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Abstract The Laguerre transform developed by Keilson, Nunn and Sumita (1979.1981,1981) provides an 
algorithmic framework for the computer evaluation of repeated combinations of various continuum operations 
such as multiple convolutions, integration, differentiation, and multiplication by polynomials. In the previous 
survey paper (1988), we summarize theoretical results on the Laguerre transform obtained up to date. 
Following the theoretical summary, the aim of this paper is to discuss the operational characters of the 
Laguerre transform when actually using it in applications The two summary papers will enable the reader 
to use the Laguerre trallsform with ease. 

o Introduction 

In the previous paper [A], a theoretical foundation was described of the Laguerre trans­
form which maps a function f(x) of L2 into a discrete sequence (J!)'~oo' Moreover, various 
continuum operations are mapped into lattice operations. One obtains thereby an algorith­
mic basis for computing multiple convolutions, integration, differentiation, multiplication by 
polynomials and related infinite series of importance to statistics and applied probability. As 
a sequel to the previous paper [A], this paper focuses on algorithmic aspects of the Laguerre 
transform. 

One strong advantage of the Laguerre transform method in comparison with other con­
ventional Laplace transform inversion techniques can be found in the general and systematic 
formalism built into its structure. The Laguerre sharp coefficients (J!)':::oo of f(x) can be eas­
ily converted, via simple lattice operations, to those of e.g. f~oo f(x - y)f(y)dy, f:" f(y)dy, 
and d:f(x), bypassing numerical integration and differentiation. Furthermore, the method 
enables one to perform a combination of these operations repeatedly without numerical dif­
ficulty, while numerical inversion of Laplace transforms often has to be done independently 
for each case. 

Another factor that makes the Laguerre transform so attractive is the ability of represent­
ing functions to be manipulated by sequences of the Laguerre coefficients with efficiency and 
accuracy. For many functions of interest in applied probability and statistics, the Laguerre 
coefficients are available either analytically or via efficient numerical procedures. These in­
clude probability density functions in Exponential family, Gamma family, Logistic family, 
and Normal family. 

Following the summary of the theoretical results of the Laguerre transform given in 
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[A), this paper discusses t.he operational characters of the Laguerre transform from the 
point of view of actually using it in a variety of application contexts. Throughout the 
paper, references to formulas in [A] are indicated by (A.1.1.l), etc. It is hoped that this 
summary paper together with the previous paper [A] would help those who are interested in 
implementing the Laguerre transform method. 

In Section 1, the key operational rules are described in a succinct and algorithm-oriented 
manner. Section 2 is devoted to the derivation of the Laguerre coefficients of basic probability 
density functions. Several bivariate exponential density functions are also discussed. In 
Section 3, we present some successful application of the Laguerre transform, newly reported 
here, in the dynamic waiting time behavior of an M/G/1 queueing system with exhaustive 
server vacations. 

1 Algorithmic Description of Operational Rules of the Laguerre Transform 

Let f(x) be a rapidly decreasing function in Cf*(-oo,oo), as in (A.1.1.6), represented 
by the Laguerre dagger and sharp coefficient vectors 

where T denotes the transpose. The truncation points M, N ~ 0 are chosen so that the 
moment formulas satisfy a prespecified accuracy t: > 0, see §1.2 of [A]. For convenience, 
we denote the set of vectors whose components range from -M to N by R(M, N). For 
a = (an) E R(M, N), an is assumed to be zero for n < -M and n > N. The purpose of 
this section is to describe several important continuum operations on f( x) in terms of lattice 
operations on ft and f# in algorithmic forms. For other continuum operations, the reader 
is referred to [A] and [11, 12,20,33,38]. 

1.1 Dagger/Sharp Coefficients and Representation of f(x) 

For a vector a E R(M, N), we define the differencing operator 

DIFF: R(M, N) -> R(M, N) 

and the partially summing operator 

by 
(1.1.1 ) 

and 

(1.1.2 ) 

PSUM: R(M, N) -> R(M, N) 

n 

m=-M 

respectively. As can be seen from (A.1.1.10), one then has 

(1.1.3 ) 

Let 
INNP: R(M, N) x R(M, N) -> R 
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Theory and Algorithm of Lague"e Transform 451 

be the inner product operator, i.e. 

N 

(1.1.4) INNP(a, b) = I: anbn, 
n=-·M 

and define 
(1.1.5) 

It should be noted from (A.1.1.2) that hn(x) = 0 for -M :s n < 0 if x 2 0 and hn(x) == 0 
for 0 :s n :s N if x < O. From (A.1.1.3) together with (1.1.3) through (1.1.5), it follows that 

(1.1.6) J(x) = INNP(ft, h(x» = INNP(PSUM(f#), hex»~. 

The values of hex) can be generated efficiently ba.sed on the recursion formula (A.1.1.7). 
Hence, once ft or f# is obtained, the values of f(:r) can be computed easily via (1.1.6). 

1.2 Convolution and Integration 

For describing convolution and integration properties of the Laguerre transform, we in­
troduce two lattice operators 

CONY: R(M, N) x R(M, N) -t R(M, N) 

and 
SUY : R(O, N) -t R(O, N) 

defined by 
N 

(1.2.1) C = CONY(a, b) {:} en = L: an_mbm, 
m=-M 

and 
N 

(1.2.2) b = SUY(a) {:} bn = -2an +4 L:(-l)mam+1+n, 
m=D 

respectively. It then follows from Theorem 1.3B of [A] that 

(1.2.3) 

and 
(1.2.4) r(x) = l= f(x)dy (f on [0,00» {:} r# = SUY(f#). 

We recall that the tail integral f:' f(x )dx for f on (-00,00) can be treated based on (1.2.4), 
see Remark 1.3C of [A]. 

For treating multiple convolutions, we define 

(1.2.5) 

( 1.2.6) r(x) = fl * ... * fn(x) {:} 1·# = CONV~=1 (ff)· 
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1.3 Shifting and Mixing 

As the shifting operator, we define 

by 
(1.3.1 ) 

SHIF : R(M, N) x R ----t R(M, N) 

SHIF(a,T) = CONV(a,~[h(T)]). 

Then, from Theorem 1.3G(a) of [A], 

(1.3.2) r(a;) = f(x - T) {:} r# = SHIF(f#, T). 

Also, as the mixing operator 

we introduce 

(1.3.3) 

MIX: RK x R(M, Nt ----t R(M, N), 

K 

MIX(PI,'" ,PKj al,'" ,aK) = LPjaj. 
j=l 

Since the Laguerre transform is linear, one then has 

K 

(1.3.4) r(x) = LPj/j(x) {:} 
j=l 

1.4 Differentiation and Multiplication by Polynomial 

For differentiation property of the Laguerre transform, we introduce the lattice operator 

defined by 

(1.4.1 ) 

DER: R(M, N) ----t R(M, N) 

b = DER(a) 

Let f( x) be differentiable except x = O. f( x) may have discrepancy at the origin. Let 
6 E R(M, N) be such that {jn = 1 for n = 0 and (jn = 0 elsewhere. Then, from Theorem 
1.3D of [A], one has 

(1.4.2) 
d 

r(x) = dxf(x) (x -=P 0) {:} r# = DER(ft) + 6f(x)I~!o_. 

