewal) but bursty and correlated [11]. In order to capture the effect of correlated input 
process, a discrete-time version of Markov modulated Poisson process (MMPP [11]) called 
Markov modulated batch Bernoulli process (MM13P) has been proposed and the statistical 
characterization measures of two-state MMBP, so called switched batch Bernoulli process 
(SBBP), has been investigated in Hashida et al. [10]. This feature should motivate the study 
of discrete-time queues with MMBP or SBBP inputs. 

Several previous works on the discrete-time single-server queues with MMBP or S13BP 
inputs are worth mentioning. Hashida et al. [10] o.nalyzed the SBBP/C/1 queue and found 
the probability generating function (pgf) of the number of customers in the system. Daigle 
et al. [3] have analyzed the M M BP / D /1 queue via the algorithmic approach. Subsequently, 
Hashida et al. [9], Khamisky et al. [12] and Stavrakakis [17] have analyzed the SBBP/D/1 
queue with the head-of-the-line priority service mle via the embedded Markov chain ap­
proach. In these results, however, the capacity of the waiting room (queue) has been as­
sumed to be infinite. These approaches [3, 9, 10, 12, 17] cannot be directly applied to finite 
capacity queues. 

Recently, under renewal assumptions, there has been much interest in analyzing the 
discrete-time single-server queues with finite capacity. Gravey et al. [7] has analyzed a 
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Geo/ D/1/ I< queue, where Geo denotes the Bernoulli input and I< denotes the queue capacity 
(the maximum number of customers allowed in the system). Tran-Gia et al. [20] and Murata 
et al. [15] have respectively analyzed the batch input Glx /D/1/I< queue and the mixed 
input Geo + GI/ D /1/ I< queue via the Fast Fourier Transform (FFT) technique. However, 
there seems to be very few literature on the correlated input discrete-time queues with finite 
capacity. The primary purpose of this paper is to provide an approach to evaluate the loss 
(or sometimes called as overflow) probabilities in a correlated input discrete-time queue with 
finite capacity. 

In the followings, the ordinary priority in the queueing literature, e.g. head-of-the-line [9, 
12], will be called as time p'riority, since customer classes are prioritized subject to the delay 
times. For the previous works on discrete-time queues with time priority, see Takahashi et al. 
[19] and references therein. When the customer classes are prioritized subject to the allowed 
loss probabilites rather than the delay times, however, it seems that the time priority rules 
are not so useful. The space priority service rule, namely push-out [18] or buffer reservation 
scheme [6, 14] which will be described precisely later, has been appearing in the ATM systems 
and has been analyzed via the continuous-time queueing models [6, 14, 18]. Under space 
priority rule, we can realize different loss probabilities for different classes of customers. 

In this paper, we consider a discrete-time M M BP/G/1/ I< finite capacity queue without 
and with space priority. The queueing model has a potential applicability to the recently­
developed time-slotted systems. In Section 2, we describe the MMBP model by straight­
forwardly extending the one of Hashida et al. [10]. In Section 3, we subsequently treat 
the M M B P / G /1/ I< under FIFO service rule. The approach taken here is based on the 
supplementary variable technique as in [10] and the matrix analysis method, which enables 
us to obtain the steady-state distribution of the number of customers in the system. Section 
4 is devoted to the analysis of a two-class MMBP/G/1/I< space priority queue. For either 
the push-out or buffer reservation scheme, we respectively derive the individual class loss 
probabilities, by using the results in Section 3 together with the qualitative results such as 
the conservation law (for loss probabilities) and the conditional GASTA (Geometric Arrivals 
See Time Averages) property [21]. We also present numerical results showing a performance 
difference between the push-out and buffer reservation schemes in Section 5. 

It should be noted that the input process treated here covers the previously analyzed 
discrete-time queue input models in literature [3, 7, 10,9, 12, 13, 17, 19]. 

2. Description of the system 

We assume the time axis is divided into a sequence of equal-length intervals [0,1), [1,2), 

.. ·,[n -l,n), .. ·. We call interval [n -l,n) as the n-th slot. The state of the system 
changes only around the slot boundaries. Customers arrive in a batch at the beginning of 
a slot. When a service is completed at a slot, the served customer leaves the system at the 
end of the slot, and then the next customer is served from the beginning of the next slot. 
Hence, the service times can be counted by the number of slots. The residual service times 
are assumed to decrease by 1 at the end of a slot. 

