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Abstract This paper gives numerical validation of a couple of interpolation approximations for the mean 
waiting time in a Cl/C/s queue, which are provided by a unified approach similar to that in Kimura (1991). 
Both approximations are represented as certain combinations of the mean waiting times for the Cl/M/5 
and Cl / D / 5 queues in which the arrival processes and the mean service times are the same as in the 
approximating Cl/C/>: queue. To let these approximat.ions be more tractable, we further provide simple 
interpolation approximations for the mean waiting times in Cl / M / 5 and Cl / D / s queues with low variable 
interarrival times. The quality of the approximations is tested by comparing them with exact solutions and 
previous two-moment approximations for a variety of cases. Extensive numerical comparisons indicate that 
our approximations are more accurate than the two-moment approximations and that the relative percentage 
errors are in the order of 5% in moderate traffic and in the order of 1 % in heavy traffic. 

1. Introduction and Summary 

In this paper we provide a couple of approximations for the mean waiting time in a 
multi-server queue, which is an improvement of the approximation proposed in Kimura [14] 
when interarrival times are highly variable and/or the traffic is not heavily loaded. As in 
[14], we consider the standard GI/G/s queueing system with s (~ 2) homogeneous servers 
in parallel, unlimited waiting room, the first-come first-served discipline and independent 
sequences of i.i.d. (independent and identically distributed) interarrival times and service 
times. Let u and v be generic inter arrival- and service-time, respectively; let A (B) denote 
the interarrival- (service-) time cdf with mean >.-1 (p-I); let p = >./sp E [0,1) be the traffic 
intensity; and let c~ (c;) be the squared coefficient (lfvariation (variance divided by the square 
of the mean) of u (v). Assume that the cdf A is not deterministic, i.e., c~ =F O. In addition, 
let EW (G I / G / s) denote the mean waiting time (until beginning service) in this G 1/ G / s 
queue, assuming tha,t the system is in equilibrium state. We approximate EW(GI/G/s) by 
combining the exact mean waiting times for the GI/M/s and GI/D/s queues both having 
the inter arrival-time cdf A. 

There are some two-moment approximations for EW(GI/G/s), which are weighted com­
binations of the exa.ct mean waiting times for the M/M/s, M/D/s and D/M/s queues 
[11, 13, 14, 22]. Although these approximations are tractable and sufficiently accurate for 
most practical purposes, it has been known that they become less accurate as the variability 
parameters c~ and c; (especially c~) get large, i.e., for the cases where detailed information 
about A and/orB is important. Our experience seems to suggest that EW (G 1/ G / s) is not 
sensitive to the shape of B. However, this is not the case with A. The shape of A affects 
EW(GI/G/s) quite considerably when the traffic is not heavy and c~ not too small. Two­
moment approximations are no longer reliable in such circumstances. In this paper we give 
full information on A to our approximations by using the GI/M/s and GI/D/s queues as 
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78 T. Kimura 

their building blocks. Extensive numerical studies show that our approximations are more 
accurate than the previous two-moment approximations in the circumstances above. 

The approximations we recommend in this paper are 

{ 

(2 .2) { (c~ + l)c; c~(1- c;) }-l 
EW(GI/G/s)::= Ca + c. EW(GI/M/s) + EW(GI/D/s) , 

c;EW(GI/M/s) + (1 - c;)EW(GI/D/s), 

if 1 ~ c,~ < 2 
(1.1) 

otherwise, 

which will be obtained in a unified way. We immediately see that the approximations in 
(1.1) have the following characteristics: (i) They are, of course, exact for the GI/M/s and 
G I / D / s queues. (ii) They are asymptotically exact as p - 1. (iii) For the M / G / s queue, 
the approximation for c~ = 1 coincides with the excellent approximation in Kimura [11] and 
is exact for s = 1. 

Our studies indicate that (1.1) will usually yield satisfactory approximations at least for 
the cases that (i) c~ ~ 4 (l,nd c; ~ 4, and (ii) the traffic intensity is not too small, e.g., 
p ~ 0.3 for s = 2 and p 2: 0.7 for s = 20. Roughly speaking, the relative percentage errors of 
(1.1) are in the order of 5% (1%) if the approximate value of EW (G I / G / s) is less (greater) 
than 10/ p. The studies also indicate that the accuracy of our approximations does not so 
strongly depend on the number s of servers at least for c~ ~ 4. This property is practically 
important because algorithmic methods for computing exact solutions of GI IG/ s queues, 
e.g., [25], become infeasible for systems with large s. 

In (1.1), the mean waiting times for the building-block systems, i.e., the GI/M/s and 
GI/ D / s queues, have the same mean service times and traffic intensities as those of the 
approximating GI/G/s queue. The exact values of these mean waiting times can be obtained 
either by using the queueing tables of Seelen, Tijms and van Hoorn [24] or by computing 
their analytic and/or algorithmic solutions; see, e.g., [2, 21] for the GI / M /5 queue and 
[20,29] for the GI/D/s queue with phase-type (abbreviated as Ph) arrival distributions. 
The algorithms for the Ph / M / sand Ph / D / s queues are compu tationally feasible for very 
large values of s, e.g., up to s = 250 servers when the number of arrival phases is 10; see 
[29]. 