We note that, for f on [0,(0), the operators SUV in (1.2.2) and DER in (1.4.2) are in a dual 
relation in the sense that f# = -DER(PSUM(SUV(f#))). 

To describe the operational property of multiplication by polynomial, we define the op-
erator 

by 
(1.4.3) 

MUL: R(M,N) ----t R(M,N) 
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where 6?[an l = 6.[6.[an ll. The corresponding k-fold operator is defined as 

(1.4.4) 

with MULI=MUL. It then follows from Theorem L.3E of [A] that 

(1.4.5) 

A combination of (1.:J.4) and (1.4.5) then provides the operational property of multiplication 
by polynomial of the Laguerre transform. 

1.5 Product of Functions 

Let R(Mll M2 j NI. N2 ) be the set of matrices whose first components range from -M] to 
M2 and second from -NI to N 2• The matrix version of the conventions used in the previous 
section will be also used unless confusions occur. For matrices B = (bmn ) and C = (Cmn ) in 
R(MI' M 2 j NIl N 2 ), define the bivariate inner product operator 

by 

(1.5.1 ) 
M, 

BINNP(B, C) = L 

For vectors a E R(J\!Il' M2 ) and bE R(Nl' N2 ), we define the outer product operator 

by 
(1.5.2) 

Now, denoting the Laguerre functions by £n(x), let a;j(n) = 1000 £;(x)£j(x)£n(x)dx and con­
struct the matrix A(n) = (a;j(n)) E R(O,MjO,N). Also, define the product operator 

by 
(1.5.3) 

PROD: R(O,MjO,N) -+ R(O,min{M,N}) 

c = PROD(B) {:} en = BINNP(B, A(n)). 

Then, from Theorem 1.31 of [AJ, 

(1.5.4) r(x) = f(:r)g(x) (j,g on [0,00)) {:} rt = PROD(OUTP(ft,gt)). 

The calculation of A(n) requires more explanation (see [20, 40] for the theoretical foun­
dation). For convenience, it is assumed that M :S N. Let V be the (M + 1) x (M + 1) 
symmetric tri-diagonal matrix defined by 

1 -1 
-1 3 -2 

(1.5.5) V= 

-M + 1 2M -1 -M 
-M 2M +1 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



454 U. Sumita & M. Kijima 

The matrix V is the principal submatrix of the Q-matrix governing linear growth birth-death 
processes [8,9]. Let A(O) == (aij(O)) be such that 

(1.5.6) 
i+j 

aij(O) =2 L t(i,j;k); 
k=max{i,i} 

t(i,j; k) = 3k~1 (~) (k i j) . 

The matrices A(n) are then successively generated by 

(1.5.7) 
1 

A(n + 1) = n + 1[{(2n + 1)/ - V}A(n) - nA(n - 1)], 0:::; n :::; M 

with A(-I) being the zero matrix. 

1.6 The Bivariate Laguerre Transform 

Thus far, we have described, in algorithmic forms, lattice operators of importance for the 
practical use of the univariate Laguerre transform. For the bivariate Laguerre transform, 
such descriptions are also possible by following the manners in Sections 1.1 through 1.5. Here, 
however, to avoid inessential repetitions, we describe only the bivariate lattice operators that 
will be used in the subsequent sections. 

Let f( x, y) be a rapidly decreasing function equipped with the Laguerre dagger and sharp 
coefficient matrices pt = (f.t.n) and p# = (f!n) in R(Mll M2; NI, N2). As for the univariate 
case, the truncation points M I , M 2 , NI and N2 :::: 0 are chosen so that the moment formulas 
satisfy a prespecified accuracy, see §2.2 of [A]. 

For a matrix A E R(Mll M 2 ; NI, N2), define the operators 

and 

by 
(1.6.1 ) 

(1.6.2) 
m n 

B = BPSUM(A) {:? bmn = L :E aij, 
i=-Ml j=-N1 

respectively. Then, as for the univariate case, one has from (A.2.1.12) 

(1.6.3) 

Let H(x) = (hmn(x)) = OUTP(h(x), h(x)) E R(MbM2; NI, N2). The series representation 
(A.2.1.3) is then written by a convenient form as 

(1.6.4) f(x, y) = BINNP(Pt, H(x)) = BINNP(BPSUM(P#), H(x)). 

Hence, once Ft or F# is given, the values of f(x, y) are readily computed via (1.6.4). 
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For describing typical convolution properties of the bivariate Laguerre transform, we 
introduce the bivariat.e lattice operators 

and 

BCONV: R(MI, M2; NI, N2) x R(Mt, M2 ; Nt, N2) -+ R(M1 , M2; Nt, N2)' 

MCONV: R(MI,M2 ) x R(Mt,M2;Nt,N2) -+ R(M1 ,M2 ;Nt,N2 ), 

defined by 

(1.6.5) 

( 1.6.6) 

and 

(1.6.7) 

M, N, 

C = BCONV(A, B) {::} Cmn = L L am-i.n-jbii> 
i=-M, j=-N, 

M, 

C = MCONV(a, B) {::} Cmn = L am_kbkn 

k=-M, 

min{M2.N2} 

b = SCONV(A) {::} bm = L am - n •n · 

n=- min{M,.Nt} 

Accordingly, from Theorem 2.3B of [AJ, one has 

(1.6.8) 

(1.6.9) 

and 
(1.6.10) 

r(x,y) = f * g(x,y) = I: I: f(x - x',y - y')g(x',y')dx'dy' 

{::} R# = BCONV(F#, G#), 

r(x,y) =: f *1 g(x,y) = I: f(x - x')g(x',y)dx' (f E Cf*(-oo, (0» 
{::} R# = MCONV(f#, G#), 

Note that the marginal convolution with respect to the second component in (1.6.9) can be 
performed as 
(1.6.11) R# = MCONV(f#,G#Tf. 

Finally, we give the lattice operators associated with integration. Let 

MSUV: R(O, M; 0, N) -+ R(O, M; 0, N), 

and 
BSUV: R(O,M;O,N) -+ R(O,M;O,N) 

be defined by 
N2 

(1.6.12) b = MARG(A) {::} bn =: L (-ltamn , 

n=-N, 
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M n 

(1.6.13) B = MSUV(A) {;:} bmn = 2 L L( _1)m+ia;j, 
i=m+l j=O 

and 
N 

(1.6.14) B = BSUV(A) E (-1 )m+n+i+jaij, 
i=m+l j=n+l 

respectively. The marginal integration is then reduced to, from Theorem 2.3C of [A], 

(1.6.15) r(x) = i: f(x,y)dy {;:} r# = MARG(P#). 

For the marginal integration with respect to x, the transposed F# is employed in (1.6.15). 
Also, from Theorem 2.3D of [A], for f on [0,00) x [0,00), 

(1.6.16) 

and 
(1.6.17) 

r(x, y) = 100 f(x', y)dx' {;:} R# = MSUV(P#) 

r(x,y) = .{OO 100 f(x',y')dx'dy' {;:} R# = BSUV(P#). 

