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Abstract Analysis of the completion time of a service unit with PH-Markov renewal preemptions are 
presented for several preemptive disciplines. Applying the results of these analysis and the theory of queues 
with semi-Markov service times, a PH-M R, M/Cl, Cdl queue is analyzed and the effect of preemptions is 
discussed. A non-preemptive queue is also analyzed. 

1. Introduction 
The completion time of a service unit is defined as the duration of the period that begins 

from the instant its service starts and ends at the instant the server becomes free to take the 
next service unit of that class [6]. This time is important in the analysis of preemptive priority 
queueing models. Gaver [3], Keilson [7] and Avi-Itzhak-Naor [1] have studied completion 
time for the case of service times interrupted by Poisson customers with general service 
times. In this paper, their results are extended to an MIC/I type queue whose services are 
interrupted by a stream of P H-Markov renewal (P H-M R) customers. In the P H-Markov 
renewal process proposed by this author [8, 9], each element of the semi-Markov kernel of 
this process has a phase structure. 

The fundamental period (or busy period) of the PH-MRIC/1 queue plays an essential 
role in analyzing the completion time. The fundamental period was proposed by Neuts [11, 
12, 13] and has been analyzed by several authors for various queueing models. The busy 
period can be represented easily through the fundamental period [8, 9]. Completion time dis­
tributions for both the preemptive resume and preemptive repeat disciplines are represented 
by the busy period distribution. In particular, the fundamental period is a special case of 
the completion time for the preemptive resume discipline. The completion time distributions 
have matrix structures, and the Laplace-Stieltje:; transforms of these distribution mat.rices 
are explicitly provided. 

These results are applied to the analysis of a P H-M R, M I Cl, C 2 /1 queue with preemp­
tive discipline, in which priority and non-priority customer arrival processes are P H-Markov 
renewal and Poissonian, respectively. Distribution of the number of customers in the system 
at the service completion epoch of a non-priori1;y customer is analyzed by the embedded 
Markov chain method. In addition, sojourn times, waiting times and output processes for 
priority and non-priority customers are derived. Note that the waiting time of non-priority 
customers in the preemptive-resume queue has an essential role in the analysis of the non­
preemptive priority queue, because the waiting time of the preemptive-resume queue is iden­
tical to that of the non-preemptive one [17, 18]. The preemptive PH-MR,MIC1 ,C2 /1 
queueing process is very similar to the M I S M 11 queueing process with semi-Markovian ser­
vices [10], when the service time process is considered as a completion time process. The 
main difference between the two queueing processes is in the idle period. The idle period 
process of the former model is far more complex than that of the latter model in which 
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14 F. Machihara 

the idle time distribution is exponential. New results for stationary state distribution and 
waiting time distribution of the preemptive queue are derived. 

The models discussed in this paper are important, especially in the telecommunications 
field, because their results make it possible to analyze statistical multiplexers for packetized 
voice and data [5, 16]. It is well known that voice packet arrival processes are often modeled 
as Markov modulated Poisson processes [4, 5], which are special cases of the PH -Markov 
renewal process [8, 9]. Several service disciplines such as voice-packet preemptive priority 
may be considered. These systems are generalized models of the PH -M R, M / G /1 with the 
F I FO discipline analyzed by Heffes et al.[5] and Sriram et al.[16]. Specifically, since voice 
traffic should suffer only very short and infrequent delays to avoid clipping [2], a system in 
which voice traffic has some priority over data traffic will become more dominant in the near 
future. 

2. Completion time 

Consider the service time of a non-priority customer whose service time distribution is 
denoted by Hz(x). We will study the completion time of a service which is preempted by 
priority customers whose arrival process is a PH-Markov renewal one with representation 
(ex, T, TO) [8, 9] and service time distribution H(x) is general. Suppose that the service 
process of a non-priority customer begins at 0 and ends at epoch S in (x, x+dx). Completion 
time density C(x) consists of elements 

cij(x)dx := P[x <: S < x + dx, J(S) = j I J(O) = i], i,j = 1"", rn, 

where J(x) is the arrival phase state at time x. 

