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Abstract There are n neigh boring cells in a straight line. An object is in one of all cells. It is required to 
determine a strategy that will minimize the expected cost of finding the object. A probability of overlooking 
the object is equal to zero, when the right cell is searched. Associated with the examination are a traveling 
cost dependent on the distance from the last cell examined and a fixed examination cost. A procedure for 
finding an exactly optimal strategy is given. 

1. Introduction 

This note gives an example of a model treated in [6) (Also see pp. 264-265 of [1], and 
Section 4 of this note). But a special model in this note still generalizes the model which 
was treated in [3) and mentioned below (Also see discussions at pp. 1-2 in [5]), in that the 
examination cost of each cell depends on the location of the cell and distances between cells 
are different but still additive. We have a procedure which leads to exactly optimal strategies. 
This procedure applies to t.he model in [3). Consequently it is shown that strategies given in 
[3) as approximately optimal strategies are exactly optimal. 

Gluss [3) considered a model in which there are n + 1 neighboring cells in a straight line, 
labeled from 0 to n in that order. An object is in one of all cells except for Cell 0, with a 
priori probabilities PI, ... ,Pn. At the beginning of the search the searcher is at Cell 0 that is 
next to Cell 1. It is required to determine a strategy that will minimize the expected cost of 
finding the object. A probability of overlookiIlg the object is equal to zero, when the right 
cell is searched. Associated with the examination of Cell i(l ~ i ~ n) is the examination cost 
that consists oftwo parts: (i) a traveling cost dli - j I (d > 0) of examining Cell i after having 
examined cell j, and (ii) a fixed examination cost c > O. (i) means that the examination 
cost varies through the search and is a function of which cell was last examined. 

The only difference between his model and the previous one (See [2], p. 90) is that while 
a traveling cost as well as the fixed examination cost is considered in the former (See [3]), 
only the fixed examination cost is considered in the latter. On the other hand, a probability 
of overlooking the object is kept in mind in the latter, while it is equal to zero in the former. 
The model in [2) is clearly analysed by using a technique of interchanging two adjacent cells 
in an optimally ordered list (See [2], pp. 67-68). But it does not apply straightforwardly in 
the former since the cost function depends on the location 6f the searcher. 

Gluss treated two cases: PI ~ ... ~ Pn and PI ~ ... ~ Pn. He showed that the former 
case is trivial, that is, the searcher should examine each cell in the order of 1,2,··· , n, and 
in the latter case he found approximately optimal strategies when Pi = 2i/[n(n + 1)). 

In [4), this problem was approached from the game theoretical point of view, assuming a 
hider instead of the object. He solved a two-person constant-sum game. Another variant of 
the model of [3) is in [5], where the searcher is at the cell that locates at the center of all cells 
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Search with Traveling Cost 437 

at the beginning of the search. (7) and (9) are surveys on the sea.rch theory. [8] is a text on 
two-person games. It introduces many interesting problems, some are already solved, others 
are still open. 

In Section 2 the model is stated and the procedure for finding an optimal strategy is 
given as Theorem 2. Section 3 is spent for the proof of Theorem 1. Finally, a comment on a 
condition in (6) is added as a remark. In this note, the examination cost of each cell depends 
on the location of the cell and the distances between cells are different but still additive. On 
the other hand, in [6], the distances satisfy more general condition, i.e., triangle inequalities. 

2. The Model and Results 

There are n + 1 neighboring cells in a straight line, labeled from 0 to n in that order. 
An object is in one of all cells except for Cell 0, with a priori probabilities such that 

n 

Pi>O, alli=1,"',nand LPi=1. 
i=l 

Figure 1 

(2.1 ) 

At the beginning of the search the searcher is at Cell 0 that is next to Cell 1. It is 
required to determine a strategy that will minimize the expected cost of finding the object. 
A probability of overlooking the object is equal to zero, when the right cell is searched. 
Associated with the examination of Cell i (1 :S i ~~ n) is the examination cost that consists 
of two parts: (i) a traveling cost d(i,j) of examining Cell i after having examined Cell j, 
and (ii) a fixed examination cost c( i) > O. We assume 

d(i,j) + d(j, k) = d(i, k) for all i,j, k such that 1 :S i < j < k:S n, 

d(i,j) =: d(j, i) for all i,j such that 1 :S i,j :S n, if. j, and 

d(i,j) > 0 for all i,j such that 1:S i,j:S n,i f. j. 