The approximations in (1.1) are useful not only for quick calculation of EW(GI/G/s) 
but also for obtaining approximations for the distributions of the number of customers and 
of the waiting time: Wu and Chan [30] proposed simple approximations for these queueing 
characteristics in the GI /0/ s queue by the use of maximum entropy analysis. Shore [26, 
27] derived more heuristic approximations for the characteristics by viewing the GI /G / s 
queue as a system alternating between associated GI/G/1 and GI/G/oo queues. In both 
of the approximations, EW(GI/G/s) plays a key role to derive explicit formulas. Our 
approximations can be directly applied to these approaches. 

This paper is organized as follows: In Section 2, following Kimura [14], we focus on 
the ratio EW(GI/G/s)/ EW(GI/G/l) and its reciprocal. We approximate each of these 
quantities by a linearly weighted sum of the corresponding quantities for the G I / M / sand 
GI/D/s queues. From these approximate relations, we derive a couple of approximations 
which are consistent with exact properties for particular cases. To let our approximations 
be more tractable for systems with c~ ~ 1, we further provide simple approximations for 
EW( GI / M / s) and EW( GI / D / s) in Section 3. In each section, the quality of the approxi­
mations is tested by comparing them with exact solutions for a variety of cases. Finally, in 
Section 4, we give a concluding remark on a possible direction for future extensions. 
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2. Approximating EW(G1/G/s) 

To obtain accurate approximations for queueing characteristics, we often need the ex­
treme limiting behavior as s ---l> 00 or p ---+ 0 or p ---+ 1. For EW == EW(G1/G/s), it is 
obvious that EW --- 0 as s ---+ 00 or p ---+ 0 and EW ---l> 00 as p ---l> 1. A good way to 
analyze asymptotic properties of EW in these extreme cases is to normalize EW so that 
nondegenerate limits occur. 

In this paper, as in Kimura [14], we focus on the ratio EW(GI/G/s)/EW(GI/G/1) and 
its reciprocal as such normalized quantities. In these quantities, we assume that the G1/G/1 
queue has the same mean service time and traffic intensity as those of the approximating 
GI /G/ s queue. We approximate each of these ratios by a linearly weighted sum of the 
corresponding ratios for the GI/M/s and GI/ D/s queues both having the interarrival-i.ime 
cdf A, i.e., 

EW (G I /G / s) EW (G I / M / s) EW (G 1 / D / s ) 
EW ( G I / G /1) === w EW ( G I / M / ri + (1 - w) EW ( G 1 / D /1) , (2.1) 

and 
EW(GI/G/1) '" l/ EW(GI/M/r~ 1- l/ EW(GI/D/1) 
EW(GI/G/s) - EW(GI/M/s) + ( ) EW(GI/D/s)' 

(2.2) 

where wand 11 denote weighting coefficients. This approximation is motivated by a similar 
idea of Tijms [28, (4.223)] for plain performance measures and the idea of Cosmetatos [:3, 5] 
for EW(GI/M/s) and EW(M/G/s). For convenience, assume that these coefficients depend 
only on the variability parameters c~ and c; and not on sand p. To show the dependency 
of the weights on c~ and c; definitely, we write w == w(c~, c;) and l/ == l/(c~, c;) henceforth. 

From the consistency with the building-block systems in (2.1) and (2.2), we see that these 
weighting functions satisfy the following conditions: From the consistency with the G I /M / s 
queue, 

w(c~, 1) = l/(c~, 1) = 1, 

and from the consistency with the GI / D / s queue, 

w(c~, 0) = l/(c~, 0) = o. 

Moreover, we have 1che next two theorems. 

(2.3) 

(2.4) 

Theorem 2.1 Assume that E[v3] < 00. Then th,~ approximate relations (2.1) and (2.2) are 
asymptotically correct as p ---l> 1 for any finite weights. 

Theorem 2.2 For the M /G / s queue with the se1'vice-time cdf B, the approximate relations 
(2.1) and (2.2) are asymptotically correct as s ---l> 00 if 

( 2) 2c; 
w 1, c. = -1--2 ' + C. 

(2.5) 

Theorem 2.1 ensures that our approximations are structurally accurate in heavy traffic. The 
proofs of these theorems are given by virtue of Theorems 2.1 and 2.2 in Kimura [14] and 
hence they are omitted. 

