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Abstract Nonlinear programming problems often contain two types of variables: one appears linearly, 
while the other non linearly. The purpose of this paper is 10 propose a practical decomposition approach 
for solving nonlinear programming problems in \\'hich tllf' number of linear variables is lH'f'sumably much 
larger than that of nonlillear variables. {[sing quadratic lwnalty and lJuadratic perllll'bation techniques, we 
first. formulat.e a parametric approximall' prohlem for tll<' ~,iH'n prohlem. By rf'formulating the approximat.e 
problem, we then obtain a differentiable nonlinear programming prohll"lll containing tllP llOnlinear variahles 
only. The main advantage of this approach is that any available nonliucar programming coell" may be used 
to solve tbe last problem, of which variables are presumahly much fewer than the original prohlem. \Ve may 
thus avoid solving the given problem directly or developing a specialized algorithm like Renders' algor thm 
that essentially deals with a nonsmootb optimization prohlem equivalent to the original prohlem. \\'e give 
error bounds for the approximate problem and mention a )ossibility of paralkl decomposition for a class of 
structured problems. Some computational results indicat,· that th" 1'1'01'0,,'<1 approach is practically useful. 

1. Introduction 
Nonlinear programming problems often contain a relatively small number of nonlinear 

variables. We may formulate such problems in the following form with nonlinear variables 
x E Rn and linear variables y E RN: 

minimizex,y 
subject to 

f(x) + cTy 

gi(X) + aT y :s bi , 
hj(x) :::; 0, 

i = 1, ... ,t, 
j = 1, .. "rn, 

(1.1 ) 

where f: Rn -t R, gi: Rn -t R, i = 1,.,. ,l, and hj: Rn -t R, j = 1,.", rn, are 
twice continuously differentiable functions, c and ai, i = 1, ... , t, are N -dimensional con­
stant vectors, and T denotes transposition. In the following, we shall often denote g(x) = 
(gJ(x), ... ,gt(x)f, h(x) = (h}(x), ... ,hm(x)f, A = [a}" .. ,at) and b = (b}, ... ,bt)T. 

To solve problem (1.1), it is often useful, as in Benders' decomposition method [2, 9], to 
treat the linear part as a linear programming problem by temporarily fixing the nonlinear 
variables x. As a result, we obtain the following nonlinear programming problem containing 
the variables x only: 

mmmuze f(x) + 4>(x) 
subject to h(x):::; 0, 

where the function 4>: Rn -t R U {+oo} is defined by 

1 

(1.2) 

(1.3) 
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Note that the problem on the right-hand side of (1.3) may be infeasible for some x, in which 
case we define </>(x) = +00. We may therefore regard the set {x 1 </>(x) < +oo} as an implicit 
constraint of problem (1.2). When g is linear,</> is a piecewise linear convex function. In 
this case, problem (1.2) may be solved, for instance, by the algorithm recently proposed by 
the authors [16], which utilizes the nonsmooth optimization algorithms developed in [1, 6]. 
However, if g is a general nonlinear function, then the algorithm of [16] may not be applied 
to problem (1.2), because </> is usually neither smooth nor convex. 

The purpose of this paper is to propose a practical approach to problem (1.1), in which 
the number of linear variables is presumably much greater than that of nonlinear variables. 
Using a penalty function technique [10, 13] and a perturbation technique for linear programs 
[12, 14], we first formulate ,a parametric approximate problem for (1.1). By reformulating 
the approximate problem, we then obtain a differentiable non linear programming problem 
containing the nonlinear variables only. The main advantage of this approach consists in 
that any available nonlinear programming code can be used to solve the last problem. We 
may thus avoid dealing with the original problem (1.1) directly or developing a specialized 
algorithm for solving the non differentiable problem (1.2). 

The proposed approach is particularly useful when problem (1.1) takes the following 
structured form: 

K 

minimizex,y f(x) + L: CrYk 
k=1 

subject to gk(X) + ArYk ~ b k , k = 1, ... , I<, 
h(x) ~ 0, 

(1.4) 

where Y = (YI, ... , YK), gk : Rn -+ Rik, Ak are nk X /k matrices, b k are /k-dimensional 
vectors, Ck are nk-dimensional vectors, / = r=f=1 /k and N = r=f=1 nk. The structure of this 
problem is illustrated in Figure 1. (Notice the notational difference between problems (1.1) 
and (1.4), such as gi, bi and gk, bd Problem (1.4) is amenable to parallel decomposition 
into smaller problems and this feature can be incorporated in the proposed approach to the 
full exten t. 