For further discussions of the operational properties in the bivariate Laguerre transform, the 
reader is referred to [20, 38). 

2 The Laguerre Coefficients of Functions of Interest in Applied Probability and 
Statistics 

Applicability of the Laguerre transform method hinges on finding the Laguerre coeffi­
cients of functions to be manipulated with speed and accuracy. In this section, we first 
describe several general procedures for accomplishing this objective. In some applications, 
two functions on [0,00) have to be patched together to construct one function on (-00,00). 
We also discuss how this task can be done via the Laguerre transform. In the remaining 
parts of this section, these ideas are employed in order to derive the Laguerre coefficients of 
functions of interest in applied probability and statistics. 

2.1 General Procedures for Finding the Laguerre Coefficients 

In the Laguerre transform, the inversion difficulty in the Laplace or Fourier transform is 
replaced by the problem of finding the Laguerre sharp coefficients 

(2.1.1 ) ff = i: f(x)L\[hn(x)]dx, -M:S n :s N. 

Once the coefficient vector f# is found, as we saw in Section 1, most of basic continuum 
operations are mapped into lattice operations and the inversion procedure back onto contin­
uum is straightforward. We next present several general approaches for finding the Laguerre 
coefficients. 

2.1A Generating Fun(~tion Approach 
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Based on the key formula Tf(u) = 4>f( t ~) as given in (A.1.1.12), find If by expanding 
4>f(t ~) as a power of u. 

2.1B Recursion Formula Approach 
Find the first order differential equation of 4>(s) of the form 

(2.1.2) 
d . 

v(s) ds 4>(s) + w(s)4>(s) + z(s) = 0. 

By substituting s = (1 + u)/2(1 - u) into (2.1.2), one has 

(2.1.3) ( ll+U') 2d # (ll-t-U) # (ll+U) v -2 -- (1- u) -d Tf (u) + w - -- Tf (u) + z - -- = 0. 
1 - U / U 2 1 -- u 2 1 - U 

Using (2.1.3), a recursion formula on If may be derived. Since T!(u) = (1 - u)T](u), 
Equation (2.1.3) can be rewritten as 

(2.1.4) (
1 1 + U) 3 d t v - -- (1 - u) - Tf (u) + 
2 1 - u du 

{ (
1 1 + U) (1 1 + U) } t (1 1 + U) W - -- - v - -- (1 - u) (1 - u )Tf (u) + z - -- = 0, 
21-u 21-u 21-u 

which enables one to convert the recursion formula on If to that on I~. 

2.1C Fast Fourier Transform Approach 
The third approach is to approximate T! (u) by 

M 

(2.1.5) tf(u) = L f!un
. 

n=-M 

From the key formula (A.1.1.12), one sees that Tf(e iO ) = 4>f(~ cot %). Based on the approx­
imation in (2.1.5), one then obtains a set of linear equations 

(2.1.6) 

where 

(2.1. 7) 

(2.1.8) 

and 

(2.1.9) 

w - einO(r). B(r) = 21!T r = 0, .. ·2M, 
rn -, 2M' 

f# = (f~M"" ,Ft,··· ,Itf, 

Because of the simple structure of W, one has (W-l)rn = 1/(2wrn M) and (2.1.6) can 
be solved for f#. The straightforward way of obtaining f# via (2.1.6) has complexity of 
O(M2). The fast Fourier transform, however, accomplishes this task with reduced complexity 
of O(MlogM), see Sumita [33]. 
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2.2 Construction of FUnctions on (-00,00) from Functions on [0,00) via the 
Laguerre Transform 

In some applications, one encounters a function f(x) on (-00,00) constructed from two 
functions on [0,00). More specifically, let U(x) = 1, x ~ 0, and U(x) = 0, x < 0, and define 

(2.2.1) f(x) = g(x)U(x) + r( -x)U( -x) 

where both g(x) and r(x) are functions on [0,00). From the definition of hn(x) in (A.1.1.2) 
together with (A.1.1.3), the Laguerre dagger coefficients f~ of f(x) are obtained from g! and 
r~ of g(x) and r(x), respectively, by 

(2.2.2) f t = gt n > 0' ft = _rt n < ° n n' -, n -n, . 

Let 
CJCT : R(O, M) x R(O, N) -? R(M, N) 

be the lattice operator defined by 

(2.2.3) c = CJCT(a, b) 

Then, one has from (2.2.2) and (A.l.l.lO), 

(2.2.4 ) 

n > 0, 
n = 0, 
n < 0. 

Based on (2.2.4), a variety of two sided functions can be constructed from one sided func­
tions. We will see, for example, a Laplace-like probability density function (p.d.f.) can be 
constructed from two exponential p.d.f. 's. 

2.3 Exponential Family 

The power of the Laguerre transform appears mainly due to the fact that the Laguerre 
coefficients are found either analytically or via efficient numerical procedures. Especially, 
the Laguerre coefficients for exponential functions are given by a simple closed form. Expo­
nential distributions are important not only because they themselves often appear in applied 
probability but also any p.d.f. can be arbitrarily approximated by multiple convolutions of 
exponential p.d.f.s and mixtures of the resulting p.d.f.s. The class of such distributions is 
often called the phase type distribution [30]. As we have already seen, the multiple convo­
lution and mixing operations of the Laguerre transform are performed with ease via (1.2.5) 
and (1.3.4), respectively. Hence, in principle, the Laguerre coefficients of any p.d.f. can be 
found based on the Laguerre coefficients of exponential distributions. In this subsection, we 
summarize the way of finding the Laguerre coefficients of p.d.f.s in the exponential family. 

2.3A Exponential Density 
For an exponential distribution having the mean 0-1 , we denote, throughout the paper, 

its p.d.f. by 
(2.3.1 ) e(O· x) - Oe- Bx ,- , x ~ 0, 0> 0. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Theory and Algorithm of Laguerre Transfarm 459 

The Laplace transform of e(9, x) is given by 

(2.3.2) 
() 

<PJ(s) = () + s' Re(s) > -(). 

Let (el(9))go be the dagger coefficients of e(9;x). Then, from the key formula (A.1.1.12) a.nd 
the fact (A.1.1.9), one has 

Tt u _ 2() _ ~_ f (2() - 1) n un 
e ( ) - (29 + 1) - (2() - 1 )u - 2() + 1 n=O 2() + 1 ' 

Hence, comparing the coefficient of un (see §2.1A), it follows that 

(2.3.3) et (()) _ ~ (29 - .~)n n >_ 0. 
n - 2() + 1 2() + 1 ' 

Let 

EXP : R -+ R(O,N) 

be the lattice operator defined by 

(2.3.4 ) a = EXP(()) 
2() (2() _ 1) n 

an = 2() + 1 2() + 1 

lul < 1. 

The Laguerre coefficients of the exponential densit.y e( (); x) are then obtained as 

(2.3.5) e t (()) = EXP(()); e#(()) == DIFF(EXP(())). 