Theorem 2.1 Laplace transform C*(s) for Re(s) ~ 0 of completion time density 

C(t) := (cij(t))(i,j = 1,···, rn) 

is represen ted by 
C*(s) = H2(sl - T - TOBi(s, 1)) (2.1 ) 

for Preemptive Resume Discipline; by 

C*(s) = 10
00

[1 - {I - exp(-x(sl - T))}(sl - T)-lToBi(s, l)r1 

. exp( -x(sl - T))dH2(x) (2.2) 

for Preemptive Repeat Identical Discipline; and by 

for Preemptive Repeat Different Discipline. 

Here Bi(s,z) for Re(s) ~ 0 and Izl :S 1 is the double transform of the joint density of 
the busy period length and the number of customers served during this period for a P H­
MR/G/l with arrival process representation (ex, T, TO) and service time distribution H(x), 
and it satisfies the following functional equation [8, 9, 15]. 

Bi(s,z) = zexH*(sI - T - TOBi(s,z)). (2.4) 
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Proof: Equation (2.1) for the preemptive resume discipline can be proved in a similar 
manner as Theorem 3.1 in Machihara [9], because we only need to change the preempted 
service time distribution from H(x) to H2(X) and set 

Bi(s,z) = oG*(s,z). 

In order to prove (2.2), we consider a completion time having service time requirement z. 
Under the preemptive repeat identical discipline, each time a non-priority customer enters 
service, it will require service time Z. The completion time process, therefore, ends when 
this customer finds an uninterrupted time duration of length Z. We introduce density 

C(t I Z = z) := (Cij(t I Z =: z))(i,j = 1,···, m) 

of completion time length 5, that is, 

Cij(t I Z = z)dt := P[t < 5 < t + dt, J(5) = j I J(O) = i, Z = z]. 

and define the Laplace transform C*(s I Z = z) of C(t I Z = z). 
To get C*(s I Z = z), there are two possibilities: either there are no arrivals during 

(O,z] or there is at least one arrival during (O,z]. Routine conditioning arguments lead to 
the equation 

C*(s I Z = z) = exp( -z(sI-- T)) 

+ (foz e-SXexp(Tx)Todx)Bi(s, l)C*(s I Z = z) 

= exp( -z(sI - T)) + {I - exp( -z(sI - T))} 

. (sI - T)-lToBi(s, l)C'(s I Z = z) 

Therefore, we obtain 

C*(s I z = z) = [I - {I - exp( -z(sI -- T))}(sl - T)-lToBi(s, 1)]-1 

. exp( -z(sl - T)). 

Since the distribution of Z is H2(Z), we finally get (2.2). 

To prove (2.3), we observe that under the preemptive repeat different discipline, each time 
a non-priority customer enters service, it will require a service time underlying distribution 
H2(X). Let us introduce joint density C(t), as in the case of preemptive repeat identical 
discipline, that is, 

C(t)dt = (cjj(t)dt) = (P[t < 5 < t + dt, J(5) = j I J(O) = i])(i,j = 1,···, m). 

To get the Laplace transform C*(s) of C(t), there are two possibilities: either there are 
no arrivals during the first customer's service period or there is at least one arrival during 
this period. Then, we obtain 

C*(s) = Hi(sl - T) + Hz*(sl - T)ToBi(s, l)C*(s), 

where Hfj*(s) is the Laplace-Stieltjes transform of 1 - H2(X) which is the complement of 
H2(x). Hfj*(sI - T)TO corresponds to the case in which a new priority customer arrives 
before the first customer's service ends. 

Since 
Hz*(sI - T) = (I - Hi(sI - T))(sl - T)-l, 
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16 F. Machihara 

we obtain (2.3). o 

Remark: It can easily be proved that (2.1) is identical to(2.3) when H2(t) is an expo­
nential distribution, and that (2.2) is identical to (2.3) when Hz(t) is the unit distribution. 