This paper is organized as follows: In Section 2, we introduce the parametric approxi­
mate problem for problem (1.1) and derive a differentiable optimization problem, which is 
equivalent to the approxima.te problem but contains the nonlinear variables only. In Section 
3, we give error bound results for the approximate problem under appropriate assumptions. 
In Section 4, we focus on the structured problem (1.4) and discuss parallel decomposition 
into smaller problems. Computational results are reported in Section 5. Finally, we conclude 
this paper in Section 6. 

2. Formulation and Decomposition 
In this section, we consider the following problem: 

mInIm] zex,y ,z 

subject to 

T c; M 
f(x) + c Y + 2 11 Y 112 +2 11 z 112 

g(x) + ATy - Z ~ b, 
h(x) ~ 0, 

(2.1 ) 

where c; and M are positive constants, z = (ZI,"" ztf and 11 . 11 denotes the Euclidean 
norm of a vector. The objective function of problem (2.1) is strictly convex in y, though 
parameter c; is supposed to be sufficiently small. A similar perturbation technique has 
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Figure 1: The structure of problem (1.4). 

parameter c is supposed to be sufficiently small. A similar perturbation technique has 
been used by Mangasarian [12] in the context of linear programming. On the other hand, 
parameter M is supposed to be large enough, so that the quadratic term of z in the objective 
function of problem (2.1) plays the role of a penal.ty function associated with the constraints 
g(x) + ATy :S b in problem (1.1). Recently Lazimy [10] has proposed a similar technique 
based on a nondifferentiable exact penalty function method. Here we employ a quadratic 
penalty method in order that the objective function of (2.1) is strictly convex in z. In fact, 
the strict convexity of the quadratic terms in (2.~.) is essential in the subsequent discussion. 
A combined perturbation penalty technique is also used in [5] to find a solution of the system 
of linear inequalities 

ATy:S b, 

which may be considered a very special instance of problem (1.1), i.e., f(x) = 0, g(x) = 0, 
h(x) = 0 and c = O. 

Intuitively it is expected that an optimal solution of problem (2.1) approaches an optimal 
:,?olution of problem (1.1) as c -+ 0 and M -+ +rX). In fact, this holds true under suitable 
assumptions. Rigorous analysis will be given in the next section. 

Now, by temporarily fixing x in problem (2.1), we obtain the following quadratic pro­
gramming problem in (y,z): 

minimizey,z 

subject to 
(2.2) 

Unlike the problem on the right-hand side of (1.3), problem (2.2) is feasible for any fixed x. 
Moreover, since the objective function is strictly convex, problem (2.2) has a unique optimal 
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solution for any x. Therefore if we define the function J by 

J(x; c, M) = miny,z { eT y + ~ 11 Y 112 + ~ 11 z 1121 AT y - z :::; b - g(x)} , 

then J(x; c, M) is finite-valued for all x. By a duality theorem in quadratic programming 
[11], J(x; c, M) is equal to the optimal value of the following dual problem of (2.2): 

.. 1 T (1 T 1) ( ( ) 1 T)T 1 112 maxlmlzeu -'2u ;A A + MI u + g x - b -;A e u - 2c: 11 e (2.3) 

subject to u 2:: 0, 

where u = (Ul' ... ,Ut)T, and I denotes the i-dimensional identity matrix. Since this problem 
also attains its maximum uniquely for any x, a well-known result concerning the differen­
tiability of max functions (see, e.g., [9, Section 8.5]) ensures that the function J(- ; c, M) is 
everywhere differentiable and its gradient at x is given by 

VJ(x;c,M) = Vg(x)u(x;c,M), 

where u(x; c, M) is the unique optimal solution of (2.3). 
As a result, we may rewrite problem (2.1) as follows: 

miniIillzex f(x) + J(x; c, M) 
subject to h(x):::; O. 