To keep the consistency with the building-block systems and the M/G/oo queue, we 
will determine the weighting functions in such a way that they satisfy the conditions (2.3), 
(2.4) and (2.5) at the same time. However, the weights satisfying these conditions are not 
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uniquely determined; cf. [11]. Hence, taking account of the well-known symmetry of c; and 
c; in the heavy traffic limit theorem [17], we simply approximate wand l/ by 

(2.6) 

and 
(2.7) 

From the approximate relation (2.1) «2.2)) with the weight (2.6) «2.7)), we have 

EW(G1/G/1) {2 2 EW(G1/M/s) 2 2 EW(G1/D/S)} 
EW(G1 /G/ s) == c; + c; (Ca + l)c. EW(G1/M/1) + ca(1- c.) EW(G1/ D/1) , 

(2.8) 
and 

{ 
2 EW(G1/M/1) 2 EW(G1/ D/1) }-1 

EW(G1/G/s) == EW(G1/G/1) c. EW(G1/M/s) + (1- c.) EW(G1/D/s) (2.9) 

Obviously, these two approximations contain the mean waiting times for three single server 
queues with the same mean service times and traffic intensities as in the approximating 
G1/G/s queue. Among these mean waiting times, EW(G1/G/1) and EW(G1/D/1) are 
difficult to compute except some special cases, e.g., Poisson arrival case. Hence, to simplify 
the approximations (2.8) and (2.9), we replace the mean waiting times for all single server 
queues by a simple two-moment approximation; see Remark 2.2. As such an approximation, 
we use the approximation 

EW(G1/G/1) == c~; c; EW(M/M/1); (2.10) 

see Remark 2.3. Substituting (2.10) into (2.8) and (2.9), we respectively obtain the approx-
imations as 

EW(G1/G/s) == c;EW(G1/M/s) + (1- c;)EW(G1/D/s), (2.11) 

and 
2 2 Ca + C. Ca 1 - c. 

{ 
( 2 1) 2 2( 2)}-1 

EW(G1/G/s)::::: (Ca + C.) EW(G1/M/s) + EW(G1/D/s) (2.12) 

The approximation (2.11) is a simple linear interpolation between EW(GI/M/s) and 
EW(G1/D/s), and it coincides with Tijms' approximation (4.223) in [28]. The approxi­
mation (2.12) is a certain harmonic mean of EW(G1/M/s) and EW(G1/D/s). We will 
show the quality of these approximations through extensive numerical experiments. 

Remark 2.1 For the M/G/s queue, it should be noted that (2.11) coincides with Page's 
[22] approximation and (2.12) with Kimura's [11] approximation; see (2.17) and (2.18), 
respectively. 

Remark 2.2 Instead of (2.10), it is possible to use the exact value of EW(G1/M/1) in 
(2.8) and (2.9). However, we can easily see that the resultant formulas are not exact for the 
G1/M/s queue. This is why we use the approximation (2.10) for EW(G1/M/l). 
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Remark 2.3 It seems to be a good idea to replace the mean waiting times for the single 
server queues appeared in (2.8) and (2.9) by a more accurate approximation, e.g., the Kramer 
and Langenbach-Belz [18] approximation for EW(G1/G/l)' which also has a simple form 
similar to (2.10). However, from numerical comparisons with some other alternatives for 
(2.10), we saw that the simple approximation (2.10) fits for our approximations when we use 
the coefficients (2.6) and (2.7); cf. Kimura [14]. 

Remark 2.4 By using the light traffic limit theorem in Burman and Smith [1], we can 
prove for the M/G/s queue that the approximate relations (2.1) and (2.2) are asymptotically 
correct as p -> ° if 

( 1 2) = ~ { _ (s + 1) 1-11 (s) } w , c, 1 2 
S - 1 1 + c, 

(2.13) 

and 
( 2) S + 1 { 1 + c; } 

vI, c, = s _ 1 (s + 1) 1-11 ( s) - 1 , (2.14) 

where 
l(s) = laoo 

{I - Be(t)}' dt, (2.15) 

and Be denote the stationary-excess cdf associated with the service-time cdf B, i.e., 

Be(t) = 1-1 l {I - B(x)} dx, t ~ 0. (2.16) 

Note that the weighting coefficients depend on s. As in Remark 2.3, it is also a good idea to 
replace (2.5) by (2.13) and (2.14). However, it is relatively difficult to generalize the weighting 
coefficients in (2.13) and (2.14) to the G1/G/s case. Taking the light traffic behavior into 
approximations would be an important subject of our future studies; see Kimura [16)' 

Table 1: A List of Numerical Experiments. 

