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Abstract This paper considers ways of modelling time dependent inspection problems where there is a 
possibility of false alarms. For this purpose, it is assumed that safeguards procedures are notified to the 
inspectee by the inspector and are prima facie plausible ones. This 'inspector-leadership principle' implies 
that under reasonable assumptions the inspectee's strategy is legal in the sense of complying with agreed 
rules. The main objective of our investigation is to derive simple criteria for the determination of optimal 
inspection procedures from t.he .~quilibrium condit.ions for non-cooperat.ive non-zero sum t.wo-person games. 
It can be shown that, given the appropriate assumptions, one can arrive at 'statistical' optimization criteria. 
In the simplest case one gets the global probabilities of t.he errors of t.he first and second kind and in more 
complex cases the average run lengths for legal and illegal inspectee behavior. 

1. Introduction 
W'ith a few exceptions until now only time independent inspection problems were treated 
with the help of game theoretical models, or time dependent problems were transformed 
into time independent ones by use of appropriate assumptions. In addition, the few 
exceptions [4], [5], [7], [8] represented inspection problems where false alarms were not 
possible. 

In this paper the question for suitable ways of modelling time dependent inspection 
problems is posed, and it is assumed that false alarms cannot be avoided. Furthermore, 
the 'inspector-leadership principle' is Hsed, i.e., it is assumed that the inspector notifies his 
inspection procedure to the inspectee in a plausible way. In fact, this principle is used in 
various international safeguards systems; it guarantees under some additional assumptions 
at least in the time independent case that in equilibrium the inspectee behaves legally in 
the sense of complying with agreed rules. 

The main objective of our investigation is to derive simple criteria for the determina­
tion of optimal inspection procedures from the equilibrium conditions for non-cooperative 
non-zero sum two-person games. For this purpose, we consider a class of inspection games 
where both players - inspector and inspectee - can act independently at a given number 
of discrete time steps. The set of pure strategies of the inspector is the set of statistical 
decision procedures based on observations of random variables at tlw various time steps. 

That of the inspectee consists of the choices between legal and illegal behavior, and an 
appropriate illegal strategy in the latter case. The game ends at any stage where the 
inspector decides that the inspectee behaved illegally, otherwise it continues until the last 
step where the inspector decides definitely whether or not the inspectee behaved legally. 

If one assumes that time does not play a role in the players' evaluation of the possible 
outcomes of the game, then it suffices to consider the global probabilities of the errors of 
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Inspector Leadership Games 135 

the first and second kind (false alarm and no detection of illegal action) as criteria for 
the determination of the equilibrium test procedure of the inspector. If one considers, 
however, an infinite sequence of discrete time steps and assumes that the payoffs to both 
players are discounted with time, then it can be shown that it suffices to use the average 
run lengths for legal and illegal inspectee behavior. This is a very satisfying result, since 
these criteria in fact are used for solving practical statistical problems. 

The paper is organized as follows: Section 2 describes a general model of a sequential 
inspection game. Section 3 introduces the inspector-leadership principle and presents 
a general condition of a subgame perfect equ;llibrium point of the sequential inspector­
leadership game. Section 4 investigates under what assumptions the sequential inspector­
leadership game is equivalently reduced to the non-sequential inspector-leadership ,game. 
Section 5 analyzes the sequential inspector-leadership game in the infinite time horizon 
case. It is shown under some appropriate assumptions that we can use average run lengths 
for legal and illegal inspectee behavior as the criteria for the optimal test procedure of the 
inspector. 

2 A Sequential Inspection Game 

There are two pla.yers I (inspector) and 0 (inspectee). lvII, ... , Mn are the (pure) action 
sets of the inspectee 0 at stages 1, ... , 1!, respectively. The action set of the inspector I 
is the same at all stages and consists only of two elements, A (alarm) and A (no alarm). 
We assume that the set of 'feasible' actions for the inspectee at every stage t = 2, ... ,17, 

may depend on his previous actions before stage t. In order to formulate such a general 
situation, we introduce a collection of mappings {A1d~1' where each Mt , t = 1, ... , n, maps 
its domain Dt- 1 C M1 X ... X 1I1t- 1 into 21\1" i.e., the class of all subsets of Mt. To every 
(Jh, ... , pt-d E D t- 1 , the map M t assigns the set M t(P1, ... , pt-d of all feasible actions in 
Mt for the inspectee at stage t under the history (PI, ... , pt-d. The domains Do, ... , Dn - 1 

of the mappings lVII, ... , Mn are defined inductively as follows: 

(1) Do = {J.lo} where J.lo means the empty history, 

(2) for every t = 1, ... ,n, Dt is the set of all (J.l1, ... ,/-tt) 111 1111 x ... x M t satisfying 

(J.l1, ... ,pt-d E D t- l and Pt E iiItUt1, ... ,!-lt-d. 