Remark 2.3.1. Let fc(x) = ce(9;cx). The Laguerre dagger coefficients (Jl:n)go of fc(x) 
are obtained by replacing () with c() in (2.3.3). It is easy to see that, if c() = 1/2, then 
f1:0 = 1/2 and f1:n = ° for n 2: l. The tail of the sequence (Jl:n)go quickly disappears if cB is 
near 1/2. The sequence has a rather long tail if cf) is either too large or too small. Hence it 
is desired to choose c, in calculating the Laguerre coefficients of an exponential density, so 
that c() is neither too large nor too small. The scaling manipulation of this sort often solves 
the storage problem in computers. 0 

2.3B Completely Monotone Density 
Let G(x) be a distribution function defined on [0,00). A p.d.f. f(x) is said to be 

completely monotone if its Laplace transform is given by <pj(s) = Iooo o!sdG(()), see e.g. 
Widder [50) and Feller [4). If G( x) consists of finitely many discrete spectrums, one has 

K 

(2.3.6) f(x) = LPje(()j;x), Pj > 0, 
j=1 

Hence, from (1.3.4) and (2.3.5), 

(2.3.7) ft = MIX(pt. .. · ,PK; e t (81 ), .. ·, et(BK )). 

2.3C PF Density 
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Let f(x) be a p.d.f. whose Laplace transform is given as 

K () 

<pj(s) = IT (). +) , 
j=l) S 

(2.3.8) 

i.e. f(x) is a finite convolution of exponential densities e(()j; x). It is known that f(x) is 
Polya-frequency of infinite order (see Karlin [7] and Keilson [10]). The sharp coefficients of 
f(x) is obtained from (1.2.5) as 

(2.3.9) # K # f = CONVi =l(e (()i))' 

2.3D Phase Type Density 
A useful and important class of univariate distributions is the class of phase type distri­

butions, see Neuts [30]. This class is known to be dense in the class of all one-sided proper 
distributions. Let f(x) be the density function of a phase type distribution. The density 
function is given as a finite mixture of finite convolutions of exponential densities. In other 
words, the Laplace transform <pj(s) of f(x) is given as 

(2.3.10) 
K M J (). 

q>j(s) = [;pj 11l()mjm~S' I<,Mj 21, 

where Pj > 0 with I:~1 Pj = 1. From (2.3.6) and (2.3.8), it is easy to see that 

(2.3.11) 

2.3E Generalized Phase Type Density 
Let f(x) be a generalized p.d.f. whose Laplace transform is given as 

(2.3.12) 
00 (())j 

<pj(s) == Epj --
j=O () + S 

00 

() > 0, Pj 20, E Pj = 1. 
j=O 

If Po > 0, f(x) includes the delta function Poc5(x). This f(x) is called a generalized phase 
type distribution, see Shanthikumar [31]. It is known that the class of generalized phase 
type distributions is broader than the class of phase type distributions and is closed under 
convolution, mixture and formation of coherent system. The Laguerre transform of gener­
alized phase type distributions has been developed in Shanthikumar [31]. In practice, using 
an appropriate truncation, say I<, the sharp coefficients are obtained as 

2.3F Laplace-like Density 
In the notation (2.2.1), let g(x) = ~e(a;x), x 2 0, and let r(x) = o~/3e(j1;x), x 2 O. 

The Laplace-like density f( x) is written as 

(2.3.14) 

From (2.2.4), one then has 

x 2 0, 

x < O. 

(2.3.15) f# = CJCT (-j1-e#(a), _a_e#(j1)) . 
a+j1 a+j1 
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2.4 Gamma Family 

Let f( 0:, 2~), 0:, ~ > 0, denote the Gamma variate with the p.d.f. 

(2.4.1 ) 

where r(Q) is the Gamma function. The Laplace t:,ansform of f(x) is given by 

(2.4.2) 

2.4A Gamma Density of Integral Order 
When 0: is integer, say Q = n 2:: 1, f(x) is the n-fold convolution of the exponential 

density e(1/2~;x). Hence, the sharp coefficients of f(x) are given as 

(2.4.3) 

2.4B Gamma Density of Non-integral Order 
When 0: is not integer, the problem is more involved. From (A.1.1.2) and (2.4.2), 

(2.4.4) T!(u) = (1 + ~t<>(1 - u)<> (1 - .~ ~ ~ u) -<>, lul < 1. 

Note that (1 - Ou)t has the generalized binomial expansion 

00 

(2.4.5) (1 - Ou)t = E an(O,t)un; n 2:: o. 
n=O 

The coefficients an( 0, t) are simplified, using the recursion an (0, t) = 0(1 -.If )an-l (0, t) with 
ao(O, t) = 1, as 

(2.4.6) n ( 1 + t) an(O, t) = on I1 1 - -k- , 
k=l 

n 2:: 1; ao(B, t) = 1. 

Hence, the functions (1 - u)<> and (1 - mu)-<> are expanded as 

(2.4.7) 
00 

(1 - u)<> = E bnun
; 

n=O 

n ( 1 + Q) 
bn =II'll-- ,bo=1 

k=1 \ k 

and 

(2.4.8) ( 
~ ) -<> 00 

1 - ~ +- a u = E cnun; 
fJ n=O 

( 1_~)n n ( l-Q) 
cn = -- II 1--- ,eo=1. 

1 + ~ k=1 k 

Let b = (bn ) and c = (cn ) with an appropriate truncation. It then follows from (2.4.4) tha.t 

(2.4.9) f# = (1 + ~)-<>CONV(b, c). 

Remark 2.4.1. Let fl(X) and f2(X) be the densities of f(O:ll ~1) and f(0:2, ~2)' respec­
tively. Suppose 0 < Q] < 1/2. It is easy to see that fl (x) is not square integrable. This means 
that the Laguerre transform does not exist for fl (x). The Laguerre sharp transform of it ex) 
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is, however, well defined via (2.4.9), see [19]. The sharp coefficients U!)'t!' of f(x) = fl * h(x) 
are also well defined through the convolution property of the Laguerre transform. If f( x) 
becomes square integrable, one can evaluate f(x) in terms of ft = PSUM(f#). 0 

Remark 2.4.2. Two types of numerical difficulties may arise in handling Gamma den­
sities. When a in (2.4.1) is too large, bn and en in (2.4.7) and (2.4.8), respectively, become 
too large in the absolute value for computers to deal with. Also, when 13 there is large or 
small so that the ratio I!:;:~I becomes close to 1, the sequence (en)'t!' has a long tail, which in 
turn brings a storage problem. The latter problem can be solved by employing the scaling 
technique as described in Remark 2.3.1. The former may be solved by taking advantage of 
the divisibility of Gamma variates. That is, first obtain the sharp coefficients U!:n)'t!' of 
f( a/ M, 213) by appropriately choosing a positive integer M so that U!:n)'t!' can be obtained. 
One then may be able to calculate the sharp coefficients of r( 0',13) by convolving U!:n)'t!' 
M times with itself on the lattice. 0 

2.4C Log-beta Densit.y 
Let f3( v, w) be the beta variate with the p.d.f. 

f(v + w) v-I w-I 
ff3(X) = f(v)f(w)x (1- x) , 

and let U(v,w) = -logf3(v,w). The log-beta variate U(v,w) is a useful tool for the asymp­
totic study of f3(v, w). The p.d.f. of U(v, w) is given as 

(2.4.10) f () r(v + w) VX{l -x)W-1 
JU x = r(v)r(w)e - e . 