I Arrival (c~) I Service (c~) I s p 

ElO (0.1) E2 (0.5) 2(1)10(5)25 0.3,0.5,0.7,0.8,0.9,0.95 
E2 (0.5) H~ (1.5) 
M (1.0) H~ (2.5) 
Hb 

2 (1.5) Hb 
2 (4.0) 

Hb 
2 (2.0) 

Hb 
2 (3.0) 

Hb 
2 (4.0) 

NUMERICAL COMPARISONS 

Table 1 gives a combination list of the parameters in queueing systems on which we have 
made numerical experiments to test the performance of our approximations. In Table 1, 
H~ denotes an H2 distribution with balanced mea.ns. The exact values of the mean waiting 
times for these systems are given in Seelen et al. [24]. It should be noted that all of the 
exact values are not necessarily available; for example, the exact values for systems with 
s = 10 are available only when p 2:: 0.5. Some typical results of these experiments are given 
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in Tables 2-5, in which we denote for convenience the approximations (2.11) and (2.12) as 
"New-I" and "New-IF', respectively. 

The experiments listed in Table 1 have clarified some qualitative properties of our ap­
proximations. First, we will summarize these properties: The approximation N ew-I is stably 
accurate for any combination of the variability parameters, while the approxima.tion New-II 
becomes unstable (e.g., negative) when c~ < 1 and c; > 1. The approximation New-II is less 
accurate than New-I when c~ < 1 and c; :::; 1, but performs about the same as New-I when 
c~ ~ 1. In particular, New-lI becomes more accurate than New-I as c~ - 1 from above. 

Table 2 compares five approximations with the exact values of the mean queue length 
(excluding customers in service) for Phi Ph/l0 queues with low variable interarrival times. 
Approximations of the mean queue length can be derived from those of EW by using Little's 
formula. Since the queue length is intuitively easy to capture the level of congestion, we use 
the mean queue length rather than the mean waiting time in Tables 2-4, 6 and 7. In Table 2, 
"Sim-I" denotes a simplified version of New-I which will be discussed in Section 3. We add 
three closely-related two-moment approximations of Page [22] and Kimura [11, 14] in the 
table. In terms of our notations, Page's approximation is given by 

EW(GI /G/s) ~ 

c~c;EW(M/M/s) + c~(1- c;)EW(M/D/s) + (1- c~)c;EW(D/M/s), (2.17) 

while Kimura's [11, 14] approximations are respectively given by 

c2 + c2 

EW (G I / G / s) ~ 2( 2 2 _ 1) ; _ ~ 1 _ 2 
Ca + c. c. Ca 

EW(M/M/s) + EW(M/D/s) + EW(D/M/s) 

(2.18) 

and 

2(c;+c;-I) l-c; k01(1-C;) ' 
"EW(M/M/s) + EW(M/D/s) + EW(D/M/s) 

EW(GI/G/s) ~ 
if c~ :::; 1 

(2.19) 

(c~ + c; - 1) EW (M / M / s) + (1 - c;) EW (M / D / s) 
1 - c2 

+-k a EW(D/M/s), if c; > 1 
01 

where 
_ ( 2 2)_ {2(I-P)(I-C~)2} k = k p, Ca' C. - exp - 3 2 2 

P Ca + C. 
(2.20) 

and 
k01 == k(p, 0,1). (2.21) 

Kimura's approximations (2.18) and (2.19) are denoted in the table by "Kimura86" and 
"Kimura91", respectively. We omit New-II from comparisons, since New-II is evidently less 
accurate than the others when c; < 1. Table 2 shows that New-I is more accurate than 
the two-moment approxima,tions of Page and Kimura86 when c~ < 1 and c; < 1. Table 2 
also shows that Kimura91 performs as well as New-I for c; < 1. However, when c; < 1 
and c: > 1, Page's approximation has the best performance. This tendency is remarkable 
especially when 0.5 :::; c; < 1 and c; > 2.5. 
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Table 2: A Comparison of Approximations of the Mean Queue Length for Phi Ph/10 Queues 
with c: < 1. 

~ I p I Method I c: = 0.5 I c2 = 1.5 I c; = 2.5 I c: = 4.0 I a • 
0.1 0.7 Exact 0.05 0.19 0.33 0.52 

New-I 0.06 0.19 0.31 0.50 
Sim-I 0.07 0.20 0.34 0.55 
Page 0.08 0.19 0.30 0.46 
Kimura86 0.06 0.16 0.25 0.37 
Kimura91 0.06 0.18 0.29 0.44 

0.9 Exact 1.44 4.04 6.59 10.40 
New-I 1.44 4.10 6.77 10.76 
Sim-I 1.45 4.12 6.78 10.79 
Page 1.55 4.03 6.51 10.24 
Kimura86 1.51 3.92 6.22 9.47 
Kimura91 1.46 4.04 6.49 9.94 

0.5 0.5 Exact 0.01 0.01 0.02 0.03 
New-I 0.01 0.02 0.03 0.04 
Sim-I 0.01 0.03 0.04 0.07 
Page 0.02 0.02 0.03 0.04 
Kimura86 0.00 0.00 0.01 0.01 
Kimura91 0.00 0.01 0.01 0.01 

0.7 Exact 0.18 0.36 0.50 0.72 
New-I 0.17 0.38 0.59 0.91 
Sim-I 0.19 0.43 0.67 1.03 
Page 0.23 0.39 0.55 0.79 
Kimura86 0.14 0.27 0.38 0.53 
Kimura91 0.17 0.32 0.45 0.61 

0.9 Exact 2.77 5.50 8.10 11.97 
New-I 2.74 5.62 8.50 12.83 
Sim-I 2.76 5.68 8.59 12.96 
Page 2.89 5.56 8.24 12.25 
Kimura86 2.73 5.31 7.76 11.22 
Kimura91 2.79 5.48 8.02 11.59 
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Table 3: A Comparison of Approximations of the Mean Queue Length for Phi Ph/10 Queues 
with c; ;::: 1. 