The domain D t of the mapping 1I1!+1 can he interpreted as the set of all sequences of 
the inspectee's feasible actions from stage 1 to stage t. 

For the purpose of illustration, we consider a material control problem, see, e.g., [1]. 
Here, 0 tries to divert the amount fI! of material at stages t = 1, ... ,17, such that Et!-lt = {l; 
the domain D t - 1 is defined by 

t-1 
Dt- l = {(PI, ... ,pt-dl LPi::; {l,Pi 2: O,i = 1, ... ,t -I} 

i=1 

and the mapping M t is defined by 

t-I 
Mt(PI, .. ·,Pt-I) = {ptl 'L.:Pi + Pt::; {l,Pt 2: O} 

i=l 

for every (PI, ... , 11t-d E D t - I . The total amollnt 11 of material to be diverted is predeter-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



136 R. Avenhaus & A. Okada 

mined and known to both players. 

XI, ... , Xn are the sets of signals (or observations) the inspector can receive at stages 
1, ... ,n, respectively. For any (f-lt, ... ,f-lt) E D t and any (Xt, ... ,Xt-d E Xl X ••. X X t- l an 
observation Xt E X t at stage t is drawn by a chance move. The observation Xt is a random 
variable with the conditional probability density ft( Xt If-ll, XI, ... , Xt-t, f-lt). In what follows, 
we assume that all M t and X t (t = 1, ... , n) are finite dimensional Euclidean spaces or 
their subsets. 

For every t = 1, ... , n, ftC) and Ot(·) are real-valued functions on D t. For every 
(f-lI, ... , f-ltl E D t , ft(f-ll, ... , f-lt) and Ot(f-ll, ... , f-lt) represent the inspector's and the inspectee's 
payoffs, respectively, if the game stops at stage t. The stopping rule of the game will be 
explained below. 

A sequential inspection game r t, whose extensive form is sketched in Figure 1, is 
played as follows: 

(1) At stage 1, the inspectee 0 chooses an action f-lt E A1t (not observable to the in­
spector I). An observation Xl is drawn by a chance move according to the probability 
density function ftCif-ld. The observation Xl becomes common knowledge to both 
players. 

(2) The inspector chooses either A (no alarm), in which case the game continues to stage 
2, or A (alarm), in which case the game terminates with payoffs (It (f-lt}i Ot(f-lt}). 

(3) Inductively: for every t = 1, ... ,n, after the inspectee chose actions (f-lt, ... ,f-lt-t} E 
D t- 1 and observations (Xl, ... , Xt-d were drawn, the inspectee chooses an action 
f-lt E Mt(f-lt, ... ,f-lt-t) with complete knowledge of (f-lt,Xt, ... ,f-lt-t,Xt-t). Thereafter, 
an observation Xt is drawn by a chance move according to the conditional probabi­
lity density function .ft(·lflt,Xt, ... ,f-lt-t,Xt-t,f-lt). With observations (XI, ... ,Xt) the 
inspector chooses either A, in which case the game continues to stage t + 1 if t < n 
or terminates with payoffs (in(f-lt, ... , f-ln)i On(f-ll, ... , f-ln)) if t = n, or A, in which case 
the game terminates and the payoffs are (It(f-lt, ... , f-lt)i Ot(f-lt, ... , f-ld)· 

If the inspectee's actions are given at all his moves, the inspector is faced with an 
'optimal stopping problem' in the sequential inspection game r I (see [3]). The inspector 
has to decide when to rai3e an alarm, i.e., stop the game. However, unlike other well­
studied game versions of the stopping problem, the second player (the inspectee) has no 
means to stop the game. 

3 The Inspector-Leadership Principle 
In our sequential inspection game ri, we will make the following special assumptions 
which are called the Inspector- Leadership Principle. 

(i) Before the start of the game (i.e., at the zero stage), the inspector f chooses and 
announces a test procedure which determines for which ranges of observations of 
relevant random variables an alarm (A) is raised or not at stages 1, ... , n. Formally 
a test procedure 8 for the inspector is defined by a collection 8 = (8I, ... , 8n ) where 
each 8t , t = 1, ... , n, is a measurable function 8t : Xl x ... x X t -t {A, A}. 8t decides 
A (alarm) or A (no alarm) based on observations (x], ... , Xt) before and at stage t. 
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Figure 1: The extensive form of the sequential inspection game r l when at stage 
t = 1, ... , n Ot is the inspectee's, It the inspector's and Ct the chance move. 