(2.4) 

(2.5) 

It follows from the above arguments that problem (2.5) is a differentiable nonlinear pro­
gramming problem containing the variables x only. We may therefore apply any conven­
tional non linear programming method to solve (2.5), where the values of J(x; c, M) and 
VJ(x; c, M) can be computed by solving the quadratic programming problem (2.2) or its 
dual (2.3). 

3. Error Bounds 
In this section, we consider how the solution of problem (2.1) behaves as c ~ ° and 

M ~ +00. Sensitivity analysis in nonlinear programming [3] plays an important role here. 
We assume that problem (1.1) has an optimal solution (x,y) satisfying the following 

three conditions. 
(a) Second-order sufficient conditions for optimality: 
There exist vectors il = (Ul' ... , ul)T and v = (VI, ... , vm)T satisfying 

and 

t m 

Vf(x) + LU;"'V9i(X) + LVjVhj(x) = 0, 
;=1 j=l 

l 

e+ LUiai = 0, 
;=1 

U; (9;(X) + aTy - bi ) = 0, 
Ui 2:: 0, 9i(X) + aTy:::; b;, i = 1, ... ,i, 

vjhj(x) = 0, 
V,i 2:: 0, hj(x):::; 0, j = 1, ... ,rn, 

pTL(x, il, v)p > 0, V ( : ) E C(x), ( : ) :I ( ~ ) , 

(3.1 ) 

(3.2) 
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where 
l m 

L(x, 11, v) = V"2 f(x) + L u;V"2g;(X) + L vj V"2 hj (x), 
;=1 j=1 

C(X) = { (~) E Rn+N I T'7 (-'T TO' I-v gi X) P + ai q = , z E , 
V"gi(XYP + arq:'S 0, i E I - i, 

T -} V"h)(x) p = 0, j E J, 
V"hj{xfp:'S 0, j E J - J, ' 

and 
I={ilgi(x)+ary=bi, i=l,oo.,l}, J={ilui>O, i=l, ... ,l}, 
J = {j I hj(x) = 0, j = 1,00', m}, J = {j I Vj > 0, j = 1,00' ,m}. 

(Condition (3.2) follows from the fact that problem (1.1) is linear in y. In particular, (:3.2) 
implies that, if (pT, qTf E C(x) and p = 0, then q = 0.) 
(b) Linearly independent constraint qualification: 

The vectors (V"g~~X)), i E I, and (V"hb(X)), j E J, are linearly independent. 

(c) Strictly complernentarity: 
I = J and J = J, that is, 

gi(x)+ary=bi =} Ui>O, i=l, ... ,l, 
hj(,x) =0 =} Vj>O, j=l, ... ,m. 

Under the above assumptions, the Kuhn-Tucker solution (x,y, 11, v) is locally unique. 
To analyze the behavior of the solution of problem (2.1), it is convenient to set b = 1/ M. 

Then Kuhn-Tucker conditions for problem (2.1) may be rewritten as 
l m 

V" f(x) + L Ui V" gi(X) + L 'Uj V" hj(x) = 0, 
i=l j=l 

l 

C + cy + L Uiai = 0, 
;=1 

Zi-bui=O, i=l,oo.,l, 
Ui (g,(x) + ary - Z; - b,) = 0, 

Ui:::::O, g,(x)+ary-zi~;b;, i=l, ... ,l, 
vjhj(x) = 0, 
Vj ::::: 0, hj(x):'S 0, j = 1, ... , m. 

Since b -+ ° when M -+ +00, we are now interested in the behavior of the solution of (3.3) 
as parameters e and b both approach zero. By direct comparison between (3.1) and (3.3), 
we immediately obtain the following lemma. 

Lemma 3.1 Let (x,5', 11, v) satisfy (3.1). Then (x,y,z, u, v) = (x,5',O, 11, v) satisfies (3.3) 
when (e,b) = (0,0). 