In order to represent correlated and bursty type traffic, we introduce a Markov mod­
ulated batch Bernoulli process (MMBP). It is a slightly extended one of a switched batch 
Bernoulli process (SBBP) introduced by Hashida et al. [la]. The MMBP is a bivariate pro­
cess {Yn,Xn}. The process {Yn} is an M-state discrete-time Markov chain representing the 
state of the arrival process during the n-th slot, and Xn is the number (batch size) of arrivals 
to the system at the beginning of the n-th slot. We shall refer to {Yn } as the modulating 
Markov chain (MMC) and its state the phase. The MMC is assumed to be ergodic and its 
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transition probability matrix is denoted by 

(2.1 ) 

W12 
w2 

WM2 

where Wjj = P{Yn := j I Yn-l = i} and Wj = P{Yn = i I Yn- 1 = i}. 
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The batch size Xn depends on the phase Yn of the MMC. We represent the distribution 
of it as follows. 

k-l 

(2.2) aj(k) = P{Xn = k I Yn = i} and aj(k) == P{Xn ~ k I Yn = i} = 1 - L ai(l). 
1=0 

To avoid a trivial case, we assume that there exists some i such that ai(O) < 1. The mean 
batch size is then given as 

M M 
(2.3) E(Xn) = L E(Xn I Yn = i)P{Yn = i} = L D:iWi, 

i=1 i=1 

where D:i is the conditional mean batch size E(Xn I Yn = i), and W = (Wl,"" WM) is the 
steady-state probability vector of the MMC. 

The service times of individual customers are assumed to be independent, identically 
distributed random variables, which we denote by S. We assume that S has a mean f3 = 
00 

L [bl where bl = P{S = I}. 
1=1 

The capacity of the system is limited to J( places for customers waiting and in service. 
When the arriving batch is larger in size than the number of unoccupied places, it fills the 
available positions and the remainder of the batch are rejected (a partially rejected model, 
see e.g. Baba [1]). 

To describe the state of the system, let N n be the number of customers in the system 
and Rn the residual service time of the customer in service during the n-th slot. If Nn = 0, 
then Rn is set to be equal to O. The triple-variate process {Nn, Rn, Yn} then forms a Markov 
chain. We restrict our attention to the steady-state behavior, and express generic random 
variables by omitting subscript n. 

3. The M M BP/G/l/ J( queue without priority 
In this section, we treat an M M BP / G /1/ I< queue with a single class of customers. We 

use the term no priority to distinguish this system from those we consider in Section 4. We 
analyze it through the supplementary variable technique as in Hashida et al. [10]. 

3.1 Basic difference equations 
Let Pi(k, [) be the steady-state probability P{ N = k, R = I, Y = i}, that is, the number 

of customers in the system is k, the residual service time is [ and the phase is i. When 
N = 0, we write Pi(O) instead of Pi(k, I). 

Let us consider a transition to state (k, [, i) during (n + 1 )-st slot from possible st ates 
during n-th slot. Then we have 

.'II 

(3.1) Pi(O) = {Pi(O) + Pi(l, l)}aj(O)wi + ~C[{Pj(O) + pj(l, l)}aj(O)WjiL 
1=1 

J"" 
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+ fl {Pi(m,1 + 1)ai(k - m)Wi + tPj(m,1 + 1)aj(k - m)Wji} 
j",' 

(k = 1,···,I< -1). 

When k = I<, arriving customers may be rejected. So, 

(3.3) Pi(I<, I) = bl [{pi(O)ai(I<) + %;1 Pi(m, l)ai(I< + 1 - m)}Wi 

M K ] + ~ {pj (O)aj (I<) + :El pj(m, 1)aj(I< + 1 - m)}Wji 

J"" 
K M 

+ :El {Pi(m,l + 1)ai(I< - m)Wi + ~pj(m,1 + 1)aj(I< - m)Wji}' 
J:#i 

3.2 The queue-length distribution at arbitrary epochs 
Now, let us consider the distribution of the number of customers in the system. For 

brevity, we call this the queue-length distribution in this paper. In order to rewrite the 
equations (3.1), (3.2) and (3.3) in matrix forms, we introduce some vectors and matrices. 