(ii) Knowing the test procedure 0 = (01, ... ,0,.), the inspectee 0 decides whether he will 
behave illegally (HI) or legally (Ho). If he decides to behave illegally, he will choose 
an illegal vector J-l = (J-lI, ... ,lln ) such that 'Ltftt = P, J-lt ~ 0, t = 1, ... ,n, where 
J-lt is the size of the illegal action at stage t = 1, ... , n. For convenience, we put 
J-l = (0, ... ,0) in the case of legal behavior. Thereafter, the game really starts and 
ends either after the i-th stage if there is an alarm, or finally and definitely after n 
stages. Neither player has any possibility to adjust his decision in the course of the 
game. 

Given an illegal vector J-l = (J-lI, ... ,J-ln), an observation Xt (t = 1,2, ... ,n) is drawn 
at stage t by a chance move according to the conditional probability density function 
ft(·IJ-lI, Xl, ... , J-lt-l' Xt-d where (:1:1, ... , Xt-d are the observations made before stage t .. Ba-
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sed on the observations (XI, ... ,xd, the inspector makes the decision according to his 
predetermined test procedure 81, i.e., he raises an alarm if 81(J:!, ... , Xt) = A, and does not 
otherwise. If an alarm is raised for the first time at stage t, then the game ends either 
with the payoffs 

-at (,ll , ... , II·d == It(/II, ... , I1t), 

-bt(l1l, ... , /Id == Ot(111, ... , lit) 

to the inspector and the inspectee, respectively, in case of illegal behavior, or with the 
payoffs 

to the inspector and the inspectee, respectively, in case of legal behavior. If no alarm is 
raised at stage t, then the next stage t + 1 will be reached. At the latest, after n stages 
the game ends with a terminal decision of the inspector. \Vhen no alarm is raised at stage 
n, the inspector and the inspectee receive the payoffs 

respectively, in case of illegal behavior, i.e., Lt lit = 11, and the payoffs (0,0) in case of 
legal behavior. 

Given an illegal vector ,Lt = (Ill, ... , I1n) of the inspectee 0, the family of conditional 
probability densities {.ft( xd!' h Xl, ... , Pt-I, 1:1-1, /Lt)} ~=l generates a probability distribution 

F"(XI, ... , Xn) over the Cartesian product XI X ... xXn. We put FO = F" when P := (0, ... ,0). 
For every t = 1, ... , n, define the sets 

-5 _ -
At = {(Xl, ... , Xt)18t (Xl, ... , Xt) = A} X X t+1 X ... X Xn-

Af and Af are the sets of observations (Xl, ... ,Xt) under which the test procedure 8 = 
(81 , ... , 8n ) by the inspector selects A (alarm) and A (no alarm), respectively, at stage t. 
We define the two probabilities 

° S -6 -6 a t (8) = P (At IAI n ... n At_I) 

where P"(-I') and PO(·I·) are the conditional probabilities induced by the distributions F" 
and FO, respectively. Under the condition that the game reaches stage t, i3t(8,Pl, ... ,pd 
represents the 'no detection' probability at stage t and at(8) represents the 'false alarm' 
probability at stage t. 

With the inspector-leadership principle described by (i) and (ii), the sequential in­
spection game fl in the first section can be transformed into a simpler game whose 
extensive form is sketched in Figure 2; we call it the sequential inspector-leadership game, 
denoted by f 2. 

In what follows, we will analyze the sequential inspector-leadership game f 2 . A (pure) 
strategy for the inspector in f 2 is defined to be a test procedure 8 = (81 , ... , 8n ). A (pure) 
strategy for the inspectee in f2 is defined to be "( = hI, "(2) where "{I assigns to every 8 
either Ho or HI and "{2 to every 8 a diversion vector 
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n 

/-L = (/-L1,···,/-Ln), L/-Lt = P, /-Lt 2: 0, t = 1, ... ,n. 
t=1 
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Given a strategy pair (8,,), the expected payoffs for the inspector and the inspectee, 
denoted by Eg1 (8,,) and Eg 2 ( 8, ,), respectively, are defined in a usual manner. Also, the 
conditional expected payoff for the inspectee given that the inspector selects 8 and the 
inspectee selects H1 can be defined. It is denoted by Eg2h18, Hd. 

The standard solution concept of a non-cooperative game is the Nash equilibrium 
point. However, in a game with sequential structures, it has been commonly discussed 
that every Nash equilibrium point is not reasonable as a non-cooperative solution of the 
game. Some Nash equilibrium points may be supported by players' incredible threats 
which are not consistent with their payoff maximizing behavior. In order to eliminate 
such a difficulty of the Nash equilibrium point, we will employ a stronger notion of a 
subgame perfect equilibrium point to analyze the sequential inspector-leadership game 

1'2' 
We can now define a subgame perfect equilibrium point of the sequential inspector 

leadership game 1'2' 

Definition ::{.1 
A strategy pair (b*, ,*) is a subgame perfect equilibrium point of 1'2 if and only if 

(1) Eg1(8*,,*);::: Eg1(8,,*) for a118, 

(2) Eg2(8, ,*) 2: Eg2(8, ,) for all 8 and all" 

(3) Eg2h*18, H]) 2: Eg2 h18, Ht} for all 8 and all,. o 

The next lemma explicitly shows the expected payoffs for the inspector and the in­
spectee in 1'2' The proof of the lemma is left to readers. 