Proof. Obvious. 0 
For notational convenience, let .A = (e, of, X := (xT , yT , zT, UT, vTf and X = (xT , yT , 

OT, 11T , vTf, and define the mapping ~: Rn+N+2ft-m+2 -+ Rn+N+2l+m by 

(

V" f(x) + V"g(x)u + V"h(x)v 1 
c +cy+ Au 

~(X,.A) = z _. ou , 
U (g(x) + ATy - Z - b) 

Vh(x) 

5 
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where U and V are the diagonal matrices such that U = diag(ui) and V = diag(vj), 
respectively. Then we obtain the following lemma. 

Lemma 3.2 If assumptions (a), (b) and (c) are satisfied, then the Jacobian matrix 
V'x~CX, 0) is nonsingular. 

Proof. It is sufficient to show that for any (n + N + 2£ + m)-dimensional vector w, 

- T 
V'x~(X, 0) W = 0 ===} w = o. 

Let us denote w = (pT,qT,rT,sT,tT)T, where p = (Pb···,Pnf, q = (qb .. ·,qN)T, r = 
(rb···,rl)T, s = (Sb .. ·,St)T and t = (tl,···,tm)T. Then V'x~cx,ofw = 0 yields the 
following system of equations: 

L(x, 11, v)p + V'g(x)s + V'h(x)t = 0, 

As=O, 

r = 0, 

VV'g(xf p + VAy - Vr + S(g(x) + ATy - b) = 0, 

VV'h(xf p + Th(x) = 0, 

where V = diag(ui), V = diag(vj), S = diag(si) and T = diag(tj). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Since the strict complementarity condition (c) is satisfied, it follows from (3.6), (3.7) and 
(3.8) that 

Si = 0, i (j. I, 

V'gi(xfp + arq = 0, iEI, 

tj = 0, j (j. J, 

V'hj(xf p = 0, j E J. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

By taking the inner products of p and the left-hand side of (3.4) and of q and the 
left-hand side of (3.5), and then adding them, we obtain 

° pTL(x, 11, v)p + pTV'g(x)s + pTV'h(x)t + qT As 
= pTL(x,11,v)p+sT(V'g(xfp+ATq)+tTV'h(x)Tp (3.13) 
= pTL(x, 11, v)p, 

where the last equality follows from (3.9)-(3.12). Since (3.9)-(3.12) also imply 

( ~ ) E C(x), 

it follows from (3.13) and assumption (a) that p = 0 and q = O. 
Finally substituting p == 0, q = 0, Si = 0, i (j. I, and tj = 0, j (j. J, into (3.4) and (3.5) 

yields 

LSi (V'gi(X) ) + Ltj ( V'hj(x) ) = (0), 
"f a. "J 0 0 .E lE 

which along with assumption (b) implies Si = 0, i E I, and tj = 0, j E J. 
Consequently, V'x~(X,Ofw = 0 implies w = 0, i.e., the Jacobian matrix V'x~(X, 

0) is nonsingular. 0 

The next theorem is a direct consequence of the above lemmas. 
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Theorem 3.1 Let assumptions (a), (b) and (c) be satisfied. Then there exists a contin­
uously differentiable function X(.) on a neighborhood n of .\ = 0 such that X(O) := X. 
Moreover, for each .\ E n, X(.\) satisfies the second-order sufficient optimality conditions, 
linearly independent constraint qualification and strictly complementarity for problem (2.1). 

Proof. From Lemma 3.1, (>(X,O) = O. Since v'x(>(X, 0) is nonsingular by Lemma 3.2, it 
follows from the implicit function theorem applied to the equation (>(X,.\) = 0 that there 
exists a continuously differentiable function X(.) on a neighborhood n of .\ = 0 such that 
(>(X(.\),.\) = 0 and X(O) = X. Moreover, since X(.) is continuous and I = i, J = .T, we 
can prove the last half of the theorem by supposing the neighborhood n to be sufficiently 
small. 0 

Finally, an error analysis for problem (2.1) is given by the following theorem. 

Theorem 3.2 Let assumptions (a), (b) and (cl be satisfied. Then, for any K > 0, there 
exists a neighborhood n of .\ = 0 such that 

(:3.14) 

Proof. Differentiating the both sides of (>(X(.\),.\) = 0 with respect to .\ and substituting 
.\ = 0, we obtain 

- T 8X(0) , - T 
V'x(>(X,O) ~ + v,\(>(X,O) = O. 