For k = 1,2, .. ·,I< and 1 = 1,2"", let p(k,/) == (Pl(k,/)"",PM(k,l)) and p(k) == 
00 

I:p(k,/). The i-th element Pi(k) of p(k) is then a joint probability that there are k cus-
1=1 
tomers in the system and the phase is i. We also introduce I< M-dimensional vectors 

(3.4) r(l) == (P(1,l),P(2,1), ... ,p(k,l)), 1= 1,2"" 

and 

(3.5) r(l) == (p(O) + p(l, 1),p(2, 1), ... ,p(]{, 1»). 

Note that r(l) is identical with r(l) except for the first subvector. We write diagonal matrices 
Ak == diag[al(I<), a2(]{)," , aM(k)] and Ak == diag[al(k), Q2(k),"', QM(I<)]. 

Equations (3.2) and (3.:~) then can be expressed as 

(3.6) r(l) =: bl f(I)CV + r(l + I)AV, 1 = 1,2"" 

where 

Ao Al AK-2 AK-l 

,V~ (W 
0 

), Ao AK-3 AK-2 W 
(3.7) A== 

0 Ao Al 0 W 
I W 
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and 

(3.8) 
[Al 

A2 AK-I 

AK 1 Ao Al AK-2 71

. 

c== 
0 Al 

Ao 

Note that matrices A and V are stochastic (and so is AV), and that C is substochastic. 
Expressing (3.1) in a matrix form, we have . 

(3.9) p(O) = p(O)Ao W + p(l, l)Ao W. 

From Theorem 2.1 and Corollary 3 of Seneta [16], the inverse of I - Ao W exists and is 
non-negative. So, (3.9) becomes 

(3.10) p(O) + p(l, 1) = p(l, l){I - AOW}-I. 

Substituting (3.10) into (3.5) gives that 

(3.11) 
(

{I _. Ao W} -1 I 

f(l) = r(l)lo, where 10 == 0 

If we write a stochastic matrix C == 10C, (3.6) becomes 

(3.12) r(l) = b1r(1)CV + r(l + l)AV, 1 = 1,2,··· 

We are interested in the queue-length distribution, namely, M-dimensional vector p(O) 
00 

and KM-dimensional vector 7r == (p(1),p(2),··· ,p(K)) = Er(l). We first derive r(l) and 
/=1 

p(O) and then get 7r from r(l). An iterated use of (3.12) leads us to 

00 

(3.13) r(l) = r(l)CV L bn(AVt-l . 
n=1 

00 

For convenience, we write D(l) = CV L bn(Avt-l. If we let I = 1, (3.13) becomes a 
n=1 

vector equation r(l) = r(l)D(l). Thus, r(l) is proportional to the invariant probability 
vector x = (Xl, ... ,Xl{) of D(l). 

Let us consider the structure of D(l). Matrix A is stochastic and block upper triangular 
00 

and so is (Avt. Since {bd is a distribution, the series E bn(Avt- I converges and the 
n=I 

limit matrix is stochastic and block upper triangular, too. On the other hand, stochastic 
matrix C has a similar structure to C in (3.8) and so do cv. As a result of further 
consideration, we know that stochastic matrix D( 1) has the form 

[El E2 EK-I FK 
Do DI DK-2 FK-I 

(3.14) D(l) = 

0 DI F2 
Do FI 
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Moreover, the Markov chain represented by D( 1) is seen to be ergodic from the assumption 
of ergodicity of {Yn}. Thus, if the inverse of 

00 

(3.15 ) Do = AoW L bn(Aow)(n-1) 
n=l 

exists, we can determine x uniquely from the vector equations 

(3.16) 

(3.17) 

k 

Xk+l = {Xk - xIEk - L XnDk+l_n}Dol 

n=2 

K 

XK = L XnFK+l_n. 
n=l 

k = 1,2"" ,1( - 1, 

Letting k = 1,2"", J( -1, we have iteratively X2, X3,"', XK in terms of Xl from (3.16) with 
the consequence that (3.17) becomes the vector equation for Xl. So, we get X completely by 
solving (3.17) for Xl. 

From x, we know r(l) up to a multiple constant, say, c. Note that we also have p(O) 
with unkown c, since p(O) can be expressed in terms of the first subvector p(l, 1) of r(l) 
from (3.9) or (3.10). 