Lemma 3.1 

Given a strategy pair (8,,) with 8 = (81, ... ,8n )" = h1,,2) and ,2(8) = ({t], ... ,/-Ln), the 
expected payoffs for the inspector and the inspectee in 1'2 are given as follows: 

(3.1 ) { 
-t at(l - fit) TI l3i - c IT fit 

Eg (8 'V) = t=1 ,=1 t=1 
1 , I n t-l 

- L etO't IT(l - eti) 
t=1 i=1 

(3.2) { 
-t M 1 - fi,t) IT 19i + d IT fit 

Eg (8 'V) = t=1 ,=] t=1 
2\ , , n t-l 

- L ftO't IT(1- eti) 
t=1 i=1 

where at = at(/-Ll .... ,/-Lt}, bt = Mp'l, ... ,/-Ld, /3 t = fit(8,/-L1, ... ,/-Lt) and at = O:t(8) for t 
1, ... ,n, 0 

The next proposition characterizes a subgame perfect equilibrium point of the se­
quential inspector-leadership game 1'2' 
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Figure 2: A sequential inspector-leadership game r 2. {) is a test procedure of the 

inspector, Ho( HI, resp.) is legal (illegal, resp.) behavior of the inspectee.' A' means alarm 
and 'A' no alarm. The probability for alarm at stage t is 

Proposition 3.2 

A subgame perfect equilibrium point (8*, 1*) of r z, 8* = (8;, ... , 8~), 1* = er;, li), satisfies 
the following conditions: 

(1) For every 8'li(8) = (Ili, ... ,{l~) is a solution of 

(3.3) 

We denote this maximnm value by J1f( 8). 

(2) For every 8, I; (8) is equal to 

n t-l 

Ho if M(8) < - 'LftO:t TI(1- 0:;) 

(3.4) t=1 ;=1 
n t-I 

HI if M(8) > - 'LftO:t TI(1- 0:;). 
t=1 ;=1 
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(Note that here we leave open the case 

n t-l 

M(b) = - L ftat IT(1- a;).) 
t=1 ;=1 

(3) b* is a solution of SUP8 l( b) where 

{ 
-t etat TI (1 - et;) 

l( b) = t~1 i=I t- l n 

- L at (1 - (3t) n (3, - c IT (3t 
t=1 .=l t=1 

if ,i(b) = Ho 
(3.5) 

Proof 
We can prove the proposition by the 'backward induction' argument in the theory of 
extensive games. First, from Lemma 3.1, the conditional expected payoff Eg2hlb, HI) for 
the inspectee 0 when the inspector selects a test procedure b = (bI, ... , bn ) and he selects 
illegal behavior HI is given by 

n t-l n 

Eg2( ,Ib, Hd = - L bt(1 - (3t) IT (3; + d IT (3t. 
t=1 ;=1 t=1 

Then, Definition 3.1.(3) is equivalent to (3.3). 

Secondly, when '2( b) satisfies (3.3), we can show that Definition 3.1.(2) and (3.2) 
imply (3.4). Finally, we can consider the optimal test procedure b* = (b~, ... , b~) of the 
inspector. When he selects a test procedure b, he obtains the expected payoff l( b) given 
by (3.5), depending on whether ,i(b) = Ho or HI' Therefore, Definition 3.1.(1) implies 
that b* is a solution of SUP8 l( b). D 

As already mentioned, in this proposition we did not determine ,~( b) for the case 
M( b) = -l:t ftat ni (1 - a;). In the following two sections, we consider two special forms 
of the payoff parameters where just this case becomes the important one. 

4 An Analysis of the Sequential Inspector-Leadership Game-A Finite Time 
Horizon Case 

In this section, we will consider under what conditions the sequential inspector-leadership 
game f2 given in the last section can be equivalently reduced to the non-sequential 
inspector-leadership game discussed by Avenhaus and Okada [2]. 