For convenience we let d( i, i) = 0 for all i = 1" .. ,n. We also assume 

(2.2) 

Pt! c(1) < ... < Pn/ c( n) and (2.3) 

j j' 

L Pr/d(i,j) < L Pr/d(i',j') whenever i < j,i' < j' and i < i'. (2.4) 
r=i+l r=i'+l 

While (2.3) means the a priori probability to the fixed examination cost increases, (2.4) 
means the a priori probability to the unit distance increases, as the distance from Cell 0 
becomes large. (2.4) mayor may not be relaxed since it is applied only once in the proof of 
Theorem 1. In the case of [3) both (2.3) and (2.4) reduce to Pi < P2 < ... < Pn' 

A (pure) Jtrategy for the searcher is defined by a permutation on N == {1, 2, ... ,n}. 
The set of all permutations on N is denoted by lk[ == {l,2,"" m}, where m = n!. Thus 
under a strategy j, he examines Cells j(1),j(2),··· ,j(n) in this order. This is expressed as 
i = fi(1), ... ,i(n)j. We set i(n + 1) =-i(Of= 0 for convenience. 
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438 K. Kikuta 

For a strategy j E M, let k = j-I{i). Assuming that the object is in Cell i, the cost of 
finding it, written M f(i,D, is: -

k 

f{i,iJ = d{O,i(I)) + d(,i{I),i{2)) + ... + d{i{k - I),i{k)) + L c{i{r)). (2.5) 
r=1 

Thus the expected cost under an a priori probability p = (PI, ... ,Pn), written as f{p, iJ, is : 

n 

f(p,iJ = Lpif(i,iJ· (2.6) 
i=1 

A strategy j E M is called optimal if it minimizes f(p,j) subject to j E M. Our problem is 
to find opti~al strategies. --

For any i E M, define pi E M by 

pi = i{n + 1 - i) for all i = 1,··· , n. (2.7) 

pj reverses the order of examination under j. Thus, if j = [j(1),j(2),··· ,j(n)]' then pj = 
[i(n), ... ,iU)]· We can assume i is as follows: - - - - -

i(O) <: i(1) < i(2) < ... < ih), 

ih) > i(i1 + 1) > ... > i(i 2), 

i(i2) < i(i2 + 1) < ... < i(i3), 

i(i 2h-- 1 ) > i(i2h-1 + 1) > ... > i(n) > i(n + 1). 

Thus, j has h peaks and we say j is an h-peaked strategy. If j E M is h-peaked then pj is 
also h-peaked. In particular I-peaked strategies are interesting since less traveling costs "ire 
required under them. Thus let M 1 be the set of all I-peaked strategies of the searcher. 

Theorem 1. If i E M is optimal then i is I-peaked. 

The proof of this theorem is given in Section 3_ From this theorem, we see it suffices to 
solve: 

Minimize f(p,D subject to i E M 1· 

Hereafter, we consider only strategies in M 1. For i = 2, - .. , n, let 

z( i) =: Pi-I/fyi + ... + Pn] and 

b(i) =: c(i - 1)/[2d(i - 1, n) + c(i) + ... + c(n)]. 

Theorem 2. Assume z{i) f. b(i) for all i = 2,···, n. Let 

{i - 1 : z{i) > b{i)} = {i1,···, is}. 