3. Application: The Priority Queue with PH-Markov Preemption and its 
Related Models 

A queueing model PH-MR,M/G1 ,Gz/1 will now be studied in which the priority 
P H-Markov renewal customers preempt non-priority Poissonian customer services. Let 
(a, T, TO) and h(X) = )'2exp(-A2X) denote the representation of the preemptive PH­
Markov renewal arrival process and interarrival time density of the non-priority Poissonian 
customers, respectively. Let H(x) and Hz(x) denote the service time distribution of the 
PH -Markov renewal customers and that of the Poissonian customers, respectively. 

Since the arrival and service processes for the priority customers are not influenced by 
those for the non-priority customers, the characteristics of the priority customers can be 
analyzed by the N/G/1 queue theory [14]. 

Now let us study the characteristics of non-priority customers. Let Zl, Z2,'" denote 
successive service completion epochs of the Poissonian customers. We define Ni. as the 
number of Poissonian customers at epoch Zk + 0 immediately after Zk( k = 1,2",,), The 
utilization factor p is given by 

where e is a column vector with all elements equal to 1, q is the invariant probability vector 
for a( -T)-lTO, J-ll is the service rate of the priority customers, and J-lz is the service rate 
of the non-priority customers. For p < 1, we define the stationary probabilities and the 
associated generating function as 

?rj := (7ri(l), ... , 7ri(m)) = lim (P[Ni. = i, Ji. = 1]' ... , P[Ni. = i, Ji. = m]) 
k-oo 

and 
00 

g(z) := L Zi?ri for Izl :::; 1, 
i=O 

where Ji. is the arrival phase state at Zk + O. 
In particular, in order to get ?ro, we will introduce the following random variable Tt : 
Suppose that 0 is the service completion epoch for a Poisson customer who leaves the 

system empty. Consider the first passage time 

Tt = inf{Zk : N*(Zk + 0) = 0 I N*(O) = O}, (3.1 ) 

where N*(x) denotes the number of Poisson customers at x. 
Let us consider the joint density A( x, n) of Tt and the number Nq of Poissonian customers 

served during (0, Tt). That is, 

A(x, n)dx := (P{x < TJ < x + dx, Nq = n, J(Tt) = j I J(O) = i}), (1 :::; i,j :::; m). (3.2) 

The double transform is written as 

A*(s,z) = laX! e- sx f= znA(x,n)dx, for Re(s) 2': 0 and Izl:::; 1. (3.3) 
° n=O 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Queue with Markov Remwal Preemptions 17 

In addition, we introduce the joint density of the busy period length and the number of 
customers served during this period for a semi-Markovian service system M/SM/1 [10) in 
which the Poissonian arrival is A2 and service time density is C( x), and its double transform 
BSM(s,z) for Re(s) 20 and Izl :S 1 given by 

BSM(S, z) = z ~ {(1ooo e-SXexp( -),2 X ) (A~)n C(x)dx)Bs'M(s, z)} 

= z 1000 

C(x)exp{( -(s + A2)I + A2BSM(s, z))x }dx. (3.4) 

Theorem 3.1 The generating function g(z) for Izl :S I is given by 

g(;;)(zI - C*(A2(1- z))) = 11"0 [)12,I - T - TOBi(A2' 1)rl 

. [A2zI - A2I + T + TOBi(A2( L - z), 1)))C*(A2(1 - z)), 

where 11"0 is given by 
qo 

11"0 = . 
qo(dA*(O, z)/dz Iz::de 

Here qo is the invariant probability vector of 

A*(O, 1) = {A2I - T - TOB~(A2' 1)}-I[A2BsM(0, 1) 

(3.5) 

(3.6) 

+ TO{1ooo Bl(X, 1)exp{(-A2I + AzBsM(O, 1))}dx - Bi(A2' In]' (3.7) 

where 

BSM(o,l) = 1000 

C(x)exp{(-'\2I+A2BsM(0,I))x}dx 

and Bl(X, 1) is the Laplace inverse transform of Bi(s, 1). 
Also, for the invariant probability vector bSM of BSM(O, 1), 

dA ~~' z~ Iz=1 e = {A2I _ T _ T OBi(.\2, 1)}-1 

. [A2(I - BSM(O, 1) + ebSMHI - C*(O) + (e + A2C·'(0)e)bsM}-1 

+ TO{Bi(O, 1) - Bi(A2, 1) 

- 1000 

Bl (x, 1 )exp{( -A2I + A2BSM(0., l))x }dx + Bi( A2, 1) 

('c» + A2(1
0 

XBl(X, l)dx)ebsM}{I - C*(O) + (e + A2C·'(0)e)bsM}-1}e. 