Let us assume the very special situation that the payoffs for the inspector and the in­
spectee are independent of the stage number, and, furthermore, that they are independent 
of the diversion "ector /1 = (/11, ... , Iln) in case of illegal behavior: 

Assumption 4.1 
There exist positive constants, a, b, c, d, e, f s1Jch that 

a = at(/11, ... , /1t), b = bt(/11, ... ,/1t) 
C = C(lll' ... , Iln), cl = d(lll, ... , Itn) 

e = ell f = ft 
for every t = 1, ... , nand Il = (Ill, ... , /1n) with Lt Ilt = ji, Ilt ~ 0 (t = 1, ... , n). We assume 
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that 
e < a < c, j < b. o 

The next lemma shows that under Assumption 4.1 the expected payoffs of the in­
spector and the inspectee can be simply represented in terms of global 'non-detection' 
probability and 'false alarm' probability. The proof of the lemma is left to readers. 

Lemma 4.2 
Under Assumption 4.1, the expected payoffs for the inspector and the inspectee in r 2 are 
given as follows: 

( 4.1) E (8 ) = { -a(l- j3(8,/1)) - cj3(8,fl) 
gl , I _ m( 8) 

(4.2) E (8 )={ -b(1-j3(8,p))+dj3(8,fl) 
g2 , I _ ja(8) 

if 11(8) = HI 
if 11(8) = Ho 

if 11(8) = HI 
if 11(8) = Ho 

where j3(8, fl) = nt j3t(8t ; PI, ... , {Id and a(8) = 1 - nt(1 - at(8)) are the overall non­
detection and false alarm probabilities. 0 

By Lemma 4.2, we can reduce the sequential inspector-leadership game r 2 into the 
non-sequential inspector-leadership game r 3 the extensive form of which is given in Figure 
3. With the help of this reduction, we can investigate a subgame perfect equilibriu point 
of the sequential inspector-leadership game r 2. 

Let 8 = (81 , ... , 8n ) be a pure strategy, i.e., a test procedure for the inspector and let 
I = (,1112) be a pure strategy for the inspectee. Given a E [0,1]' define the set 

n 

(4.3) 6" = {8 = (81 , ... , On) I Q(O) == 1 - II(1- at(8)) = a} 
t=1 

and 

( 4.4) j3(8) = maxj3(O,p) 
i' 

(4.5) j3( a) = min max j3( 8, fl) 
bEllo I' 

where j3 ( 8, fl) = n t j3t ( 8, PI, ... , {1 t), {t = (p 1, ... , P. n ). 

A subgame perfect equilibrium point of the non-sequential inspector-leadership game 
r 3 is characterized in [2]. From this result we obtain the following: 

Theorem 4.3 
A pure strategy combination (O*, 1*)' 8· = (8;, ... , o~), 1* = (,;',2) of the non-sequential 
inspector- leadership game 1:'3 is a subgame perfect equilibrium point of r 3, if and only if 
the following conditions are satisfied: 

(1) The 'false alarm' probability 

n 

a· = a(O*) = 1 - II(1- at(8·)) 
t=1 
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of 8* is a solution of the equation 

(4.6) -b + (b + d)pi(O') + fO' = 0, 

where 13(0') is given by (4.5). 

(2) b* = (b;, ... , (5~) is a solution ofthe optim:ization problem 

n 

min max f3( 8, Jl) = min max IT f3t( 8, Jll, ... , Jlt). 
5E~" I' 5E~" I' t=1 

(3) For every 8 := (o}, ... , 8n ) 

where 

if h(8) ~ 0 
if h(8) > 0, 

h(8) == -b + (b + d)f3(8) + fO'(8), 

and 13(8) is I~iven by (4.4). 

(4) For every 8= (8}, ... , 8n ), ,;(8) is a solution of 

n 

max f3( 8, Jl) = max IT f3t (8, Jll> ... , Jlt). 
I' I' t=} 

143 

D 

Under Assumption 4.1 the stage number i (t = 1, ... , n) has no influence on players' 
payoffs when the game stops at stage t with an alarm by the inspector: The early detection 
does not make the inspector better off. Furthermore, the later the inspector makes a 
decision, the more information he can obtain. Intuitively, these observations suggest that 
in the sequential inspector-leadership game f2 the inspector need not raise an alarm until 
the last stage. 

5 An Analysis of the Sequential Inspector-Leadership Game: An Infinite 
Time Horizon Case 

Let us consider the sequential inspector-leadership game of the third section with infinitely 
many stages, and let us assume that the payofFs to both players at each stage depend on 
the stage number as follows: 

Assumption 5.1 
There exist positive constants VI, V2, A}, A2 such that the payoffs to both players are given 
by 

at(Jll, ... , Jlt) = aexp(v}t), bt(Jl}, ... , Jlt) = bexp( -V2t ), 

et = eexp(-Alt), ft = fe:rp(-A2· t) 

for every t = 1,2, ... and every Jl = (Jl},Jl2, ... ) where 0 < e < a and 0 < f < b. D 