(2.8) 

(2.9) 

(2.10) 

where i1 < i2 < ... < is. Then a unique optimal strategy is a I-peaked strategy such that 
it first examines Cells il, .. , is, n, in this order, then examines the others. 
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Proof: Let i E M 1· Represent this as i = f.i.(l),···,i(n)]. Since j is I-peaked, n ·-1 
is next to n in j. Suppose j(i) = n - 1 and j(i + 1) = n. Define j' E M 1 by j' = 
[i(I), ... ,i(i -1),iU + 1),i(i),i(i + 2),··· ,j(n)f Then by (2.5) and (2.6), -

f(p,j) - f(p,jJ =Pn-t!(n - I,j) + Pnf(n,j) - Pn-t!(n - l,jJ - Pnf(n,jJ 
i i+l 

=Pn-l[d(O, n - 1) + L c(i(w))] + Pn[d(O, n) + L c(i(w))] 
w=l w=l 

i+l 

- Pn-tld(O,n) + d(n,n --1) + L c(i(w))] 
w=l 

i-I 

- Pn[d(O, n) + L c(i(w)) + c(i.(i + 1))] 
w=l 

=cCi.(i))Pn - [2d(n - 1, n) + c(i(i + l))]Pn-l 

=[2d(n - 1, n) + c(i(i + 1))]Pn[b(n) - z(n )]. 

If b(n) > z(n), then f(p,j) > f(p,j'). j' is preferred to j. If b(n) < z(n), then j is preferred. 
Thus define - - - - -

M(p, n) =ti. E Ml : rl(n - 1) < ,L-l(n)} if b(n) < z(n), and 

{i E Ml : rl(n - 1) > ,L-l(n)} if b(n) > z(n). 

Letj E M(p,n). Supposej(i) = n-2, and {j(i+I),j(i+2)} = {n-I,n}. Sincej is I-peaked 
n -"2 is next to {n -1,nfin j. Define j' E -M(p, n)by j'(i) = j(i + 1),j'(i + i') = j(i + 2), 
and i(i + 2) = i(i), and i(w)-= i(w) f~r w =P i, i + 1, i =+- 2. Th~n - -

f(p,D - f(p,i) =Pn-2!(n - 2,D + Pn-d(n - I,D + Pnf(n,D 

- Pn-2!(n - 2,i) - Pn-d(n - l,i) - Pnf(n,i) 
, 

=Pn-2[d(O, n - 2) + L c(i(w))] + c(n - 2)[Pn-l + Pn] 
w=l 

i+2 

- Pn-2[d(O, n) + d(n, n - 2) + L c(i(w))] 
w=l 

=c(n - 2)[Pn-l + Pn]- [2d(n - 2, n) + c(n - 1) + c(n)]Pn-2 

=[2d(n - 2, n) + c(n - 1) + c(n)][Pn-l + Pn][b(n - 1) - z(n - 1)]. 

If b(n - 1) > z(n - 1), then i is preferred to i- If b(n - 1) < z(n - 1), then i is preferred. 
Thus define 

M(p, n - 1) =ti. E M(p, n) : rl(n - 2) < min{rl(n - 1),i-1(n)}} if b(n - 1) < z(n - ]), 

U E M(p,n): rl(n - 2) > max{rl(n -1),rl(n)}} if b(n -1) > z(n - 1). 

In the same way we can continue and define M(p, n - 2), ... ,M(p, 2) inductively. But by the 
assumption that z(i) =P b(i) for all i, we have IIMtII = 2n

-
1 ,IIM(p, n)1I = 2n- 2, ... , IIM(p, :3)11 

= 21 , and IIM(p,2)II = 2° = 1. Hence finally one element in M 1 is specified, which is 
optimal. 

Q.E.D. 

This theorem gives a procedure that calculates an optimal strategy. 
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Procedure 

1. Calculate z(i)'s and b(i)'s in advance by means of (2.9) since they depend on only Pi'S, 
c(i)'s and d(i,j)'s. 

2. Determine the set in (2.10). Suppose it is {il , ... , is} and i l < ... < is. 
3. Examine Cells il, ... , is in this order. Then examine Cells kl,"" kn - s in this order, 

where {kl, ... ,kn - s } == N\{il, ... ,is}, and kl > ... > kn - s . 

Of course, the assumption in Theorem 2 can be taken away. Then the uniqueness will 
be lost. But the procedure is still valid. In example 3 the check of this procedure is left to 
the reader. 