I c2 I p I Method I c2 = 0.5 I c2 = 1.5 I c; = 2.5 I c2 = 4.0 I a • • • 
1.0 0.5 Exact 0.03 0.04 0.05 0.06 

New-I 0.03 0.04 0.06 0.07 
New-II 0.03 0.04 0.05 0.05 

0.7 Exact 0.41 0.60 0.76 0.99 
New-I 0.40 0.63 0.86 1.19 
New-II 0.41 0.61 0.77 0.96 

0.9 Exact 4.58 7.37 10.02 13.94 
New-I 4.56 7.47 10.38 14.74 
New-II 4.59 7.40 10.05 13.72 

2.0 0.5 Exact 0.09 0.10 0.10 0.11 
New-I 0.09 0.10 0.11 0.12 
New-I! 0.09 0.10 0.10 0.10 
Page 0.06 0.08 0.11 0.14 
Kimura91 0.06 0.08 0.09 0.11 

0.7 Exact 0.87 1.08 1.25 1.49 
New-I 0.88 1.10 1.33 1.66 
New-I! 0.89 1.08 1.23 1.39 
Page 0.76 1.12 1.47 2.00 
Kimura91 0.80 1.02 1.24 1.58 

0.9 Exact 8.15 11.02 13.74 17.75 
New-I 8.16 11.09 14.01 18.39 
New-II 8.19 10.99 13.57 17.07 
Page 7.90 11.31 14.70 19.81 
Kimura91 7.96 10.88 13.79 18.17 

4.0 0.5 Exact 0.23 0.24 0.24 0.24 
New-I 0.24 0.24 0.24 0.24 
New-II 0.24 0.24 0.24 0.24 
Page 0.12 0.17 0.21 0.28 
Kimura91 0.13 0.14 0.16 0.18 

0.7 Exact 1.96 2.15 2.31 2.56 
New-I 1.99 2.14 2.29 2.51 
New-II 2.00 2.13 2.23 2.34 
Page 1.48 2.09 2.70 3.61 
Kimura91 1.57 1.80 2.02 2.36 

0.9 Exact 15.65 18.49 21.26 25.35 
New-I 15.72 18.46 21.21 25.32 
New-I1 15.75 18.37 20.75 23.96 
Page 14.59 18.96 23.33 29.89 
Kimura91 14.76 17.67 20.59 24.97 
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Table 3 compares four approximations with the exact values of the mean queue length 
for Phi Ph/10 queues with highly variable interarrival times. In Table 3, we omit Kimura86 
from comparisons because it becomes unstable when c~ > 1. In addition, the approximation 
of Page (Kimura91) for c~ = 1 is excluded from the table because it coincides with New-I 
(New-II) for the M/G/s queue. Table 3 shows that both of New-I and New-II are more 
accurate than the two-moment approximations when c~ > 1. When c~ = 1, the quality 
of New-II (= Kimura.86 = Kimura91) is quite ,excellent. Table 3 also shows that New-II 
performs as well as New-I except for c~ = c; = 4, both providing satisfactory accuracy for 
practical applications. 

Table 4: A Comparison of Approximations of the Mean Queue Length for H~/ HV s Queues 
with c: = 4. 

r::I h d I c~ = 1.5 I c~ = 2.0 I Ll Met 0 s = 2 I s = 5 I s = 10 s = 2 I s = 5 I s = 10 

0.3 Exact 0.15 0.02 - 0.17 0.03 -
New-I 0.18 0.03 - 0.21 0.03 -
New-II 0.20 0.02 - 0.30 0.03 -

Page 0.20 0.03 0.00 0.26 0.03 0.00 
Kimura91 0.16 0.02 0.00 0.18 0.03 0.00 

0.5 Exact 0.86 0.31 0.08 0.98 0.37 0.11 
New-I 0.98 0.38 0.10 1.15 0.46 0.12 
New-II 1.07 0.32 0.08 1.48 0.41 0.10 
Page 1.07 0.41 0.11 1.35 0.53 0.14 
Kimura91 0.91 0.35 0.09 1.01 0.40 0.11 