Assumption 5.1 shows that the losses, et and ft, caused by false alarm are exponen­
tially decreasing with respect to t. An earlier false alarm imposes more damages on both 
players. Secondly, the two players have opposite time preferences with respect to the 
detection of illegal behavior. The inspector prefers earlier detection, while the inspectee 
prefers later detection. 
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H, 

A 

I=~ I I=~ I 
Figure 3: The non-sequential inspector-leadership game r3 to which the sequential 

inspector-leadership game r 2 can be equivalently reduced. The probability for alarm is 
given by 

n 

1 - 13(6, /1) = 1 - n 13t(6, 11" ... , Ilt) if H, 
t=, 

a(a) if Ho 

The sequential inspector-leadership game with infinitely many stages is denoted by 
f 4 . As in the game fz, we can define a test procedure b = (b" bz, ... ) of the inspector and 
a diversion strategy 11 = (/), l, 112, ... ) of the inspectee with "Btllt = p: In what follows, we 
use the same notations as in the third section whenever no confusion arises. For a strategy 
pair (b, I), we can define tl:e 'false alarm' probability at stage t, denoted by ate b), and 
the 'no detection' probability at stage t, denoted by f3t( b, 11)' 

Lemma 5.2 
Under Assumption 5.1 the expected payoffs to the inspector and the inspectee in f4 are 

= t-, 
-a Eexp(v,t)(l - f3t} IT f3s 

t=1 .=, 
(5.1 ) 

= -aF1 (vl;b,ll) 
= t-l 

-e E exp( -A,t)at IT (1 - as) 
t=1 s=1 

= -eFo{ -AI; b) 
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00 t-1 
-b L exp( -v2t )(1 - f3t) IT f3s 

t=l s=l 

(5.2) = -bF1(-V2; D, It) if 11(D) = HI 
00 t-l 

- f L exp( -,\2t )at IT (1 - as) 
t=1 s=1 

= - f Fo( -'\2; D) if 11(D) = Ho, 

where F1 ( '; D, p,) and Fo('; D) are the moment l~enerating functions of the stages (random 
variables) that an alarm is raised in the cases of illegal behavior and legal behavior, 
respectively. 

Proof 
By Assumption 5.1 we have 

00 

Eg1(D, /) = -a L exp(vlt)Prob(alarm at tlD, p,) 
t=1 

where Probe alarm at tlD, p,) is the probability of alarm at stage t if the inspector selects a 
test procedure D and the illspectee selects the strategy / = (Jl,,2) with /l(D) = HI and 
12( D) = p,. Since 

t-l 
Prob(alarm at tID,p,) = (1- f3t) IT f3s, 

s=1 
we can prove the first equality in case of /1 (D) = HI in (5.1). The second equality in that 
case is clear from the definition of the moment generating function F1( '; D, p,) of the false 
alarm stage. Similar calculations lead to other equalities in (5.1) and (5.2). 0 

From the well-known property of the moment generating function we can apply the 
Taylor expansion to (5.1) and (5.2). For example, we have 

(5.3) F1( -V2; D, p,) = F1(0; D, p,) + (-V2) . FP)(O; D,p,) + ... 

+( -V2t In! . F1(n)(0; D, p,) + ... 
for small values of V2 where Fin) (0; D, p,) is the n-th order derivative at () = 0 of Fl «(}j D, p,). 
The first term of (5.3) is F1(0; D, p,) = 1; the second of (5.3), given explicitly by 

co t-l 
FP)(O; D; p,) = L t(l - f3t) IT f3s 

t=1 s=1 

is the average run length of the game in case of illegal behavior. 

We denote this by L1(D, p,). Similarly, we denote by Lo(D) the average run length of 
the game in case of legal behavior which is given by 

co t-l 
FJ1)(0: D) = L tOt IT (1- as). 

t=1 s=1 

In what follows we will employ the first-order approximations of the expected payoffs of 
the inspector and the inspectee. 

Assumption 5.3 
For a strategy pair (D, /), the expected payoffs to the inspector and the inspectee are 
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(5.4) Eg (8 'Y) _ { -a(l + VI L1(8,J.l)) if ,Yt(8)=Hl 
1, - -e(l- AI Lo(8)) if 11(8) = Ho 

and 

(5.5) E (8') = { -b(l - v2Ll(8, J.l» if 11(8)=Hl 
g2 , Y _ 1(1 - A2 Lo(8» if 11(8) = Ho, 

0 

Furthermore, we will use the following assumptions on the average run lengths of the 
tests under consideration which are satisfied for commonly used sequential tests. 

Assumption 5.4 
Let ~ be the set of test procedures 8 = (81,82 .... ) of the inspector. For a given value 
Lo ~ 1, we define the set .6. Lo = {8 E ~ILo(8) = Lo}. 