A 1-peaked strategy is characterized by a subset of N. Indeed, let S = {i 1, ... , is} C 
N\{n}, where i l < ... < Is. Let N\(SU {n}) = {ii, ... ,i~_s_d, where ii > ... > i~_s_l' 
Define a I-peaked strategy j by jet) = it for t = 1,,,,, s, j(s + 1) = n,j(t) = i~-S_l for 
t = s + 2", ., n. Hence write i as is' Then pi = iN\(Su{n}r Gluss[3] con~idered I-peaked 
strategies such that S = {I, 2, ... , s} or S = {s + 1" .. , n - I}. Thus define a subclass of 
I-peaked strategies, written as G, by G == {1#, ... ,(n -I)#,p1#,· .. ,pen ·-I)#} where 
for s = 1,···,n -1, s#(i) = i if 1 ::; i ::; s, and s#(i) = n - i + s + 1 if s + 1 ::; i ::; n. By 
the definition, GC M I . The next numerical example shows that the minimum is attained 
by an element in MI \G. 

Example 3. Let n = 4. Let P = (15,17,28,80)/140. Let c(l) = c(2) = c(3) = 
c(4) = 1, and d(i,j) = li - jl for all i,j = 1,2,3,4. G = {1#,2#,3#,pI#,p2#,p3#}. 
MI\G = {j,pj}, where j = [1,3,4,2]. By (2.6), we have f(p,I#) = 904/140,J(p,2#) = 
910/140,J(p,3#) = 906/140,J(p,pI#) = 916/140, f(p,p2#) = 910/140,J(p,p3#) = 914/ 
140,J(p,j) 900/140, f(p,pj) = 920/140. From Theorem 1, the minimum is f(p,j) 
900/140.- - -

This example suggests that the approximation by Gluss[3] does not generalize to the 
case in this note. But the results in [3] and the next corollary to Theorem 2 give an exact 
solution to the model in [3]. 

Corollary 4. Assume PI = a + bi for i = 1"", n. Here a = l/n - ben + 1)/2, and 
o < b < 2/[n(n -1)]. Assume c(i) = c for i = I, .. ·,n, and d(i,j) = li -jl for all 
i,j = 1" .. , n. An optimal strategy is in G. 

Proof: z(i) > b(i) becomes 2 - [2a + 2b(n + I)]/(bi + bn + 2a) > c/(2 + c) for i = 2"", n. 
The left hand side of the last inequality is monotone in i. From this and Theorem 2, we have 
the desired result. 

Q.E.D. 

3. Proof of Theorem 1 

In this section we give the proof of Theorem 1. It must be noted that Lemma 5, Corollary 
6, Lemma 7, Lemma 7', and Corollary 8 correspond to Lemma 3, Corollary 1, Lemma 4, 
Lemma 4', and Corollary 2 of [4] respectively. The assumptions of (2.3) and (2.4) are critical 
here, while the assumption of PI < P2 < ... < Pn was important in [4J. 

Lemma 5. Let j E M be a 2-peaked strategy such that j = [j(I), ... ,j(il),j(il + 
1), ... ,i(i2),i(i2 +-1), ... ,i(i2 + s), ... ,i(i3),i(i3 + 1), ... 'i(7;-)]. L~t l E -M b~ a 2-
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peaked strategy such that j' = [j(1), ... ,j(i1),j(i1 + 1), ... ,j(il + r),j(i2 + S),j(il + l' + 
1), ... ,j(i2),j(iz + 1), ... J(i3),Ri3 + 1),:-:. ,j(;):' when j(iS < j(i3), ~nd j' = [}(1), ... , 
j(iI),j(Zl + I), ... ,j(iI + -;'),j(Z'; - 1),j(i1 +" r -+ 1)", :-,j(i2),J(i2 + 1),:-:. ,j(z3),j(i3. -+ 
1), .. '~i(n)l when i0iI) > i(i3). Then f(P,,L) > f(p,,i'). - - --

Proof: Assume i(it) < ,L(i3)' Suppose i(i2 + s) <: i(i1) < i(i2 + s + 1) and s ;:: 1. 