(3.8) 

(3.9) 

Proof: Let us consider the transition probability between epochs Zk and Zk+l, that 
IS, 

Pij := (Pij(l, I')) = (P[Nk+1 = j, Jk+1 = I' I Nk = i, Jk = ID 
(1 :S I, /' :S m), O:S i,j < 00. 

When NZ = i > 0, the completion time process begins at Zk + o. Thus, 

{ l
oo exp( -A2 X )(A2 X)j-i+l ... 

(
. . 1)1 -C(x)dx, J = l -I,l,···, 

Pij ::= ° J - Z + . 
0, otherwise. 

(:3.10) 
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18 F Machihara 

When Ni. = 0, the random variable Ib is the number of successive busy periods for the 
priority customers before the arrival of non-priority customers after Zk. Then, we obtain 
the equation 

P{Ni.+1 = j, h = n I Ni. = O} 

= {(A2I-T)-lTo 1000 

exp(-A2X)B1(x,1)dx}np2I - T )-1 

fn
oo (A2X)i 

. (A2 exp( -A2X)-.,-C(x)dx) 
o J. 

+ {(A21 - T)-lTo 1000 

exp(-A2X)Bl(X, 1)dx}np21 - T)-lTo 

j+1 loo P2 X )j1 L (10 exp(-A2X) . , Bl(X,l)dx)) 
j1=1 0 J1· 

loo (A2 X )j-j1+1 

·(10 exp(-A2X)(j_j1+1)!C(x)dx). (3.11 ) 

The first term on the right hand side of (3.11) implies that the first non-priority customer 
after Zk arrives during the idle period. The second term implies that this customer arrives 
during the busy period of the priority customers. See Figure 3.1. Summing (3.11) over all n 
yields 

00 

POj = L P{Nk+1 = j,h = n I Ni. = O} 
n=O 

From their definitions, 1ri and P ij satisfiy the equation 

Thus, we obtain 

Equation (3.10) gives 

Equation (3.12) gives 

00 

00 

1rj = L 1riPij. 
i=O 

00 00 

g(z) = L L zj1riP;j. 

i=O j=O 

00 

L zjP;j = zi-1C*(A2(1- z)) for i > O. 
j=O 

L zjPOj = (.>-21 - T - TOBi(A2' 1))-1 
j=O 

(3.12) 

(3.13) 

(3.14 ) 

(3.15) 
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Idle Period Idle Period Idle Period 
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(a) Case in which Poisson customer arriues during idle period 
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(b) Case in which Poisson customer arriues during busy period 

ti: Rrriual time of PH-Markou renewal customer 

si: Rrrival time of Poisson customer 

Fig. 3.1 Sample paths for seruer states 
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20 F. Machihara 

Substituting (3.14) and (3.15) into (3.13), we obtain (3.,5). 
Now, let us consider 1ro A"'(s, z) is given by 

A*(s, z) = P'21 - T - TOBi(A2' 1)}-1[A2BSM(S, z) 

+ TO E {(fooo e-SXexp(-A2X) (A~~)n B1(x, l)dx)BsMn(S,Z)}] 

= {A21 - T·- TOBi(A2' 1)}-1[A2BsM(S, z) 

+ TO(fooo BJ (x, l)exp{(-(s + A2)1 + A2BSM(s,Z))x}dx 

- Bi(s + A2, 1))]. (3.16) 

Equation (3.16) can be derived in a manner similar to (3.12). 
Equation (3.6) can be obtained in the following manner: 
qo is equivalent to the stationary arrival phase state probability vector at the service 

completion epoch for a non-priority customer who leaves the system empty. Therefore, we 
can write 

1ro = ]{ qo for some ]{ > O. 