The multiple constant c can be obtained from the Little's Law: 

(3.18) ~r(I)e = 1 - p(O)e, e = (1,1,··· ,I)T. 

Since the service time of a customer is at least 1, r( l)e = c is the rate of departing customers 
from the system, and is the same as the rate of entering customers to the system. Hence, 
the left-hand side of (3.18), ~r(1)e, equals to the probability that the server is busy. 

Next, let us consider about 7r. Summing up (3.13) over I, we get 

00 

(3.19) 71" = r(I)CV L bn(AVt- l
. 

n=l 

00 

We also write D = CV L bn(AVt-l. Since {bd has mean ~ < 00, the series in (3.19) 
n=l 

converges and D is well defined. Matrix D has a similar structure to D(I). Since the vector 
r(1) is already computed, we immediately have 71". This concludes the computation of the 
queue-length distribution. 

Once we get 71" and p(O), we can evaluate performance measures. For example, the loss 
probability B is calculated as follows. Applying the Little's law at the server, we have 

(3.20) E(Xn ){1 - B}~ = 1 - p(O)e. 

The right-hand side represents the mean number of customers in the server, while the left­
hand side represents the throughput multiplied by the mean service time. Thus, we have B 
from (2.3) and (3.20) as 

(3.21 ) 

4. The MMBPjGjljR queue with space priority 
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We consider two classes of customers, such as voices and data in communication networks, 
having different requirements for quality of service. We assume class-l customers are loss­
insensitive but delay-sensitive, while class-2 customers are loss-sensitive but delay-insensitive. 
In order to ensure different requirements for individual classes, we treat two schemes of space 
priority called push-out and buffer reservation. In both schemes, the buffer is divided into 
two parts, sized I< 1- including the server and 1';2 = I< - I< 1. Buffer management policies 
change according to the number of customers in the system, as we describe in Section 4.1 
(push-out) and in Section 4.2 (buffer reservation;'. 

In the sequel, an arriving batch consists of both class-1 and class-2 customers and is 
sorted in advance so that class-1 customers arrive before class-2 customers. The number 
of class-l and class-2 customers are independent, and service time distributions for both 
classes of customers are the same. We use superscript j to denote quantities corresponding 

to class- j. For example, a~j) is the number of cl2,sS- j customers in arriving batch when the 
phase is i. 

4.1 System with push-out scheme 

We first consider the push-out scheme [6, 14, 18], which is one of selective discarding 
mechanisms. While there exist some unoccupied places, the system behaves as if there is only 
one class. A class-2 customer who finds all the pla.ces occupied may enter the system, if there 
is at least one class··l customer waiting at position k > I<1. When it occurs, the last class-l 
customer in the system is pushed out (rejected) instead of the arriving class-2 customer, and 
the arriving class-2 customer joins at the end of the waiting line. So, an arriving class-l 
customer who finds I<1 or more customers in the system may join the waiting line, but he 
might be pushed out. In order for a class-l customer not to be pushed out while he is at 
position k > I<1, the number of class-2 customers behind him (namely, class-2 customers 
arrive with him and later) must not exceed I< - k. Once a class-l customer proceeds to the 
position k ~ I<I, he is never pushed out and is eventually served. 

The queue-length distribution in the push-out system is the same as in the no priority 
system in Section 3. Because when the system is full, each arriving customer causes a loss of 
either the arriving customer or a pushed out class-l customer, and the service distributions 
for the two classes are the same. It follows that the total loss probability is invariant between 
the no priority and the push-out systems. 

If we let B(l) and B(2) be the loss probabilities for corresponding classes and B the total 
loss probability, we have 

(4.1 ) 

where a U) is the mean number of class- j customers in a batch and a is the mean batch size 
(see Sumita and Ozawa [18]). Since we know the total loss probability B from the result of 
Section 3, it is then sufficient for us to compute either B(l) or B(2). 

Behavior of a class-l customer 

As we stated before, a class-l customer at position k > I< 1 might not be served. The 
probability that a class-l customer is eventually served depends on his position, arrivals of 
class-2 customers behind him, and the service times of the customers before him. For the 
purpose we tag a class-l customer in the system and pay attention to his behavior. 