Let w = [w] + B, where [w] is the largest integer less than or equal to w. Keilson and Sumita 
[17] showed that iu( x) is given as convolution of a completely monotone density il (x) and 
a PF density f2{X). Stating their result more specifically, they obtained 

r(v+u;) 00 

(2.4.11) fl{X) = r(v)r(w) t1/oke(k + v; x); 1 K ( B) POk = -k - IT 1 - -:- ,Poa = 1 + V j=1 J 

and 
(2.4.12) h{x) = e{v +B;x) * e{v+B+ l;x) * ... * e(v+B + [w] -l;x). 

It is seen from the convolution property that 

(2.4.13) 

and from the mixing property with an appropriate truncation, say at K, that 

(2.4.14) ff == MIX(poo,'" ,POK; e#(v),···, e#(v + K)). 

The sharp coefficients of f{x) is then given as 

(2.4.15) ft = CONv(ff, ff). 
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2.5 Normal Family 

Let N(J.L, a2
) be the normal variate having the mean J.L and the variance a 2 • Since shifting 

the mean is equivalent to shifting its density function, it suffices to consider N(O, a 2
). When 

J.L i= 0, we invoke (1.:3.2) to get the sharp coefficients for N(J.L,a 2
). Denote by f(x) the p .. d.f. 

of N(O, a 2 ), i.e. 

(2.5.1 ) 
1 .,2 

f(x) = --e-2;;'I, 
."f'iira 

-CXl < x < CXl . 

Clearly, f(x) is symmetric about O. Let g(x) := f(x)U(x). Then f(x) = g(x)U(x) + 
g( -x)U( -x), see §2.2. Thus, it is enough to obtain g~ or g!! for n ::::: o. If they are found, 
the Laguerre coefficients f! for -CXl < n < CXl are obtained by f# = CJCT(g# ,g#). 

2.5A Normal Density 
Let </>9(8) be the Laplace transform of g(x). Then, it is easily seen that 

(2.5.2) 

It follows that 
(2.5.3) 

A.. ( ) _ u 2• 2/2_1_ (00 -x2/2u2d 
'f'9 8 - e ~) e x. 

y2:rra su 2 

I 2 a 
</>9(S) - sa </>9(S) + ~ = O. 

y2:rr 

Thus, by taking v( s) = 1, w( 8) = _a2 sand z( 8) = a /."f'iir, one has the first order differential 
equation (2.1.2). Hence, from (2.1.4), 

(2.5.4 ) d [a 2 
] a (1- u? duT}(u) - 2(1 + u) + (1- u? T}(u) + ."f'iir = O. 

Comparing the coefficients of un, one then has 

(2.5.5) tat a ( 2) 
gl = 1 + 2 go - ."f'iir' 

and 

Hence, once 96 is known, g~ for n ::::: 1 can be evaluated recursively. For the value 96, one has 

(2.5.7) 

and the value of the tail integral can be found in .1 table, see e.g. [2]. 

Remark 2.5.1. It is reported in [33] that relatively many terms of the Laguerre coef­
ficients are required to guarantee accuracy for the normal density. For example, about 250 
terms are needed to make the truncation error less than 10-10 for the 1st and 2nd moments 
of N(O, 1). If only 80 terms are taken, one is merely guaranteed by about 8 decimals of ac­
curacy for the Oth moment, 6 decimals for the 1st moment and 3 decimals for 2nd moment. 
The more terms are calculated, however, the more numerical errors are accumulated due 
to the nature of the forwardly solved recursion formula. Extensive numerical experiments 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



464 U. Sum ita & M Kijima 

show that this error is intolerable when n ~ 80. To overcome the difficulty, the following 
backwardly solving technique has been developed in Sumita [33]. 

Consider the backward recurrence formula for g~, i.e. 

(2.5.8) t (1 t (1 t t ( 2) ( 2) (n+3)gn+3- 3n+7+2" gn+2+ 3n+5-2" gn+l=(n+1)gn 

for n ~ O. Define 

3n+7+ T !!H 
0"2 ) 

(2.5.9) 
n+l n+l 
o 0 ; 
1 0 

for n ~ O. Note that Bn+1 is of full rank for all n ~ 0 and 

(2.5.10) 

By defining M N+l = Bl ... B N+1 , one has from (2.5.10) that 

(2.5.11) 

which is known. Let :Vi, i =: 1,2,3, be any independent vectors on R3 and let Yi = M N+l:Vi. 

Denote X = (:V1,:V2,:V3) and Y = (Yl'Y2'Y3)' from which one has Y = M N+1 X. Note 
that, since M N+1 is of full rank, Yi are linearly independent. Hence, there exists .\ = 
(>.1, A2, A3f such that 

3 

(2.5.12) go = LAiYi = Y.\ = MN+1X,\, 
i=1 

From (2.5.11), (2.5.12) and nonsingularity of M Nt1, one concludes that 

(2.5.13) 

Hence, one has the following algorithm. 

Algorithm 2.5.2. 

(1) Choose a set of independent vectors :Vi on R3 , i = 1,2,3. 

(2) Starting with :Vi, proceed the backward recursion formula (2.5.8) N times, obtaining Yi 
for each i. 

(3) Construct X and Y and evaluate gN+l = Xy- 1g o' 

(4) Calculate g~, 0 $ n $ N, by (2.5.8) recursively. 

The accuracy of the algorithm can be easily checked by comparing 96 obtained via the 
backward recurrence formula with the exact 96 given in (2.5.7). 0 

2.5B Folded Normal Density 
Note that the folded normal density associated with N(O, (12) is just 2g(x). 

2.5C Rayleigh Density 
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The p.d.f. of Rayleigh distribution is given by 

(2.5.14) 

Hence, from (1.4.5), one has 

(2.5.15) 

2.6 Logistic Family 

2.6A Logistic Density 

x .,2 .,;2; 
f(x) = - e-~ = .- xg(x). 

(72 (7 

Let X be a logistic variate having the p.d.f. 

(2.6.1) 
j3e-(Jx 

f(x) = (1 + e-(Jx)2' -00 < x < 00, 13 > O. 