Since V'x(>(X, 0) is nonsingular from Lemma 3.2, we have 

8X(0) [ - T -1 - T 
~ = - V'x<I>(X,o) 1 v\(>(X,O). 

But since X(O) = X by Theorem 3.1 and since 

X(.\) - X(O) = 8~i(~L + 0(11 .\ 11), 

the inequality (3.14) holds provided that the neighborhood n is sufficiently small. 0 

In practice, it is difficult to estimate the quantity 11 [V' x <I> (X, ofl-1 V',\ <I>(X, O)T 11. 
Nevertheless, Theorem 3.2 shows that the Kuhn-Tucker solution X(-X) of problem (2.1) 
differs from that of the original problem (1.1) by at most a constant multiple of 11 .\ 11, 
provided that 11 .\ 11 is small enough. 

4. Structured Problem 
In this section, we consider the structured problem (1.4). When matrix A in problem 

(1.1) is block diagonal, we may rewrite problem (1.1) as problem (1.4), where 

7 
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and for each k = 1, ... , K, gk: Rn -+ Rlk, Ak is an nk X i k matrix, and bk and Ck are 
i k- and nk-dimensional vectors, respectively. Note that i = 2:f:"=1 i k and N = 2:f:"=1 nk (see 
Figure 1). 

As in Section 2, we consider the following approximate problem for (1.4): 

K 

minimizex,y,z; f{x) + L (C[Yk + ~ 11 Yk 112 + ~ 11 Zk 112) 
k=l 

subject to gk(X) + AI Yk - Zk ~ b k , k = 1, ... , K, 
( 4.1) 

h(x) ~ 0, 

where the variables Zk, k = 1, ... , K, are ik-dimensional vectors. 
By fixing x in problem (4.1), we can decompose the problem into smaller problems as 

follows: For k = 1, ... , K, 

mmlffilzeYk,Zk 

subject to 

Note that problems (4.2) are independent of each other. 

(4.2) 

For each k, problem (4.2) is feasible and has a unique Kuhn-Tucker solution for any fixed 
x. As before, we define the functions ~k' k = 1, ... , K, by 

Then the functions ~k(-; c, M) are also finite-valued and differentiable at each x. Moreover, 
we have 

V'~k{X; c, M) = V'gk(X)Uk(X;c, M), 

where Uk{X; c, M) is the vector of Lagrange multipliers of (4.2) (cf. (2.4)). 
Consequently, we can rewrite problem (1.4) as follows: 

K 

minimizex f(x) + L ~k(X; C, M) 
k=l 

(4.3) 
subject to h(x) ~ O. 

Problem (4.3) is again a differentiable nonlinear programming problem, so that any con­
ventional nonlinear programming method can be used to solve it. Moreover, the values 
of ~k(X; c, M) and V' ~k(X; C, M) can be computed by solving the quadratic programming 
problem (4.2) or its dual for each k. Since problems (4.2) are independent of each other, we 
may solve them in parallel for any fixed x. 

5. Computational Results 
In this section, we report some computational results with the proposed decomposition 

method for several test problems of medium size. The test problems used in our numerical 
experiments are of the structured form (1.4), in which the nonlinear functions f, gk and h 
are all convex quadratic functions and the problem data are constructed using the method 
suggested in [15]. Throughout the experiments, we fix the numbers of nonlinear variables 
and nonlinear constraints as n = 10 and m = 10, respectively. We also fix the size of each 
linear block as (nk' i k) = (10,10) for k = 1, ... , K. To obtain test problems of various sizes, 
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Table 1 
Appraisal of solutions of problems (4.1) as approximate solutions of problem (1.4) 

c = 10 2 € = 10-4 

Residual of 0.107 X 10-1 0.107 X 10-2 0.106 X IQ-3 0.141 X 10-4 

K-T equations (0.310 X 10-2 ) (0.486 X 10-3 ) (0.451 X 10-2 ) (0.425 X 10-2 ) 

0.936 X 10 2 0.899 X 10 2 0.852 x 10 2 0.836 X 10 2 

M = 102 Feasibility 
(0.0) (0.0) (0.0) (0.0) 