Now, let N~!l be the position of the tagged class-l customer in the system and Ni:;lind 
the number of class·2 customers behind him. We also denote by Rand Y the residual service 
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time and the phase as before. We are interested in the conditional probability 

(4.2) fi(k,x,l) == P{the tagged class-1 customer is eventually served 

Vel) -}[ + k N(2) - x R - I Y - ;} 
j pos - 'I , behind - , -, -.. 

From these conditional probabilities we have a vector form 

(4.3) f(k, x, I) == (h(k, x, I), ... JM(k, x, l)f. 

Assume that N~!1 = Kl + k, Ni;kind = x and R ~ 2 during a slot. In order for the tagged 
class-1 customer not to be pushed out at the beginning of next slot, the number of class-2 
customers arriving must not exceed K2 - k - x. 

Thus, conditioning by the number of class-2 customers in an arriving batch, we have 

K2-k-x 

(4.4) f(k,x,l)= L A~)Wf(k,x+m,l-l) 
m==O 

and 

K 2 -k+l-l: 00 

(4.5) f(k,x,l)= L A~)WLblf(k-1,x+m,l) 
m==O 1==1 

If N~~~ = 1 and R = 1 during the n-th slot, the tagged class-1 customer can step to position 
Kl at the beginning of the n + 1-th slot. Then, he is never pushed out and is eventually 
served. So, we have 

(4.6) f(L,x,l) = (l, ... ,l)T (x::; K2 - 1). 

The loss-probabilities 
Let us deal with the class-l loss probability by tagging a class-l customer in an arriving 

batch. We consider the probability that the tagged class-1 customer is eventually served. In 
order to describe environments for the tagged class-l customer, we introduce some random 
variables. Let YT be the arrival phase at when the batch including the tagged class-l customer 

arrives. We denote by X¥I the number of class-l customers including the tagged class-l 

customer and by X}2) the number of class-2 customers who arrive together with the tagged 
class-1 customer. The arriving batch size including the tagged class-1 customer is then 

X}l) + X¥). We also denote the tagged class-1 customer's position in arriving batch by Tp. 
Then, it follows that 

Wo:~l) 
P{Yr = i} = (1) (;) I (1)' 

W10:l +W20:2 +"'+WMO:M 
(4.7) 

Following the argument in Takahashi et al. [19], we have 

(4.8) 
(1) 

p{X(l) _ k 1 Y, _ '} _ kai (k) 
T - '1 - z - (1)' 

0: . • 
and 

(4.9) 
. 00 (1) . 1 a~l)(l) 

P{Tp = I1 YT = 2} = L P{XT = k 1 YT = 2}- = -Wo 
bl k ~ 
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It is also helpful for us to introduce the queue-length distribution at class-l customers' 
arrival epochs. Let Q(1) be the number of customers in the system which the batch including 

the tagged class-l customer 'sees' at arrival epoch and q~1) (k) be the conditional probability 
P{Q(1) = k 1 YT = i}. Here, we assume that an arriving batch 'sees' the state of the system 
after departure (if any) and before its arrival. 

We further let Qn be the number of customers in the system at time n, after departure 
and before arrival, if any. Here, 'at time n' means after departure and before arrivals. Then, 
it is easily seen that {Qn = O} occurs if and only if {Nn = O} or {Nn = 1, Rn = I} occurs. For 
k = 1"", K, we have similar relations between qn and (Nn, Yn), too. Moreover, from the 
conditional-GASTA property ([21], or see Appendix), we can equate P{Q(1) = k I Yr := i} 
with P{Q = k 1 Y = i}. Thus, we have 

(4.10) q}l)(O) = p{Q(l) = 01 Yr = i} := P{Q = 0 1 Y = i} 

= PiN = 0 1 Y = i} + PiN = 1, R = 1 1 Y = i} 
= {Pi(O) + Pi(1, 1)}/Wi, 

(4.11) qP)(k) = p{Q(l) = k I Yr = i} (1 ~ k ~ K - 1) 

and 

(4.12) 

= PiN = k, R ;::: 2 1 Y = i} + PiN = k + 1, R = 1 1 Y = i} 
00 

= {L Pi(k, I) + Pi(k + 1, I)} /Wi = ,[pi(k) - Pi(k, 1) + Pi(k + 1,1)} /W;, 
1=2 

qF)(K) = P{Q(1) = K 1 Yr = i} = PiN = K,R;::: 21 Y = i} 
00 

= LPi(K, l)/Wi 
1=2 

= {pi(K) - Pi(K, 1)}/Wi, 

where Q is the generic random variable of Qn, and N,R,Y,pi(k) and p;(k,l) are quantities 
described in Section 2 and in Section 3. 