The bilateral Laplace transform of f (x) is given by 

(2.6.2) 4Yj(S) = r (1 +~) r (1-~), IRe(s)1 < 13. 
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Let Zk be mutually independent random variables having the p.d.f.s 9k(X) = ~e-(Jklxl, -00 < 
x < 00, respectively. That is, each 9k(X) is a Laplace-like density given in §2.3F. Sumita 

[33, 34] showed that X 4 Ef:l Zk (4 stands for equality in law). The sharp coefficients 
(gt,n)':'::oo of 9k( x) are available in §2.3F. Hence, theoretically, the sharp coefficients U!)'::co of 
f(x) can be obtained by convolving (gt,n)'::oo for k ~ 1. In practice, however, the numerical 
problem stated in Remark 2.3.1 arises. This difficulty was solved by the following idea, see 
Sumita [33, 34]. Let 

M co 

(2.6.3) X 4 W1 + W2; W1 = L Zk and W2 = L Zk, 
k=l k=M+l 

where M is an appropriately chosen positive inte~;er. Denote by 4Yl (s) the bilateral Laplace 
transform of the p.d.f. of Wl. Then, by the definition, 

(2.6.4 ) 

where 

(2.6.5) . (k) ~; M j2 
ale = lt~ a + s 4Yl(S) = -213- IT (" _ k)(" k)" 

s-+ kJ{3 }J , j=l,# J J + 
The sharp coefficients corresponding to W 1 are then obtained as 

(2.6.6) If = MIX(al,"" aM; gf,·· " gft)· 

For the skinny part W2 , we approximate it by the normal variate N({l, (72) of the same mean 
and variance. It is easy to see that 

(2.6.7) 
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A way of finding the Laguerre coefficients I: for N(O, (1'2) was developed in §2.5. The approx­
imate sharp coefficients 141 of f(x) in (2.6.1) are then obtained as f# = CONV(ff, f:). 

Remark 2.6.1. No analytical result is available for the numerical error introduced by 
the normal approximation of W2 • The density function of both W2 and N(O, (1'2), however, 
are quite delta-like function for a modest value of M, say M = 20. The approximation given 
here provides a surprising accuracy for the values of f(x), see Sumita [33, 34]. 0 

2.6B Folded Logistic Density 
The folded logistic distribution has the density function JF(x) = 2f(x), ;1: 2: 0, where 

f(x) is given in (2.6.1). The sharp coefficients (Jt:n)~ of fF(X) are obtained a,s 

(2.6.8) ft:n = 2f/!, n 2: 1; fta = It, 

see (2.2.3). 

2.7 Bivariate Exponential Distributions 

A particularly important class of bivariate distributions is the class of exponential dis­
tributions. Several types of bivariate exponential distributions have been studied by many 
authors. The distributiom introduced in the literature, however, have complicated forms 
and the absolute continuity with respect to the two dimensional Lebesgue measure is often 
lost. Accordingly, it is hard to obtain the Laguerre coefficients for bivariate exponential dis­
tributions in general form. Nevertheless, they are often found via numerical procedures as 
we shall see. In this section, following the work of Kijima [20], the procedures for obtaining 
the Laguerre coefficients for bivariate exponential distributions of importance are briefly de­
scribed. For other distributions such as bivariate Gamma distributions of nonintegral order, 
bivariate logistic distributions and bivariate normal distributions, the reader is referred to 
Kijima [20]. 

2.7 A Perfect Correlation 
Let Z be an exponential random variable with mean 1. Consider then a pair of random 

variables (X, Y) defined by 

(2.7.1) {
X = aZ, a> 0, 
Y = bZ, b> O. 

The bivariate random vector (X, Y) has a bivariate exponential distribution of perfect cor­
relation. Let F(x,y) be the distribution function of (X,Y). It should be noted that F is 
not absolutely continuous. The corresponding Laplace-Stieltjes transform is given by 

(2.7.2) 4>(s,w) = {OO (OO e-SX-WYdF(x,y) = 1 
la la 1 + as + bw 

From the key formula (A.2.1.13) and (A.2.1.9), it can be seen that 

(2.7.3) 

Here we set 

(2.7.4) 
2--a+b 

A---­
-2+a+b' 

B 2+a-b de a+b-2 - an - ----:-
-2+a+b -2+a+b' 
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Let 
BEXP : R2 --+ R(O, M; 0, N) 

be the bivariate lattice operator defined by 

(2.7.5) 

where 

(2.7.6) 

A = BEXP(a, b) 
A+B m+n 

amn = -- E q(m, n;j), 
2 i=max{m,n} 

for 0:::; m,n:::; j :::; m + n. Note that q(m,n;j) satisfy the recursion formulas 

(2.7.7) 

and 

(2.7.8) 

. . _ . . ABC:'n - 1) 
q(m, n,) + 1) - q(m, n,)) C(l _ ..,!!!- )(1 + _1 ) 

J+l J-n 

q(m,n + 1;j + 1) = q(m,n;j)(1_
B 
"'!!!-)' 
J+l 

with q(O,n;n) = Bn and q(m,m;m) = cm. It then follows from (2.7.5) that 

(2.7.9) Ft = BEXP(a, b). 

467 

Remark 2.7.1. Since F( x, y) is not absolutely continuous, the dagger coefficients U;",,) 
have no meaning. But, F(x,y) = Pr[X > x, Y > y] is square integrable as long as E[XY] < 
00. Hence, the values of 

(2.7.10) F(x,y) = 1- F(O,y) - F(x,O) + F(x,y) 

can be evaluated via the coefficients BSUV(BDIFF(Ft)), which are the dagger coefficients 
of F(x, y), see (1.6.3) and (1.6.16). 0 

Remark 2.7.2. The coefficients (amn)~,n=O in (2.7.5) have a long tail especially when the 
parameters a and b are large or too small. As for the univariate case, it is desired to resca.le 
variables so that both a and b are near 2. Extensive numerical experiments suggest that the 
truncation points M and N would better be chosen in such a way that one truncation point 
is twice larger than the other. For example, when a = b = 1, taking M = 22 and N = )50 
assures the relative error for F(x, y) less than 10-10 in the real domain (see Kijima [20]). 0 

2.7B Marshall and Olkin 
Consider a system consisting of two independent components subject to shocks that 

are always fatal. Three types of shocks will occur according to Poisson processes with 
parameters AI, '\2 and '\3, respectively. The first type of shocks applies to component 1 
only and the second type applies to component 2 only, while the third type applies to both 
components. Because of the third type of shocks, lifetimes X and Y of the components 1 
and 2, respectively, are correlated. Let Zi be exponential random variables with mean 1/ \, 
i = 1,2,3, respectively. It is then readily seen that the lifetimes of the two components are 
given by 

(2.7.11) 
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The joint distribution of (X, Y) is first considered by Marshall and Olkin [2.3]. The distri­
bution contains a singular part along the line x = y. Let F(x,y) = Pr[X > x, Y > y]. It is 
easy to see that 

(2.7.12) F(x,y) =exp(-AIX - A2Y - A3max{x,y}), X,y > O. 

The Laplace transform of F is given by 

(2.7.13) 4>p(8,W) = L\1 + ~3 + 8 + A2 + ~3 + w] C + ~ + w) 
where A = Al + A2 + A3' The dagger coefficients corresponding to the Laplace-Stieltjes 
transform (A + 8 + W)-1 cau. be obtained from (2.7.9), say Gt = ±BEXP(I/ A, 1/ A). The 
dagger coefficients corresponding to the Laplace transforms (AI +A3+8)-1 and (A2+A3+Wt1 
are found as er = Al!A3EXP(Al + A3) and e~ = A2!A3EXP(A2 + A3), respectively, see §2.3A. 
These dagger coefficients are converted into the sharp coefficients by the operators DIFF 
and BDIFF, see (1.1.1) and (1.6.1) respectively. Then, applying the marginal convolution 
properties of the bivariate Laguerre transform, the sharp coefficients of the survival function 
F(x, y) in (2.7.12) are obtained as 

(2.7.14) p# = MCONV(DIFF(et), BDIFF(Gt)) 

+MCONV(DIFF(e~), BDIFF(Gt?)T, 

see (1.6.9) and (1.6.11). 