0 J i(i1) start 

j.(i2)1 b.. , 
lJ(i 3) j(i2 +s) 

0 
goal 

Figure 2 

i2 t 

f(p,,L) = ... + 2= Pi(t){d(O,i(iI)) + d(i(t),i(iI)) + L c(,L(w))} 
t=i l +1 w=l 

G~ t 

+ L Pj(t){d(O,i(iI)) + d(i(iz),i(it}) + d(i(t),i(i z)) + L c(i(W))} + ... 
t=i2+1 - w=l 

id-r t 

f(p,,L') = ... + 2= Pj(t){d(O,i(iI)) + d(i(t),i(iI)) + L c(i(w))} 
t=i1 +1 - w=l 

Thus, 

i,+r 
+ Pj(i2+s){d(0,i(i1)) + d(,L(iz + s),i(i1)) + L c(i(w)) + c(i(iz + s))} 

- w=l 
G t 

+ L Pj(t){d(0,i(i1)) + d(i(t),i(i1)) + L c(i(W)) + c(i(iz + s))} 
t=i, +r+1 - w=l 
i2+s-1 

+ L Pj(t){d(O,i(iI)) + d(i(i2)'i(i])) + d(i(t),i(i z)) 
t=i2+1 -

t 

+ L c(L(w)) + c(i(iz + s))} + ... 
w=l 

i 2 +s-1 
f(p,,L) - f(p,,i') = - c(i(i2 + s)) L Pj(t) + {2d(,L(i z + s),i(i2)) 

t=i, +r-j-l -

i 2 +8-1 

+ L c(i(W))}Pj(i2+S) 
w=i,+r+1 -

=2d(iJiz + s),i,(iZ))Pi(i2-!-8) 
i2+s-1 

+ L {c(i,(t))pj(i2+S) - C(i,(i2 + S))Pj(t)} > 0, 
t=i,+r+1 - -

by ,L(i2 + s) ~ i(iz), i(i2 + s) ;:: i(t) for all t : i1 + 1" + 1 S t S iz + s - 1, and (2.3). 
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start l(il +r+ 1) JOl +r) jiil ) 
~----~~~~r-----

0-----------------
goal 

Figure 3 

~ t 

f(p,j) = ... + L Pj(t){d(O"f(il)) + d(i(t),iJi1)) + L c(i(w))} 
t=i, +1 - w=l 

~-l t 

+ L PL(t) {d(O,i(it}) + d(i(i2),i(il)) + d(i(t),i(i 2)) + L c(i(W))} + ... 
t=i2+1 w=l 

i,+r t 

f(p,iJ = ... + L Pj(tdd(0,i(i1)) + d(i(t),i(il)) + L c(i(W))} 
t=i,+l - w=l 

i,+r 
+ PL(i3-1) {d(0"i.(i1 + r)) + d(i(i3 - 1),i(il + r)) + L c(i(W)) + C(i(i3 - I))} 

w=l 
~ t 

+ L Pj(t) {d(O,i(it}) + d(i(t),i(i1 )) + L c(i(w)) + c(i(i3 - I))} 
t=i,+r+l - w=l 

i3-2 
+ L Pj(t){d(O,i(it}) + d(i(i2),i(it)) + d(i(t),i(i2)) 

t=i2 +1 -
t 

+ L c(i(w)) + c(i(i3 - I))} + ... 
w=l 

Thus, 

i3-2 
f(p,j) - f(p,j!.) = - C(i(13 - 1)) L Pj(t) + {2d(i(i3 - l),i(i2)) 

t=i,+r+l -
i3·-2 

+ 2= c(i(w»}PL(i3-l) 
w=i,+r+l 

i3-2 
=2d(i(i3 - 1),i(i2))Pj(i3 -l) + L {c(i(t)Pj(i3 -l).- C(i(i3 - 1))pj(t)} 

- t=i,+r+l - -
>0, 

since j(i3 - 1) ~ j(i2), j(i3 - 1) ~ j(t) for all t : i l + r + 1 ::; t ::; i3 - 2, and (2.3). - - - -
Q.E.D. 