Using the above results, we have 

(4.13) 

Ps(i) == P{the tagged class-l customer is eventually served 1 Yr = i} 
K, 

= L P{Q(l) + Tp = k 1 Yr = i} 
k=l 

K2 

+ L p{Q(l) + Tp = Kl + k, tagged customer is eventually served 1 Yr = i} 
k=l 

KI k-l () a(l)(k-l) 1 00 [K2 [ 
= E E qi 1 (I) 'a~1) + WiaP):; I~ Pi(O)a~1) (I{ 1 + k )br 

KI+k K1+k-l ] 
+ L Pi(m, l)a~1)(I{l + k - m + l)br + L Pi(m,r + l)a~l)(I{l + k - m) 

m=l m=l 

K2-k ] 
X L a~2)(k){wdi(k,l,r) + LWij!j(k,l,r)} . 

1=0 jf.i 
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From (4.7) and (4.13), we finally obtain the loss probability for class-1 as 

(4.14) B(l) = 1 _. [Ps(l)P{YT = I} + ... + Ps(M)P{YT = M}]. 

The loss probability B(2) is obtained through (4.1). 

4.2 System with buffer reservation scheme 
Let us introduce the buffer reservation scheme [6, 14]. The buffer management policy is 

rather simple than that of push-out scheme. The system behaves as if there is a single class 
while the number of customers in the system is less than 1<1' When 1<1 or more customers 
are in the system, only class-2 customers are allowed to enter the system, and all the arriving 
class-1 customers are immediately rejected. Once a customer enters the system, he is never 
rejected regardless of class. 

Recall that we started with (3.12) to get the steady-state distribution in Section 3 for 
the no priority system. With the buffer reservation scheme, we similarly have the following 
relationship: 

(4.15 ) r(l) = blr(1)C(1)C<2)V + r(l + 1)A(1)A(2)V, 

where 

A~I) AP) A(I) -(1) 
KI-2 A KI _ 1 

A(l) A (1) -(1) 
0 0 K I -3 A KI - 2 

A(I) == 

0 A(I) -(1) 
0 Al 

( 4.16) 

I 
0 I 

A(2) A (2) A(2) A~~2 -(2) 
0 1 2 AK-1 

A (2) A(2) A~~3 -(2) 
0 1 A K - 2 

(4.17) A(2) == A~2) A (2) -(2) 
K-4 

A K _ 3 

0 A (2) -(2) 
0 Al 

I 

io = ( {I - Ab
1

) :b
2

)W l -
1 0 J C(1) == loA (1), I (4.18) 

and 

A(2) A (2) A (2) A(2) -(2) 
1 2 3 K-l AK 

A (2) A(2) A(2) A~~2 -(2) 
0 1 2 

A
K

_ 1 
A (2) A(2) A~~3 -(2) 

C(2) == 0 1 AK-2 (4.19) 

0 A (2) -(2) 
1 A2 

A (2) -(2) 
0 Al 
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The vector r(l) and matrix V are given by (3.4) and (3.7) respectively. Starting with 
(4.15) instead of (3.12), we have the queue-length distribution through similar arguments to 
those in Section 3. 

The loss probabilities 
Applying the Little's law at the server, we get 

(4.20) 

It remains to obtain one of the loss probabilities 8(1) or B(2). 