2.7C Freund 
In [5], Freund considered a reliability model where a system has two components, say 

1 and 2, with the lifetimes X and Y having the exponential densities e(a;x) and e(f3;x), 
respectively. The lifetimes X and Y are dependent in that a failure of either component 
changes the parameter of the lifetime distribution of the other component. That is, when 
component 1 fails, the parameter for Y becomes /3'. When component 2 fails, the parameter 
for X becomes a'. There is no other dependence. Thus, the joint density function f( x, y) of 
(X, Y) is given by 

(2.7.15) { 
a 13' e- f3 'y-(cr+f3-f3')x 0 < x < y 

f(:r,y) = a'/3e-cr'x-(cr+f3- cr ')Y: 0 ~ y :::; x: 

It should be noted that the marginal distributions are exponential only when a' = 13' = a+ /3. 
The Laplace transform of f( x, y) is obtained as 

(2.7.16) 1 ( a'f3 a f3') 4> (.s,W) = --+--. 
f a + 13 + s + w a' + s 13' + w 

Hence the Laguerre coefficients U!.n)':::,n=o of f(x, y) can be calculated in the same manner 
as described in §2.7B. 

2.7D Moran 
Moran [29] constructed a bivariate exponential distribution as the joint distribution of 

(2.7.17) 
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where Z;, i = 1"",4, are all standard normal random variables. Random vectors. (ZI,Z3) 
and (Z2' Z4) are mutually independent but each pair has a bivariate normal distribution 
with correlation p. The bivariate Laplace transform for (X, Y) is easily found as 

(2.7.18) 
J 

4>(s,w) = ( )() . 1 + s 1 + w - p2 sw 

Inverting (2.7.18), one sees its p.d.f. to be 

(2.7.19) 

The correlation between X and Y is p2. By following the same arguments as in §2.7 A, one 
can see that the Laguerre coefficients (f'!'n)~,n=o of f(x,y) in (2.7.19) are given by (2.7.5) 
with 

(2.7.20) 

2.7E Gumbel 
Let (X, Y) be a pair of correlated random variables having the joint distribution function 

(2.7.21) 

where >'1, A2 > 0 and -1 :S 0' :S 1. The marginal distributions are exponential with the 
parameters Al and A2, respectively. The correlation is 0'/4. This bivariate exponential 
distribution is introduced in Gumbel [6). It is readily seen that F is absolutely continuous 
and the Laplace transform of the density function f( x, y) is given by 

(2.7.22) 

Note that the bivariate function having the Laplace transform 

is e(Al; x)e(A2; y), so that the corresponding Laguerre coefficients are given by 

see (1.5.2). Hence, since the bivariate Laguerre transform is linear, it follows from (2.7.22) 
that 

Ft = (1 + o)OUTP(EXP(Ad, EXP(A2)) - O'OUTP(EXP(2At}, EXP(A2)) 

(2.7.23) -O'OUTP(EXP(At}, EXP(2A2)) + O'OUTP(EXP(2At}, EXP(2A2))' 
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3 Applications of the Laguerre Transform 

The power of the Laguerre transform has been placed in evidence through extensive 
computational studies of a variety of applied probability models. Originally, applications of 
the Laguerre transform were centered on statistical problems [13, 17, 34]. The success of the 
Laguerre transform, however, clearly demonstrated that the method could provide unusual 
computational tools for analyzing dynamic system behavior. This, in turn, motivated further 
theoretical studies to develop new transform results, which may previously be considered to 
be of limited value behind the Laplacian curtain. Combined with such theoretical studies 
and extensions of the formalism to the matrix [33, 36] and the bivariate [20, :38] forms, the 
Laguerre transform has opened new paths in transient analysis of queueing systems [12, 15, 
16,18,32,39,41], the structural analysis of semi-Markov and related processes[26, 27,44,47], 
reliability theory [11, 12, 38, 40, 42, 48], birth-death processes [20, 35, 37, 45], and dynamic 
performability analysis of computer/communication and production systems [21,24,28,25, 
43, 46], among others. In order to demonstrate the power of the method, we examine in 
this section how the Laguerre transform enables one to quantify the dynamic waiting time 
behavior of an M/G/1 queueing system with exhaustive server vacations. Recently, Takagi 
[49] has analyzed the time-dependent queue length process for various M/G/1 vacation 
models including the exhaustive discipline. To the authors' best knowledge, however, the 
dynamic waiting time analysis presented here is new. 

3.1 M/G/1 Queueing System with Exhaustive Server Vacations 

We consider a single server queueing system where customers form a sequence of indepen­
dently and identically distributed (i.i.d.) positive random variables, independent of the Pois­
son arrival process, with common cumulative distribution function (c.d.f.) S(x) = Pr[S S; x]. 
Whenever the server becomes idle, he takes another vacation of random duration. This pro­
cess continues until he finds at least one customer in the system upon his return from 
vacation. He then starts servicing until he becomes idle again. Random vacation periods 
constitute a sequence of i.i.d. positive random variables, independent of the Poisson arrival 
process and customers' service times, with common c.d.f. V(x) = Pr[V S; x]. 

Such a queueing system is often called an M/G/1 queueing system with exhaustive server 
vacations. For more general G/G/1 queueing systems with exhaustive server vacations, 
Doshi [3] has shown that the ergodic waiting time can be expressed as an independent sum 
of the forward recurrence time of a vacation period and the ergo die waiting time of the 
same queueing system without server vacations. Subsequently this ergodic decomposition 
theorem has been extended by Keilson and Servi [14] to include Bernoulli vacation schedules. 
Shanthikumar and Sumita [32] has developed a similar ergo die decomposition theorem in a 
broader context of a modified Lindley process with replacement, which unifies the previous 
results as special cases and extends further to incorporate possible correlations. Apart from 
the ergodic analysis, little work has been done for quantifying the dynamic waiting time 
behavior. In what follows, we study this problem for the M/G/1 case via the Laguerre 
transform. 
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3.2 Exploration of Dynamic Waiting Time Structure via the Laguerre Trans­
form 

For studying the dynamic waiting time structure of an M/G/1 queueing system with 
exhaustive server vacations, we introduce the following notation: 

Tk 

T; 
T;* 

Sk = 'T;* - T; 
~k+I == Tk+I - Tk 

Wk = T; - Tk 

:the k-th arriving customer; 
:the arrival epoch of Ck ; 

:the service entry epoch of Ck ; 

:the departure epoch of Ck ; 

:the service time of Ck ; 

:the interarrival time between CHI and Ck ; 

:the waiting time of Ck ; 

and, given TH1 > Tt', 

IH1 = TH1 - T;* : the idle period of the server given that Ck leaves him idle. 