0.7 Exact 3.59 2.22 1.24 4.00 2.56 1.49 
New-I 3.85 2.50 1.43 4.36 2.86 1.66 
New-II 4.06 2.26 1.17 4.83 2.65 1.39 
Page 4.05 2.69 1.59 4.79 3.28 2.00 
Kimura91 3.68 2.39 1.39 4.05 2.68 1.58 

0.9 Exact 20.94 18.40 15.85 22.98 20.39 17.75 
New-I 21.36 19.03 16.63 23.50 20.99 18.39 
New-II 21.64 18.42 15.45 23.91 20.33 17.07 
Page 21.69 19.54 'l7.29 24.29 22.11 19.81 
Kimura91 21.06 18.80 Jl6.47 23.03 20.64 18.17 

To see the differences between New-I and New-II more clearly, we compare them with 
the two-moment approximations and the exact values of the mean queue length for some 
HV HV s queues with c; = 4 in Table 4. Table 4 indicates that N ew-11 becomes more accurate 
than N ew-I as c~ -+ 1. Table 4 also indicates that N ew-11 tends to underestimate the exact 
value as s grows, and hence New-II tends to be less accurate than New-I, especially when 
c~ = 2. Although it is relatively difficult to specify the region of c~ where N ew-II surpasses 
New-I, a practical guideline for this region is that 1 < c~ < 2 if s is not too large, e.g., 
s ~ 20. 
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Table 5: Recommended Approximations for EW(Gl/G/s). 

- -
0< c;: < 0.5 

New-I or Kimura91 
New-I 

0.5 ::; c~ < 1 Page 

c~ = 1 N ew-11 = Kimura86 = Kimura91 

1 < c~ < 2 New-I or New-II New-II 

c2 > 2 a _ New-I 

Table 5 summarizes the results of Tables 2-4 and of the other numerical experiments, 
which gives a list of recommended approximations for EW( Gl /G / s). Of course, this rec­
ommendation is valid only for a subclass of Phi Phi s queues, because we have not checked 
all of Gl/G/s queues due to the lack of authorized numerical results. Further numerical 
validation is necessary for more precise evaluation of our approximations. For almost all 
combinations of c; and c;, the approximations provided in this paper are better than the 
two-moment approximations. The only exception is the case that 0.5 ::; c; < 1 and c; > 1, 
in which Page's approximation performs better than our approximations. It its one of the 
subjects of our future studies to improve the accuracy for this case, e.g., by refining the 
weighting coefficients wand 11. 

3. Simplified Formulas 
To evaluate the approximations (2.11) and (2.12) actually, it is of course necessary to 

compute the mean waiting times in the building-block systems, i.e., the G I / M / sand G I / D / s 
queues. For EW(Gl/M/s) with given A, sand p, one can compute its value in a stable way 
through an explicit formula [2, pp. 267-273]. Neuts [21] provided an efficient algorithm for 
computing EW(Ph/M/s). However, for EW(Gl/D/s) with a general interarrival-time cdf, 
it is not so easy to compute the exact value. Algorithms for computing EW( Gl / D / s) are 
available only for some special phase-type interarrival-time cdf's; see [20, 29]. 

In this section, to let our approximations be more tractable for systems with c; ::; 1, we 
approximate EW(Gl/M/s) and EW(Gl/D/s) by the mean waiting times for more basic 
systems (e.g., the M/M/s queue and so on) for which it is easy to compute the mean waiting 
times or extensive tables have been prepared. As shown in Section 2, the approximation 
(2.12) becomes unstable when c; < 1 and c; > 1. Hence, we are concerned only with the 
simplification of (2.11). 

3.1 Approximating EW(Gl/M/s) 
Although approximating EW(Gl/M/s) is less important than EW(Gl/D/s), it is very 

useful if one can obtain approximate values for EW(Gl/M/s) only by using basic queueing 
tables. For this purpose, approximations of interpolating EW(M/M/s) and EW(D/M/s) 
are appropriate, because exact values for these mean waiting times for given sand p can be 
found in some queueing tablles [9, 23, 24]. There are some approximations for EW(Gl/M/s) 
as special cases of interpola,tion approximations for EW (G I / G / s): Page's approximation 
(2.17) for EW(Gl/M/s) can be written as a simple linear interpolation 

EW(Gl/M/s) ~ c;EW(M/M/s) + (1- c;)EW(D/M/s), (3.1) 
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and Kimura's approximation (2.18) for EW(GI/M/s) can be considered as another inter­
polation which is a dual of (3.1) in some sense; cf. (2.19). Cosmetatos [3] has derived more 
accurate but complicated formulas which need the exact value of EW(GI/M/l). From some 
numerical tests, we saw that Page's approximation (3.1) has satisfactory accuracy for prac­
tical applications, though it is not uniformly more accurate than the others. We are greatly 
concerned with the simplicity of the approximation, not with the relative percentage errors in 
light traffic if the absolute differences are small. Hence, we adopt (3.1) as our approximation 
for EW(GI/M/s). 