Let X(1) be the number of arriving class-1 customers and Nl~ss be the number of class-1 

customers rejected at the beginning of a slot. When X(1) = 0, Nl~ss equals to O. 
We denote by Q the generic random variable of Qn introduced in Section 4.1, and by 

qi( k) the conditional probability P {Q = k 1 Y = :i}. Then, it follows that 

(4.21 ) 
qi(O) = {Pi(O) + Pi(l, l)}/wi 
qi(k) = {pi(k) - Pi(k, 1) + Pi(k + 1, l)}/wi 

qi(1<) = {Pi(1<) - Pi(1<, l)}/Wi 

(l::;k::;/{-l) 

Since the capacity of the system is limited to 1<1 for class-1 customers, arriving class-1 
customers will be rejected when Q + X(1) exceeds 1<1. Thus, we have 

Kl-l 

(4.22) p{Nl~ss = 01 Y = i} = L P{Q = k,X(1) ::; 1<1 - k 1 Y = i} 

and for 1 = 1,2"" 

k=O 
K2 

+ L P{Q = 1<1 + k,X(1) = 01 Y = i} 
k=O 

Kl-l K2 K2 

= L qi(k) L a~1)(l) + L qi(I{1 + k)ap)(O), 
k=O 1=0 k=O 

Kl-l 

(4.23) p{N2Jss=/IY=i}= L P{Q=k,X(1)=1<I- k + / IY=i} 

Then, we have 

k=O 
K2 

+ L P{Q = 1<] + k,X(1) = I1 Y = i} 
k=O 

Kl-l K2 

= L qi(k)ap)(K1 - k + I) + L qi(1<1 + k)a~I)(l). 
k=O k=O 

00 

(4.24) E(Nl~ss 1 Y:= i) = L Ip{Nl~ss = 11 Y = i} 
1=1 
Kl-l 00 K2 00 

= L qi(k) L la;1)(I{1 -- k + I) + L qi(1<1 + k) L la~1)(l). 
k=O 1=] k=O 1=1 
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Finally, we obtain class-l loss probability B(I) as 

(4.25 ) 
B(I) = E(Nl~ss) = W1E(N(1hoss I Y = 1) + ... + wME(Nl~ss I Y = M) 

E(X(1)) W1 a P) + ... + wMa~ 

The loss probability for class-2 B(2) is immediately derived from (4.20) and (4.25). 

5. Numerical results 
In this section, we assume that M = 2. Namely, the input precess is SBBP. The arriving 

batch distribution of class-j customers in phase i is assumed to be Poisson with parameter 

a~j). Also, we assume a deterministic service (b1 = 1, f3 = 1). 

The ratio of class-2 customers to all customers is taken as 20% (a~2) /ai = 0.2). To 
represent bursty traffic, we assume phase 2 is bursty (0'2 > ad and burstiness (0'2/0'1) is 
taken as 3. We also assume that the mean sojourn times in individual phase are 105(= 1/wd 
and 2 x 104 (= 1/W2) so that the fraction of bursty state becomes 1/6. 

Figure 1 shows the classwise loss probabilities for different positions of threshold (/{1 = 
K - K 2 ) under the fixed total buffer size K = 64 with push-out or with buffer reservation 
scheme. In both systems, the differences between the two loss probabilities increase as the 
value of K1 decreases. With push-out scheme, class-1 loss probability is almost constant due 
to the conservation law for the total probability, but the decreace of class-2 loss probability 
is relatively small. Contrarily, with buffer reservation scheme, the decrement of class-2 loss 
probability is large, but it is due to sacrificing the class-1 loss probability. Comparing two 
space priority schemes under the common condition of loss probabilities, push-out is superior 
to buffer reservation in total buffer size (K), while buffer reservation is superior to push-out 
in the value of K 2 • 

Next, we investigated the number of necessary buffer size for an offered load E(X)/ f3 = 
E(X) under the requirements about class wise loss probabilities such that 

• The loss probability for class-1 customers (B(1)) must be less than 10-6 . 

• The loss probability for class-2 customers (B(2)) must be less than 10-1°. 
For comparison, we examined three buffering schemes: no priority, push-out and buffer 

reservation (figure 2). When the no-priority scheme is selected, it is assumed that the total 
loss probability must be less than 10-10 . 

As we can see from figure 2, the superiority of using space priority is evident: for an 
offered load, the required buffer length can be reduced, or inversely, the admissible mean 
load can be increased for a given buffer length. The superiority of push-out scheme to buffer 
reservation scheme decreases according as the buffer length increases. 

6. Concluding remarks 
We have analyzed the At -state MMBP input finite queues without and with space prior­

ity. Starting to solve the M-linear equations, we have recursively obtained the total number 
of customers in the individual system. We have also derived the loss probabilities for the 
FIFO (no priority) and two-class priority systems. 