Let ZI (0), Z2(O), ... denote the successive service completion epochs for non-priority cus­
tomers who leave the server idle. The ratio of 1 to 1roe is identical to the mean number of 
non-priority customers who complete their services between Zk(O) and Zk+l(O), that is, 

1 
]{ = 1roe = . , 

qo(dA*(O,z)/dz IZ=l)e 

thus we obtain (3.6). 
Equations (3.7) and (3.8) can be directly derived by (3.16) and (3.4). 
Let us consider (dA *(0, z )dz Iz=J)e. It is clear that 

dA *(0, z) I _ e = J,,\ 1- T _ TOB*("\ 1)}-1 dz z-l 1 2 1 2, 

dB* (0 z) 00 [00 (A2X)n 
'[A2 S~z ' IZ=Ie+TOE(}o exp(-A2 X)----;;y-Bl(X,1)dx) 

. (I: BSMk(O, 1))(dBS~(O, z) Iz=l e)]. (3.17) 
k=O z 

Substituting 

00 [00 (A xt n-l 
E()o eXP(-A2 X)7B1 (x, l)dx)(t; BSMk(O, 1)) 

. (I - BSM(O, 1) + ebSM) 

= Bi(O, 1) - Bi(A2, 1) 
00 [00 (A2xt 

- E(}o exp( -A2 X)----;;y-B1 (x, l)dx)BsMn(O, 1) 

+ "\2(lX) XBl(X, l)dx)ebsM (3.18) 

and 

dBSM(O, z) '" 
dz Iz=l e = (I - BSM(O, 1) + ebSM) 

. {I - C*(O) + (e + A2C*'(0)e)bsM}-le, (3.19) 
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we obtain (3.9). See Neuts [12] for (3.19). 0 

The 1r0 obtained in Theorem 3.1 also gives interdeparture time distribution for non­
priority customers. That is, the LST d* (s) of the interdeparture time distribution is repre­
sented by 

d*(s) = 1ro{(s + A2)1 - T - TOB~(s + A2, 1)}-1 

. [A21 + TO{Bi(s, 1) - Bi (A2, 1)}]C*(s)e + (g(l) - 1ro)C*(s)e. (a.20) 

See (3.28) for the realized form of g(l). 
As mentioned by Neuts [l1J, A*(s,z) and [dA*(s,z)/dzJe may be computed by suc­

cessive substitutions. Under preemptive resume discipline, A *(s, z), in particular, can be 
transformed into a more suitable computational form. Under this work-c.onserving service 
discipline, the server is indifferent as to whether or not the PH-Markov renewal customers 
have priority. Therefore, joint distribution of the busy period length and the number of ser­
vice completions during this period are independent of the service order. This implies that 

BSM(s, z) and; {(looo e-SXexp( -A2X) (A~~)n Bl(X, 1)dx )BSMn(S, z)} are independent of 

their service orders, and the following lemma is satisfied. 

and 

Lemma 3.2 For the preemptive resume discipline, one obtains 

A*(O, 1) = [A21 - T - TOB; (A2' 1)t1[A2Bi( -T - TOB:(O, 1)) 

+ TO(B~(O, 1) - Bi(A2' 1))] 

dA *(0, z) I = A2 [A 1 _ T _ TOB* (A 1)]-1 
dz z=1 e (1 _ P2) 2 1 2, 

[I \ _1 dBi(-T-TOB:(O,z)) I _1TodB~(0,z) I ] . + 1\21-'1 dz z=1 +1-'1 dz z=1 e, 

(3.21) 

(3.22) 

where Bi(s) for Re(s) 2: 0 is the Laplace-Stieltjes transform of the M(A2)/G(H2)/I busy 
period length (arrival rate is '\2 and service time distribution is H2(x)) and satisfies 

Bi(s) = Hi(s + A2 - A2B2(s)). 