To let (3.1) be more tractable, we will further approximate EW(D/M/s) by using 
EW(M/M/s). Kimura [11,14] suggested apprmdmating EW(D/M/s) by 

kot 
EW(D/M/s) ~ T</J(s, p)EW(M/M/s), (3.2) 

which is obtained by combining the approximations of Cosmetatos [4] and Kramer and 
Langenbach-Belz [18]' where kot is defined by (2.21) and 

with 

</J(s,p) = 1- 4min {J(s)g(p), 0.25(1- 1O-6
)} 

f(s) = (s - 1) (y':f+5s - 2), 
16s 

g(p) = ~- p. 
p 

(3.3) 

(3.4) 

(3.5) 

Note that we have slightly modified the original approximation in [4] by inserting the mini­
mum with 0.25(1-10-6 ) in (3.3). Without it, the approximation (3.2) becomes negative and 
hence meaningless; cf. Tijms [28, (4.228)] and Kimura [14, Equations (32) and (33)]. From 
some numerical tests, we saw that (3.2) performs well unless p is close to zero. Combining 
(3.1) and (3.2), we obtain the final form of our simplified formula for EW(GI/M/s) as 

ElW(GI/M/s) ~ {c; + k~t (1- c;)</J(s, p)} EW(M/M/s). (3.6) 

NUMERICAL COMPARISONS 

Table 6 compares the approximations (3.1) and (3.6) with the exact values of the mean 
queue length for Ph/M/s queues. The exact values for c; = 0.1,0.25 and 0.5 are computed 
via the analytic solution for the Em/ M/ s queue {m = 10,4 and 2, respectively), while those 
for c; = 0.8 are quoted from the tables of Seelen et al. [24]. In Table 6, we refer to (3.6) 
as "Sim-Page". Table 6 shows that the simplified approximation (3.6) is stably accurate for 
various values of c:~ E (0,1) and s, and hence good enough for practical applications. It is 
interesting that (3.6) is more accurate than (3.t), due to underestimation of (3.2). 

Remark 3.5 Of course, there is no problem to apply (3.6) to approximating the mean 
waiting times for queues with c; > 1. From some numerical comparisons, we saw that (3.6) 
is also accurate for c; > 1. 
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Table 6: A Comparison of Approximations of the Mean Queue Length for Phi M / s Queues. 

I sip I Method I c~ = 0.1 I c2 = 0.25 I c2 = 0.5 I c2 = 0.8 I a a a 
10 0.7 Exact 0.126 0.177 0.277 0.415 

Page 0.138 0.201 0.307 0.433 
Sim-Page 0.137 0.200 0.306 0.433 

0.8 Exact 0.583 0.740 1.021 1.383 
Page 0.600 0.773 1.061 1.406 
Sim-Page 0.600 0.772 1.061 1.406 

0.9 Exact 2.773 3.293 4.181 5.276 
Page 2.791 3.329 4.223 5.301 
Sim-Page 2.781 3.320 4.220 5.299 

50 0.8 Exact 0.052 0.082 0.151 0.260 
Pitge 0.067 0.114 0.192 0.285 
Sim-Page 0.054 0.103 0.185 0.283 

0.9· Exact 1.148 1.460 2.024 2.758 
Page 1.185 1.533 2.114 2.810 
Sim-Page 1.177 1.526 2.110 2.809 

100 0.9 Exact 0.525 0.715 1.080 1.583 
Page 0.566 0.797 1.187 1.644 
Sim-Page 0.552 0.786 1.175 1.641 

0.95 Exact 3.997 4.868 6.388 8.303 
Page 4.056 4.984 6.530 8.386 
Sim-Page 4.029 4.962 6.515 8.380 

3.2 Approximating EW{GI/ D/s) 
It is difficult to obtain an explicit expression for the mean waiting time in the GI/D/s 

queue with a general interarrival-time cdf A, except that A is the exponential distribution. 
In this subsection, we approximate EW{GI/D/s) by combining the mean waiting times 
for two M/M / c queues with different numbers of servers. There are three steps in our 
approximation: We first approximate EW{GI/D/s) by EW(Em/D/s)'sj we then utilize 
the equivalence between EW(Em/D/s) and EW(M/D/ms)j and finally we approximate 
EW(M/D/s) by EW{M/M/s). 