0.917xl0 2 0.879 X 10 2 0.262 X 10 1 0.580 X 100 
Complementarity 

(0.201 X 10-4 ) (0.117 X 10-4 ) (0.135 X 10-4 ) (0.155 x 1(1-4) 

CPlI sec 2.296 2.165 2.114 2.138 

(No. of iterations) (17) (17) (16) (16) 

Residual of 0.105 X 10-1 0.105 X 10-2 0.105 X 10-3 0.135 X 10-4 

K-T eq uations (0.239 X 10-2 ) (0.475 X 10-3 ) (0.262 x 10-3 ) (0.492 x 10-2 ) 

M = 103 Feasi bili ty 
0.865 X 10-3 0.853 X 10-3 0.844 X 10-3 0.706 X 10-3 

(0.0) (0.0) (0.0) (0.0) 

0.808 X 10 3 0.100 X 10-1 0.314 X 10- 1 0.575 X 100 
Com plemen tari ty 

(U.175 X IIr') (0.919 x 10-5 ) (0.138 x 10-') (U.189 X 10-4
) 

ept sec 2.294 2.162 2.163 2.115 

(No. of iterations) (17) (17) (17) (16) 

Residllal of 0.105 X 10 1 0.105 x la 2 0.105 x la 3 0.135 X 10 4 

K-T eq lIations (U.255 X 10-2
) (0.145 x 10-3 ) (0.739 x 10-3 ) (0.506 x 10-2 ) 

0.839 X 10 4 0.S39xl0 4 0.760 x 10 4 0.666 x 10 
, 

M = 104 Feasi bility 
(0.0) (0.0) (0.0) (0.0) 

0.934 X 10 3 0.957 X 10-2 0.305 X IQ-I 0.575 x 100 
Complelllentarity 

(0.212 X 10-4 ) (0.125 x 10-4 ) (0.156 x 10-') (0.154 x 10-4 ) 

CPU sec 2.292 2.161 2.169 2.138 

(No. of iterations) (17) (17) (17) (16) 

Residual of 0.105 X 10 1 0.105 x 10 2 0.105 x 10 3 0.135 x 10 
, 

K-T eqllations (0.258 X 10-2 ) (0.'142 X IQ-3) (0.377 X 10-3 ) (0.487 x 10-2 ) 

0.726 x 10 s 0.732 x 10 s 0.675 x 10 s 0.699 x 10 5 

M = 105 Feasibility 
(0.0) (0.0) (0.0) (0.0) 

0.911 X 10 3 0.952 x 10 2 0.304 x 10 1 0.575 x 100 
Complen,entarity 

(0.181 x 10-4 ) (0.140 x 10-4 ) (0.149 x 10-4 ) (0.128 x 10-4 ) 

CPU sec 2.305 2.177 2.181 2.123 

(No. of iterations) (17) (17) (17) (16) 

"Residual of K-T equations", "Feasibility" and "Complelllentarity" represent IIVyL(x, y, ll, v)lloo, II(g(x) + 
AT y - b)+ 1100 and IIU(g(x) + AT y - b)lloo, respectively, where L(x, y, ll, v) is the Lagrangian for problem 

(1.4) and (z)+ denotes the vector with components max(O, z;). The quantities in the parentheses represent 

IIVxL(x,y,u,v)IIN' 1!(h(x»+lloo and IIVh(x)lloo. These are all evaluated at the computed solutions of 

problems (4.1). 

9 
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we vary the number f{ of linear blocks. Namely, if f{ = 2, then we have a problem with 
30 variables and 30 constraints, while if J( = 10, then we obtain a problem containing 110 
variables and 110 constraints. 

We have employed the dual method of Goldfarb and Idnani [7] and the modified succes­
sive quadratic programming method of Fukushima [4] to solve the quadratic programming 
problems (4.2) and the nonlinear programming problem (4.3), respectively. In particular, 
we have used FORTRAN programs called QPDUAL and SQP, which have been coded by 
Fukushima to implement the above-mentioned methods. Complete listings of these pro­
grams may be found in the book [8]. In our numerical experiments, the default values were 
used for all parameters in the programs and the scaling option was not taken. The runs were 
made in double precision on a FACOM M780-30 computer at the Data Processing Center, 
Kyoto University. 