Also, B~(s, z) is the double transform of the length of the P H-M R/G/I busy period, and 
the number of customers served during this period, where the arrival process is a PH -Markov 
renewal one with representation (a, T, TO) and service time distribution is general one whose 
LST for Re(s) 2: 0 is 

H;(s) := H*(s + A2 -- A2B2(s, 1)). 

B~(s,z) for Re(s) 2: 0 and Izl S 1 satisfies 

B~(s, z) = zaH;(sl - T - TOB:(s, z)). (3.23) 

Proof: Let us consider the other expression for B SM( s, z) defined in (3.4). Note that 
this M/SM/I busy period is equivalent to the busy period of the PH-MR,M/G1,G2/I 
considered in this section, when the busy period starts by the Poisson customer's arrival. 
Since this M/SM/1 busy period distribution is independent of the service order, we may 
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22 F. Machihara 

consider the Poisson customers as having preemptive priority. Under this discipline, after the 
M().,2)/G(H2)/1 busy period process, the PH-Markov renewal customers who have arrived 
during this busy period are served. Here, the services of the PH -Markov renewal customers 
are preempted by the Poisson customers again. Therefore, the busy period of the M / S M/I 
can be decomposed into two parts. One is the M().,2)/G(H2)/1 busy period n, whose LST 
is given by Bi(s) = H2(s +).,2 - )"2BHs)). The other is the n-th busy period of the PH­
MR/G(He)/I, where n is the number of PH-Markov renewal customers who arrive during 
the M().,2)/G(H2)/1 busy period, and He means that the service time distribution is identical 
to the completion time distribution He(t) whose LST satisfies H~(s) = H* (s +).,2 - ).,2BHs)). 
Therefore, we can assume th at the M / S M/I busy period is identical to the completion time 
of service time Tb, (underlying the distribution in which LST is Bz(s)), which is preempted 
by priority is customers whose arrival representation is (0, T, TO), and service time density 
is He(x). Therefore, from (2.1) we obtain 

where a = (1 - P2)-1 
and 

BSM(s, z) = za B2(sI - T - TOB;(s, i)), 
b = ).,2{1l1(1- P2n-1 

B~(s, z) = zoH;(sI - T - TOB;(s, z)). 

(3.24) 

Here (1 - P2)-1 and ).,2{1l1(1 - P2n-1 are the mean number of Poisson customers served 
during the M().,2)/G(H2)/1 busy period and the mean number of Poisson customers served 
during the service time underlying the distribution He( x), respectively. 

Since 

~ {(fooo c-sx ().,2xte:~( -).,2
X) Bl(X, l)dx)BsMn(S, In 

is identical to the LST of the P H-M R/G(He)/1 busy period length, it follows that 

E {(fooo t~-sx ().,2 X )ne:~( -).,2
X) B 1 (x, 1 )dx )BSM n(s, 1 n 

= B~(s,l) - Bi(s + ).,2, 1). 

Now, we obtain (3.21) from (3.16). 
From (3.24), we obtain 

dBsM(O,z) 1 
dz z=1 e 

= [_1 __ + ).,2 dBi( -T - TOB~(O, z)) Iz=l)e 
1 - P2 1l1(1 - P2) dz 

and 
~(fooo _sx().,2x)nexp(-).,2X)B ( )d )dBsMn(O,z) 1 
~ e ,IX, 1 x d z=l 
n=1 ° n. z 

).,2 dB~(O, z) Iz-l . 
III (1 -- P2) dz -

Thus, we obtain (3.22) from (3.16). 0 

Lemma 3.2 gives a computational method for A*(O, 1) and dA*(O, z)/dz Iz=1 e. It is well 
known that the LST of busy period distribution B~(O, 1) can be computed by the following 
iterative substitutions (11): 
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B~(n+I)(O, 1) = aH;( -T - TOB:(n)(O, 1)), n = 0,1,···. 