It is left for future work to study the interdeparture and overflow process from the 
queues. It is also worthwhile to study a more general queue with multiple priority classes 
from a practical point of view. 
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Appendix-Conditional GASTA 
Here we introduce the conditional-G ASTA (Geometric Arrivals See Time Averages) property, 
a discrete-time analogue of conditional PASTA [41. 

We are interested in some discrete-time based systems to which arrivals depend on some 
stochastic processes, defined on a probability space (n, F, P). In order to denote these 
systems, we consider the following random variables. 

Xn{n = 1,2, ... ): state of a systemtn [n -1,n) 

Yn(n = 1,2, ... ): arrival phase in [n - 1, n) 

Bn(n = 1,2, ... ): number of arriving customer (0 or 1) at time n 

1 {E} indicator function of the event {E} 

For every n, Xn and Yn take values on appropriate metric spaces S X and Sy, respectively. 
We denote by s an arbitrary but fixed value in Sy. We assume s satisfies the following 

conditions: 

(i) The limit 

(A.l) lim !.. t 1 {rk = s} 
n-+oo n 

k=l 

exists and positive with probability one. 

(ii) There exists a Bernoulli process {B!} with parameter ps, 
s.t. Bn = B! whenever Yn = S; that is, 

(A.2) I{Yn = s}Bn = I{Yn = s}B~. 

Let A be an arbitrary subset of Sx such that {Xn E A} E F for every n(n = 1,2,··· .). 
We define two key quantities: 

n n 

(A.3) V; == L I{Xk E A}I{Yk =: s}/ L I{Yk = s}, 
k=l k=l 

the fraction of time X == {Xn} spends in A, when restricting ourselves to those intervals in 
[O,n) during which Y == {Yn } is in state s, and 

n n 

(A.4) W: == L I{Xk E A}I{Yk = S}Bk/ L I{Yk = S}Bk, 
k=l k=l 

the fraction of arrivals (or the numbers of arriving batches for batch input model) who find 
X in A, when restricting ourselves to those arrivals who find Y in state s during [0, n). 

The result and its proof 
Here is a discrete-time analogue of Adapted Lad: of Anticipation Assumption (ALAA) in 
[4J. 

ALAA: For every n(n = 1,2,·· .), B! and {(Xb Yk ) 1 k = 1,2,· .. , n} are independent. 

41 
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We are now in a position to state the conditional-GASTA property. The proof is analo­
gous to the proof of Theorem] in Wolff [22]. 

Theorem. Under ALAA, there exists a random variable Vs such that V; -t Vs w.p.l as 
n -+ 00 if and only if the1'e exists a random variable W S such that W~ -t W S w.p.l as 
n -t 00, and in this case V' = W S w.p.l. 

Proof. We denote the process 

(A.5) n = 1,2"" 

n 

(A.6) us -- "'"' -ns - W S Vs n == ~ I'-k = n - nps n' n = 1,2"" 
k=l 

where 

n 

(A.7) V~ == L l{Xk E A}I{Yk = s}/n, 
k=l 

and 

n n 

(A.8) W~ == L I{Xk E A}I{Yk = S}Bk = L I{Xk E A}l{Yk = s}Bk· 
k=l k=l 

00 

It is obvious that E{(R~)2} :::; 1 and that L E{(R~)2}/n2 converges. Furthermore, it is 
n=l 

seen by our ALAA that E(R~ I Un-d = 0 and this leads that {U~} forms a discrete-time 
martingale. 

Applying the convergence theorem for martingales (Theorem 3, p.243 of Feller [5]), we 
have 

(A.9) 

From (A.9), we thus have 
(A.I0) 

Ius - n -t 0 w.p.l as n -t 00. 
n 

)iIIJo { t 1 {Xk E A} 1 {ti: = s }Bk/ t Bk} =w.p.l nliIIJo { t I{Xk E A} I{Yk = s} In}. 
k=l k=l k=l 

Substituting A = n into (A.I0) gives 

(A.ll) 

Recalling (A.3) and (A.4), we obtain the theorem statement from the ratio of (A.I0) to 
(A.ll). 0 

Remark. In the case of Yn == s, our theorem reduces of Theorem 1 in Halfin [8]. 
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Figure 1: Loss probabilities for different values of 51 (I( = 64) 
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