(1) For every Lo ~ 1, the minimax problem 

min maxL1(6,J.l) 
8EoCiLo I' 

has a solution. We denote by LI(6) the maximum and by LI(Lo) the minimax value 
of L1(8, J.l), i.e., 

(5.6) 

(2) The function LI (Lo) is a continuous and monotonically increasing function on [1,00) 
with L I (1) = 1. 

(3) There is a unique solution of the equation 

(5.7) 

o 

A very simple example for a sequential test procedure with properties (2) is given 
in the Annex. With the absumptions 5.3 and 5.4 we will characterize a subgame perfect 
equilibrium point of the game r". 

Theorem 5.5 
Under Assumptions 5.3 alld 5.4, a pure strategy combination (6*, 1*) of the sequential 
inspector-leadership game r 4 is a subgame perfect equilibrium point of r 4 if and only if 
the following conditions are satisfied: 

(1) The average run length Lo(8*) under Ho is the solution Lo of equation (5.7) where 
L 1(Lo) is given by (5.6). 

(2) The test procedure S' of the inspector is a solution of the minimax problem 
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(3) For every 8 E ~, the inspectee behaves .according to 

(5.8) 

where h( 8) is given by 

(5.9) 

if h( 8) ::; 0 
if h(8) > 0, 

(4) For every 8 E ~, the illegal strategy ,i( 8) of the inspectee is a solution of 

(5.10) 

Proof 

147 

We will prove the theorem with the help of the 'backward induction' argument frequently 
used in the theory of extensive games. Let (8*, ,*) be a subgame perfect equilibrium point 
of r 4 • 

First, for every 8 E ~, ,i( 8) is a solution of 

from Assumption 5.3. Since b,1/2 > 0, '2(8) is a solution of the maximization L,(8) = 

max LI (8, I-l). This proves (4) in the theorem. 

Secondly, for every 15 E ~, ,i( 15) is a solution of max Eg2 ( 15,,) where ,2(15) is given 
above. From (5.~) we can see that 

{

Ho 
,;(15) = Ho or Ht 

HI 

if h(l5) < 0 
if h(8) = 0 
if h(l5) > 0, 

where h(l5) is given by (5.9). This leads to (3). 

Thirdly, 8* is a solution ofmax6 Eg,(8,,*) where ,* = Cii"i) is given by (3) and (4). 
Since we have ~ = ULo~'~Lo' we can decompose this maximization problem as follows: 

max max Eg,(I5, ,*). 
Lo~' 6Et.Lo 

We first analyze the subproblem max Eg,(8, ,*). From (5.4) and (5.8) we have for 
6Et. Lo 

15 E ~Lo 

(5.11) 
if h(l5) < 0 
if hel5) > o. 

Let L'O be the solution of (5.7). Geometrically, L'O is given by the intersection of the 
curve L, = L, (Lo) and the line (1/1/2)(1- (J /b )(1- )..2 LO)) , see Figure 4a. Since, according 
to Assumption 5.4, L, = L,(Lo) is monotonically increasing, we have 

h(l5) < 0 if 1::; Lo(l5) < L~ and L,(I5) < ..!..(1 - [b (1 - )..2Lo» 
1/2 

(5.12) h(l5) = 0 if 1 ::; LoCI5) ::; L~ and LI(I5) = ..!..(1- [b(l - )..2Lo») 
1/2 

h( 8) > 0 otherwise. 
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1 L~ 

/' 

H, 
hUi»O 

L, (La) 

• 

Figure 4a: Graphical representation of the solution of eq. (5.7) and the equilibrium 

strategy ,i of the inspectee. 

H L* a a 
I O+-------·----------~------------------------·- La 
I 
I -------------

-e ·(1-A,) L_-------i: --:e~. (1-A,.La ) 

----

I 
I 
I 
I 
I 
i-a. (1+v,· L,(Lal) 

Figure 4b: Graphical representatioll of the inspector's payoff as a function of L o, 
according to (5.13). 

From (5.11) and (5.12), for every Lo with Lo > L~ and every 8 E 6. Lo , we have 
Eg1( 8, ,*) = -a(1+1.I1L1 (8)). Therefore, for every Lo > L~, the subproblem max Eg1( 8, ,*) 
can be equivalently reduced to min L1 (8), since a, III > 0 and its solution is L1 (Lo). For any 
Lo < L~, there exists some bE 6. Lo such that h(8) < 0 and, thus, Eg1(8,,*) = --e(1-.A1LO) 
from (5.11). Since e < a, we have -(/(1 + I.IjLd < -e(1- .AjLo) for all L1 and Lo. This 
implies 

max E(lL(t5,,*) = -e(l - .AjLa) for every Lo < L~. 
SEALo 

Similarly, for La = L~, 
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and the solution 8* of this maximization satisfies Ll (8*) = Ll (La). We have solved the 
sub problem maxEg1(8,'Y*) for every Lo 2: 1. From the arguments above, the test proce­
dure 8* of the inspector has the average run length Lo(8*) under Ho which is a solution 
of 

(5.13) 
if Lo> La 
if La 2: Lo· 

It is easily seen that Lo(li*) = L'O and LI(()*) = LI(L'O) which completes the theorem 
(see Figure 4b). 0 

This proposition shows again, like Theorem 4.4, that the inspectee will behave legally 
if the inspector plays his equilibrium strategy. 