If T + TOB~(n\O, 1) is diagonizable, then H:( -T - TOB~(n)(O, 1)) can be transformed by 

H;( -T - TOB:(n)(O, 1)) 

= /0'.)0 p(n)diag[exp( _/~n)X), . .. ,exp( -/~)x)lP(n)-ldHc(x) 

= p(n)diag[H;{/~n»), ... , H;{/~;»)lP(n)-1 

for p(n)-l( -T - TOB~(n)(O, 1))p(n) = diagb~n), ... , I~)l. 
For a sufficiently large n = N, B~(O, 1) can be determined as 

B~(O, 1) = B~(N+I)(O, 1) = ap(N)dia~;[H;{/~N), ... , H;(/}:»)W(N)-l 

Without loss of generality, write ,; = IJN) and P = p(N). Then, the following lemma holds. 

Lemma 3.3 For the preemptive resume discipline, if T + TOB~(n)(O, 1) is diagoni:~able 
for each n, 

B:i( -T - TOB~(O, 1)) = Pdiag( 1, B:i{/2),···, B:i{/m))P-l, (:3.25) 

dB~(O,z) I 
dz z=l e 

= {I _ aPdiag( -H;' (0), 1 - H;{/2)., ... , 1 - H;{/m) )P-ITO} -le (:J.26) 
12 Im 

and 

dBi(-T - TOB~(O,z)) I 
dz z=l e 

= Pdiag[-B2'(O), 1 - B2(/2), ... , 1 - Bi{/m)jP-ITO 
12 Im 

dB~(O,z) I 
. dz z=l e, 

where 
*( ) 1 d *'( 1 -He 0 = ( ) an - B2 0) = ( ). 

PI 1 - P2 P2 1 - P2 

Proof: Equation (3.25) is clear. Since (T + TOB~(O, 1))e = 0, we have that 

dB~(O,z) I *( ° *( ') dz z:~le=aHc -T-T Bc O,l)e 

{loco ~( n(T+ToB~(O, l)t- l )dH ( )}TodB~(O,z) I + a L...J x I C x d z=l e. ° n=l n. z 

Using -T - TOB~(O, 1) = Pdiag{/l,··· "m)p-Ibl = 0), simple calculus shows 

~ n (T + TOB~(O, l))n-1 
L...J x I 
n=l n. 

_ Pd. { 1 - exp( -/2X ) 1 - exp( -,mX ) }P- l - lag x, ,.", . 
12 Im 

(:l.27) 
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24 F. Machihara 

We, therefore, obtain 

dB~(O,z) I 
dz z=1 e := e + aP 

. d· {-H*(O) 1- H~('Y2) ... 1- H~bm)}p_lTodB~(O,z) I 
lag c' " d z=l e. 

/2 /m Z 

Since the inverse of 

exists from stationary condition, p < 1, (3.26) is proved. 
Equation (3.27) can be similarly proved. 0 

If 1ro can be determined, then the n-th derivative g(n)(I) of the generating fuction g(z) 
at z = 1 is given by the following theorem. 

Theorem 3.4 g(n) (1)( n = 0, 1,2, ... ) is obtained for the invariant probability vector 
1r of C*(O) as 

and 

where 

g(l) := g(O)(I) = 1r + U(I)(1 - C*(O) + e1r)-l (3.28) 

Ln = [(n + 1)(1 + >'21rC*'(0)e)t1 

. [(n + l)On + u(n+l)(l)e + E ((n: 1) )g(n+l-k)(I)( ->'2)kC*(k)(0)e), (3.30) 

g(n)(1) = Ln1r + [u(n)(1) + t (n)g(n-k)(1)( ->'2)kC*(k)(0) - ng(n-1)(1)] 
k=1 k 

. (I - C*(O) + e1r)-I, 

n = 1,2,···, 

u(n)(I) = 1ro{>.21 -- T - TOBi(>'2, 1)}-1 

. d~n {>.2z1 - >'21 + T + TOBi(>'2(1 - z), I)}C*(>'2(1 - z)) Iz=1 , 

n = 1,2,···. 

(3.31 ) 

(3.33) 

Proof: Using similar discussions to those in Neuts [12] (pp. 143-148), we have the 
theorem. 0 
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Next, we will consider the waiting times for non-priority Poisson customers. Let w~(s) 
for Re(s) ~ 0 denote the LST of the distribution vector wN(t) of the waiting time for an 
arbitrary non-priority Poisson customer waiting in the queue for first-time service. The LST 
of the sojourn time distribution of this arbitrary cllstomer is given by h~(s) = w~(s)C*(s). 