For convenience, we also define the survival function, the n-fold convolution and the Laplace­
Stieltjes transform corresponding to a c.d.f. X (x) by: 

(3.2.1 ) 

(3.2.2) 

and 
(3.2.3) 

X(x) = 1 - X(x); 

X(k)(X) == fox X(k-1)(X - y)dX(y), k = 1,2",,; X(O)(x) = U(x); 

Of particular interest is the waiting time structure of the queueing system characterized 
by the discrete time stochastic process {Wk : k = 0,1,2,.·.}. We assume that, at time 
t = 0, Co has just arrived at the system and the server starts servicing him. Consequently, 
one has Wo = 0. [n the next theorem, we explicitly show that the stochastic process 
{Wk : k = 0,1,2, ... } can be viewed as a modified Lindley process with replacement. 

Sk 

A hI Figure 1 (a) 

Tune 

'tt 'to '"'.,+1 
'to, 

k t 

Figure 1 (b) 
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Theorem 3.2.1. Let eH1 = Sk - ~k+b k = 0, 1,2,···. Then one has 

(3.2.4 ) w: _ { Wk + ek+b Wk + ek+1 ~ 0, 
k+1 - Rk+1, Wk + ek+l < 0, 

where Rk+1 are i.i.d., independent of Wk + ek+1, having a common c.d.f. R(x) = Pr[R ~ x] 
characterized by 

(3.2.5) ~ [ 1 - ~v(s)] 
~R(S) = ~ _ s 1 - 1 - ~v{A) . 

Proof: It is clear from Figure l(a) that Wk+ l = Wk + eHl if Wk + eHl ~ O. Suppose 
Wk + 6:+1 < O. Let {Nv{t) : t 2: O} be the renewal process associated with a sequence of 
vacation periods (Vn)::'=l' and define the renewal function by Hv(t) = E[Nv(t)]. From the 
classical renewal theory, we recall that 

(3.2.6) [00 e-stdHv(t) = ~v(s) . 
io 1 - ~v(s) 

Let {Bv(t) : t 2: O} be the stochastic process describing the residual lifetime of the renewal 
process at time t. One then sees from Figure l(b) that Wk+1 := Rjy = Bv(y) if h+1 := Y > O. 
For evaluating the distribution R(xIY) = Pr[Rjy ~ xl = Pr[8v (Y) ::; x], we first consider 
Fn(x,y) = Pr[Nv(Y) = n,Bv(y) > xJ. With notation DnO = 1 if n = 0 and Dno = 0 if n =f:. 0, 
it then follows that 

(3.2.7) 

Here the first term corresponds to the case of no renewal by time y. If so, the first vacation 
period must be greater than (x + y) for Bv (y) to be greater than x. If there have been n 
renewals by time t, then the sum of the first n yacation periods should be equal to z with 
z < y, and the (n + l)-th vacation period must be greater than (x + y - z) as described in 
the second term. By summing (3.2.7) over n, n = 0,1,2" .. , one finds that 

(3.2.8) R(xIY) = V(x + y) + lY 
V(x + y - z)dHv(z). 

From (3.2.6) and (3.2.8), the Laplace-Stieltjes transform ~R(sIY) := Iooo e-SXdR(xly) is given 
by 

(3.2.9) ~R(sIY) = e'Y [av(s,y) + laY av(s,y - z)e-SZdHv(z)] , 

where 
(3.2.10) av(s,y) = ~oo e-SXdV(x). 

Because of the Poisson arrivals of customers, given Tk+1 > Tt, h+l are exponentially dis­
tributed with parameter ),. Hence, ~R(S) = Iooo ~e->'Y~R(sly)dy, and the theorem follows 
from (3.2.9) and (3.2.10). 0 

We next develop an iterative procedure for evaluating the distributions of Wk , assuming 
that the service time c.dJ. S( x) and the vacation time c.d.f. V (x) are absolutely continuous 
with corresponding p.dJ.s s(x) and v(x). The p.dJ. of the inter arrival time is denoted 
by e{A;x). The inputs to this procedure are the Laguerre sharp coefficients s# = (s~)::,=o, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Theory and Algorithm of Lague"e Transform 473 

e# = (e~n(.X))~;,,_oo' and v# = (v~)~=o corresponding respectively to the p.d.f.s sex), e(,X; x) 
and vex). The Laguerre sharp coefficients a# = (a~)~=_oo corresponding to the p.d.f. a(x) 
of ~k+1 are then obtained by 
(3.2.11) a# = CONV(e#, sI). 

Similarly, the Laguerre sharp coefficients r# = (r;r)~=o corresponding to the p.d.f. r(x) of 
RHl are given from (3.2.5) as 

(3.2.12) 

Here, the necessary constant <Pv(,\) should be obtained either directly from the Lapl.ace 
transform <Pv(s) or from the identity 

(3.2.13) 
# 2'x-1 

<Pv('x) = Tv (u) at u = 2'x + 1" 

Let fk(X) be the p.d.f. of Wk with the Laguerre sharp coefficients f#(k) = U!(k))~~o. 
Similarly, let ff!+l(x) be the p.d.f. of W k + ~k+1 with fH#(k + 1) = U!!#(k + 1n~= __ oo. 
Although fftl (x) has a full continuum support, the procedure developed in this section will 
require f[!#(k + 1) only for n ~ 0, as we well see. It can be readily seen that 

(3.2.14) 

and 
(3.2.15 ) 

where 

(3.2.16) 

Equations (3.2.14) through (3.2.16) enable one to generate f#(k+ 1) from f#(k) recursively. 
This algorithm is now described below. 

Algorithm 3.2.2. 

Input: s# = (s~)~=o, e# = (e~n('x))~=_oo' v# = (v~)~=o, and 6> O. 

Output: f#(k) = (f!(k))~=o for k = 1,2,· ... 

[0] Set k = 0 and f#(O) = (8no)~=o. 

[1] Compute a# = (an)~=_oo and r# = (r~(k))~=o via (3.2.11) and (3.2.12), respectively. 

[2] Loop: Find U[!#(k + l))~=o from CONV(f#(k), a#). 

[3] Compute Ek+1 via (3.2.16). 

[4] Set ft(k + 1) = - L,~=l f[!#(k + 1) + Ek+1rt. 

[5] Set f!(k + 1) = f[!#(k + 1) + Ek+lr~, n ~ l. 

[6] If Ilf#(k) - f#(k + 1)11 > 6, set k = k + 1 and go back to Loop. 
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[7] Stop. 0 

We note that 
00 loo L f!!(k + 1) = Tt(l) = lim e-'X fk+1(x)dx = 0, 

n=O ,,~oo 0 

as it should be. 
By evaluating the distributions of Wk in a recursive manner, Algorithm 3.2.2 enables one 

to assess the speed of convergence to ergodicity. If only the ergodic waiting time distribution 
is needed, however, the Laplace transform permits to calculate it directly by convolving the 
residual vacation period distribution and the ergodic waiting time distribution of the same 
MjGjl system without vacations based on the Pollaczek-Khinchin formula. 
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