For given c: (s 1) of the cdf A, there exists an integer m (2: 1) such that 

1 1 
--<c2 <-. m+1 a-m (3.7) 

We approximate EW ( G 1/ D / s) by linearly interpolating EW (Em/ D / s) and 
EW{Em+I/D/s) for m in (3.7), i.e., 

EW{GI/D/s) ~ qmEW{Em/D/s) + (1 - gm)EW(Em+dD/s), (3.8) 

where the interpolation coeflicient gm E (0, 1] is given by 

gm = m{(m + l)c; - I}. (3.9) 
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Using the fact that EW(Em/D/s) = EW(M/D/ms) which has been proved by Iversen [10], 
we can rewrite (3.8) as 

EW(GI/ D/s) ~ qmEW(M/ D/ms) + (1 - qm)EW(M/ D/(m + l)s). (3.10) 

The mean waiting times for the building-block systems in (3.10) can be found in some 
queueing tables or can be computed by an explicit formula provided by Crommelin ['i']. It 
is, however, known that the calculation by Crommelin's formula tends to be unstable when 
s grows or p tends to unity; see [6, 12]. To avoid this unstableness, Kimura [15] has recently 
suggested approximating EW (M / D / s) by 

EW(M/D/s) ~ r.EW(M/M/s), (3.11) 

as a refinement of Cosmetatos' approximation in [4], where r. == r.(p) is 

1 
r.(p) = 2" {I + f(s)g(p)h(s, p)} (3.12) 

for f(s) in (3.4) and g(p) in (3.5). The bivariate function h(s, p) is introduced to correct 
some defects of the original approximation for large s and small p, which is given by 

with 

h(s, p) = ~(s, a(p»1J(b(s), p) 

~(s, x) = VI - exp ( - s ~ 1)' x ~ 0, 

1J(Y, p) = 1- exp (--~), Y ~ O. 
1-p 

In (3.13), the functions a(p) and b(s) are defined by 

2S.6 
a(p) = {g(p)1J(,B, p)}2' 

and 
s -- 1 

b(s) = (s + l)f(s)~(s, a)' 

respectively, where a and ,B are arbitrary positive constants satisfying the relation 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

It has been checked from many numerical experiments in [15] that a = 2.2 (and hence 

,B = /25.6/2.2) is an optimal value for the best performance of the approximation. It is 
shown in [15] that the approximation (3.11) is exact for s = 1 and asymptotically exact as 
s -+ 00 or p -+ 0 .or p -+ 1. The relative percentage errors of (3.11) are less than 1% for 
most (s, p) combina,tions. By the use of (3.10), we obtain the approximation 

EW(GI/D/s):= qmrm.EW(M/M/ms) + (1 -- qmhm+l).EW(M/M/(m + l)s), (3.19) 

with m satisfying (3.7). 
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Remark 3.6 When the value of ms is small, it is sufficient to use h(s, p) == 1 in the ap­
proximation (3.11) with (3.12). However, if ms is large, (3.19) fairly overestimates the true 
value unless the correcting function h(s, p) is used. It should be noted that the value of ms 
increases quite rapidly as s grows for small c;; e.g., consider the case with c; =: 0.1. 

NUMERICAL COMPARISONS 

Table 7 compares the approximation (3.19) (referred as "New") with the exact values of 
the mean queue length for Phi D I s queues. All of the exact values are quoted from [24]. 
Table 7 shows that the quality of (3.19) is quite excellent. 

Table 7: A Comparison of Approximations of the Mean Queue Length for Phi D I s Queues. 

I sip I Method I c~ = 0.1 I c~ = 0.25 I c~ = 0.5 I c~ = 0.8 I 
10 0.7 :8xact 0.000 0.009 0.067 0.198 

:~ew 0.000 0.008 0.066 0.202 
0.8 :8xact 0.005 0.073 0.287 0.639 

New 0.005 0.072 0.287 0.643 
0.9 :8xact 0.111 0.498 1.299 2.380 

New 0.111 0.502 1.306 2.388 
50 0.8 :8xact 0.000 0.001 0.027 0.124 

New 0.000 0.001 0.026 0.137 
0.9 :8xact 0.008 0.130 0.555 1.262 

New 0.007 0.128 0.557 1.298 
100 0.9 :8xact - 0.036 0.260 0.732 

New - 0.034 0.256 0.771 
0.95 :8xact - 0.594 1.883 3.753 

New - 0.597 1.904 3.841 

3.3 Accuracy of the Simplified Approximation 
Substituting (3.6) and (.3.19) into (2.11), we obtain the simplified formula for 

EW(GI IGI s), which is a weighted combination of the mean waiting times for three MIMic 
queues (c = s, ms and (m + l)s). In Table 2, we have given the simplified approximation 
(referred as "Sim-I") for some Phi Phl10 queues. Table 2 shows that Sim-I performs as well 
as New-I. This indicates that the approximations (3.6) and (3.19) have good quality when 
they are combined. For c~ < 1, New-I in Table 5 can be replaced by Sim-1. 

4. Concluding Remark 
Almost no exact results have been known for the steady-state probabilities in the GI IG Is 

queue. However, some invariance relations among characteristic quantities in general queues 
have been derived by the theory of point processes; see, e.g., Franken et al. [8] and Miyazawa 
[19]. Combining these invariance relations with our approximations for EW, we can derive 
simple approximations for !the steady-state probabilities in the GI IGI s queue. Extensions 
of our approximations to this direction are in progress and will be reported elsewhere. 
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