In order to verify the results established in Section 3, we first varied the values of 
parameters c: and M for a test problem with ten linear blocks, i.e., J( = 10. The results are 
summarized in Table 1, which shows the closeness of solutions of the parametric problems 
(4.1) to that of the original problem (1.4) for various values of c: and M. To appraise the 
solution of problem (4.1) as an approximate solution of (1.4), we evaluate the residual of 
the Kuhn-Tucker (K- T) equations, feasibility and complementarity conditions for problem 
(1.4). Specifically, "Residual of the K-T equations", "Feasibility" and "Complementarity" in 
Table 1 represent lIV'yL(x, y, u, v)IIoo, II(g(x) + AT Y - b)+lIoo and IIU(g(x) +AT y - b)IIoo, 
respectively, where L(x,y, u, v) is the Lagrangian for problem (1.4) and (z)+ denotes the 
vector with components max(O, Zi). Moreover, the quantities in the parentheses represent 
IIV'xL(x,y, u, v)lloo, II(h(x))+lloo and IIVh(x)lloo. These have all been evaluated at the 
computed solutions of problems (4.1). The table clearly indicates that the solution of 
problem (4.1) becomes a better approximate solution of problem (1.4) as c: -+ I) and M -+ 

+00. In particular, it may be observed that IIV'yL(x,y, u, v)lloo decreases in proportion to 
c:, while II(g(x) + ATy - b)tllco is inversely proportional to M, supporting the validity of 
Theorem 3.2. We should point out, however, that errors in the complementarity conditions 
IIU(g(x) + ATy - b)lloo grows as c: gets smaller, though we have been unable to find any 
rationale. 

Table 1 also contains the number of iterations and CPU time for each choice of the 
parameter pair (c:, M). It is seen that the choice of parameters c: and M does not affect 
the computational cost, as long as the values of c: and M lie in the specified range. This 
fact was rather surprising, because we expected that the approximate problem (4.1) would 
become harder to solve as c: was decreased or M was increased. It may be challenging to 
find the reason for this seemingly curious phenomenon. At this moment, however, we have 
no satisfactory answer to it. 

Incidentally, we have solved the original problem (1.4) by applying the above-mentioned 
program SQP directly, i.e., without resort to decomposition. The direct application of SQP 
required 18 iterations before termination, spending 11.027 seconds. 

Next, we examine the behavior of the proposed method under variation of problem size. 
In this experiment, parameters c: and M are fixed as c: = lO-:l and M = 103 , respectively. 
To construct test problems of various sizes, the number of linear blocks is varied as J( = 
2,4,6,8 and 10. Three problem instances were generated for each problem size and solved 
through the proposed decomposition method. For comparison purposes, the same problems 
were also solved by applying the program SQP directly. The computational results are 
illustrated in Figure 2, where the CPU time for each of the three test problems is plotted 
for every J( and the medians are linked together by line segments. Observe that the CPU 
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Figure 2: Decomposition approach versus direct approach. 

time of the direct application of SQP grows non linearly as J( increases, while that of the 
proposed decomposition method grows almost linearly. These phenomena may be explained 
as follows: In the former approach, the size of a quadratic programming subproblem to be 
solved at each iteration increases with K, and the computational complexity of the quadratic 
programming problem is by no means linear in problem size. On the other hand, in the 
latter approach, the number of subproblems (4.2) to be solved at each iteration is J(, but the 
size of those subproblems remains constant as f{ increases. Consequently we may expect 
that the relative efficiency of the proposed decomposition method grows with the increase 
in problem size. 

6. Conclusion 
We have proposed a decomposition approach .. based on penalty and perturbation tech­

niques, for solving a class of nonlinear programming problems. This approach gives an ap­
proximate optimal solution to the given problem, but its closeness to the exact solution may 
be controlled by mea.ns of the penalty a.nd perturbation parameters. The primary advantage 
of the proposed approach is that it can readily be put into practice if general-purpose non­
linear programming and quadratic programming codes are available. The computational 
experience reported in the previous section is encouraging enough to claim the practical 
usefulness of the proposed approach. 
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