Eq. (5.7) corresponds to Eq. (4.6). Whereas, however, it can be seen easily that Eq. 
(4.6) has a unique solution under very general assumptions, this is not the case here: If 
one assumes reasonably 1 :S Ll(Lo) < Lo, then one sees immediately 

-b(l- v2Ld + f(l - )..2Lo) < 0 for b - f > (bV2 - f)..2)· Lo 

or, with bV2 - f)..:! > 0, 

-bel - v2Ld + f(l - )..2Lo) < 0 for Lo < (b - J)/( bV2 - f)..2); 

in this case the inspectee will always behave legally. 

6 Conclusions 

Let us consider once more the result of the fourth section where we assumed that both 
players' payoffs are independent of the stage where the game terminates. Theorem 4.3 
shows that it suffices to optimize the probability of no detection for a given value of the 
false alarm probability a which is determined with the help of Eq. (4.6). This is important 
for several reasons: First, it is in line with standard statistical practice to proceed this 
way, and it ,permits the determination of optimal test procedures with the help of the 
Neyman-Pearson Lemma, see, e.g., [6). 

One subtle point should be mentioned here: The application of the Neyman-Pearson 
Lemma requires et fixed alternative hypothesis which leads to the optimization problem 

(6.1 ) (3( i1') = max min (3(8, Jl) 
I' Ob':'" 

instead of (4.5). If, however, there exists a sacldlepoint, then we can obtain an equilibrium 
point with the help of (6.1). This way, a series of practical problems have been solved, 
see, e.g., [1). 

Second, for CL given value of a, the payofl parameters need not be known for the de­
termination of the optimal test procedure. In fact, in many practical cases it is impossible 
to estimate even ranges of these parameters. Only if one wants to determine the optimal 
value of a, then one needs to know the two ratios b/ f and d/ f of the inspectee's payoff 
parameters. 

A similar picture is given by the result of the fifth section where the time aspect is 
important. Theorem 5.5 shows that. it suffice"; to optimize the average run length under 
the alternative hypothesis for a given value of the average run length under the null 
hypothesis which is determined with the help of eq. (5.7). This result justifies again 
standard statistical practice, see, e.g., [9], even though there does not exist an equivalent 
of the Neyman-Pearson Lemma for sequential test procedures. 
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Annex: A Simple Sequential Test Problem 
Given the sequence Xl, X 2 , ... of independently, identically and normally distributed ran­
dom variables, and the two hypotheses 

HI : Xi cv n(p, (1 2
), It > 0, i = 1,2 .... 

Let the sequential test procedure be defined as follows: 

X; :S s: continue 

-\:"i > s: stop, i = 1,2, ... 

where Xi is an observation of the random variable Xi, i = 1,2, .... Let the probabilities Cl' 

and f3 of the errors first and second kind be given by 

1 - Cl' := pl'ob(X; :S slHo) = cI>('::), 
11 

f3:= prob(X; :S sIHI) = cI>(':: - t!:.) = cI>(U(l- Cl') - !:!:..), 
11 11 11 
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where <1>(.) is the normal distribution function and U(.) its inverse. 

The Average Run Length L of the test is defined as 

00 i-I 

L:= I>· prob(Xi > 5)· llprob(Xj ~ s). 
i=1 j=1 

For Ho we get 

L ~ . ( )i-l 1 0=L..,1·0· 1-0 =-
i=1 0 

and for HI 

LI = f> . (1 - (3) . {3i-1 = _1_. 
i=1 1 - (3 

Therefore, with U(l - 0) = -U(o) we get the following relation between Lo and 1,1: 

~ = 1- (3 = <I>(t: + U(o)) = <I>(t: + U(~)) 
Ll a a Lo 

or, equivalently, 
1 J1 1 

U(L
I

) = ~ + U(L
o

)· 

This relation between Lo and Ll has the following properties if we remember J1/a > 0 
and U(.) being strictly monotonically increasing with U(O) = -00, U(l) = 00: 

i) Lo = 1 implies LI = 1 

ii) LI increases mono tonically wi th Lo 

iii) Ll < Lo for Lo > 1. 

These properties are typical for sequential tests, even though they cannot be shown 
as easily for tests other than those discussed here. 
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