Theorem 3.5 We have 

W N *(s)[(s - )..2)1 + )..2C*(S)) 
=: )..27ro[)..21 - T - TOBi()..z, n)-I[sl - T - TOBi(s, 1))) (3.34) 

and 
(3.35) 

Proof: Using similar discussions to those in Neuts [12) (pp. 184-189), we have (3.34) 
and (3.35). 0 

Using (3.34) and (3.35), we obtain the n-th moment of waiting times for non-priority 
Poisson customers as follows: 

E[wN 0) = W N *(0) for n = 0, 

where W N *(0) is the probability vector satisfying 

g(l) = W N *(O)C*(O) and W N *(O)e = 1, 

and 

That is, for Ln given in (3.30), 

E[wNn)e = )..2"nLn - E (~)E[WNk)(_1)n-kC*(n-k)(O)e, 
k=o 

E[wN n) = [-/\2"lnE[wN n-l) + E (~)E[WN k)( _1)n-kc*(n-k)(O) 
k=O 

We write 

+ (-lt7ro[1 - T - TOBi()..2, 1)t1TOB;(n)(0, 1))(1 - C*(O) + e7r)-1 

+ E[WN n)e7r, n = 1,2,···. 

C *(n)('O) = dnC*(s) I _ d B*(n)(O 1) _ d
n
Bi(s,l) I 

, dsn s-O an 1 ,- dsn s=O . 

4. Numerical Examples 

(3.36) 

(3.37) 

Figure 4.1 shows the mean sojourn time E[hNl of the non-priority Poissonian customers 
for a PH-MR,M/D1,D2/1 with preemptive resume discipline, where priority and non­
priority customer service times have constants, 111-1 = d1 and 112"1 = d2 = 1, respectively. 
The arrival process of the priority customers is a two-state Markov modulated Poisson process 
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Queue with Markov Renewal Preemptions 

(two-state M M PP), often called a switched Poisson process [19]. This is an important model 
for packet multiplexers handling voice and data [5]. A two-state M M P P is governed by 

~ - (1 0) T - (tll tt1222) and TO = (t~ol .... - 0 1 ' - t21 t~ ) , 
22 

The four parameters, t;j(1 ~ i,j ~ 2) are determined by arrival rare ).1, the squared 
coefficient of the variation for interarrival times c.~, the balanced condition and the auto cor­
relation coefficient of a sequence of interarrival times () in the same manner as [19]. Poisson 
arrival rate ).2 = 0.2 and mean service time d2 = 1 are fixed. 

The influence of () is very noticeable, which implies that it is inadvisabl~ to approximate 
the voice-packet arrival process with a renewal process. The influence of service time d1 is 
noticeable. Therefore, it is uncertain whether the priority PH-MR,M/Gl,G2/1 queue can 
be closely approximated by the model PH-MR,M/G/l. With this model, the service time 
distribution is an appropriate mixture of the two customer classes. However, the FIFO 
queue can be closely approximated [5]. 

The results mentioned above can be directly applied to a queue where the P H-M R 
customers have non-preemptive priority. This is because the waiting time distribution of 
the non-priority Poisson customers for the non-preemptive queue is identical to that for the 
preemptive queue [17, 18]. Therefore, the LST, h~P)*(s), of the sojourn tome distribution 
of the non-priority customers is given by (WN *(s)e)Hi(s). In particular, mean sojourn time 
is given by 

E[h~P)] = E[wN]e + 2-. = E[hN]-- (WN *(0)( -C*'(O))e - ~). (4.1) 
P2 P2 

Figure 4.2 shows mean completion time w N *(0)( -C·'(O))e = E[hNl - E[h~P)l +112"1. 
The mean completion time with non-Poissonian preemption is generally different from the 
well-known result for Poissonian preemption, that is, 

(4.2) 
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