Corollary 6. Let j E lJ.£ be a 2-peaked strategy such that j = (j (1), ... ,j (i d, j (i 1 + 
1), ... ,i(i2)' i( i2+ 1 C .. ,i( i2+s),· .. ,i( i3), i( i3+ 1), ... ,i(n )]. L~t i' b~ a 2-peaked st~ategy 
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such that j' = U(I), ... ,j(il),j'(il +1),··· ,j'(i2-il +s-I),j(i2),j(i2+s+1),· .. ,j(i3),j(i3+ 
1), ... ,j(;;)] where {j'(i~ + 1)" .. ,j'(i2 - £1 + s - I)} = -{j(i1-+ 1), ... ,j(i2 -= 1),j(i2 + 
1)"" ,)(i2 + s)} and j'(il + 1) > -: .. > j'(i2 - il + S - 1) when j(i1) <: j(i3), a;'d let 
j' = uO\··· ,j(iJ), ... :j(il +r),j'(il +r +-1), ... ,j'{i3 - 2),j{i2),j{i~),j(i3 +-1), ... ,j{n)], 
;here-{j'(il + -;. + 1), .. . ~j'(i3 - i)} = {j(il + r + 1), ... ,j{i; - 1)~j(i2 + 1), .. · ,j{i3 =- I)} 
and i.'(i~ + r + 1) > ... > l'(i3 - 2) whe;; j,(iJ) < i{i3). Then f(p,j,J > f{p,i.'). -

Proof: Assume i(iJ) < i(i3). Suppose i(i2 + s) < i..{id < i(i2 + s + 1) and s ~ 1. 

o 

start l(i1 ) 
r+-t-+----H 

o----------------------------~ 
goal 

Figure 4. 

j.(i 3 ) 

Apply the first half of Lemma 5 s times, starting with i(i2 + s), then i(i2 + s - 1), .. '. 

Next assume j(iJ) > j(i3). Apply the second half of Lemma 5, (i3 - i2 - 1) times, 
starting with i(i3 -=- 1), then i(i3 - 2),.··. 

Q.E.D. 

Perhaps Corollary 6 and the following lemma can be merged and shortened. But the 
proof will be complicate in notation if we merge. Thus we do not. Further Corollary 6 in 
itself says a property of a strategy for the searcher. 

Lemma 7. Let j E M be a 2-peaked strategy such that j = U(I),··· ,j(it),··· ,j(i2),j(i2+ 
1)"" ,j(i3),'" ,j(i3+S), ... ,j(n)], wherej(il) < j(i2+1) and-j(i3+s) :; j(iI) > )'(i3+S+1). 
Let j' ,;;;; U(I)," -:-,j(it),j(i2 -+ 1), ... ,j(i3),'" ,j(i3 + s),j'(i; + s - i2 +" il + If .. · ,j'(n)] 
whe;e {j'(i3 + s - i~ + i1-+ 1), ... ,j'(n}) = {j(il_+ 1), ... ,](i2),j(i3 + s + 1), ... ,j(n)} and 
i.'(i3 + s-- i2 + il + 1) > ... > i'(n). Then J(p,i) > f(p,i~· - -

Proof: 

J(i 1 +r) j.(il +r-l) 

• • 
I I 

-I .-

I 

~ V 
'-k"/' 

r 

JOl +2) j.(il +1) --. ~ 

I 
--I 

~ j.(i 1 ) 
I 

'.j.(i2 + 1) 
I • 

¥ 'Y • 

Figure 5. 

J~~(i3) 
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Let u = i2 - i1. Observing that for t with t 2: i3 + 1, 

d(O,i.(it)) + d(i.(i2),i.(i1)) + d(,i.(i3),i.(i2)) + d(i(t),i(i3)) 

= 2d(,i.(it),i.(i2)) + d(O, n) + d(n,i.(t)), 

'2 t 

f(p,D = ... + 2: Pj(t){d(O,i(i1)) + d(i.(t),i(iI)) + 2: c(i(W))} 
t=;1+1 - w=l 
~ t 

+ E Pj(t){d(O,i(iI)) + d(i(i2),i(i1)) + d(i(t),i(i2)) + E c(i(w))} 
t=;2+1 - w=l 

;3+S t 

+ E pi(t){2d(i(iI),i.(i2)) + d(O, n) + d(n,i(t)) + E cCi(w))} 
t=;3+1 w=l 

u ;3+s+k1 + ... +kr 
+ E E Pj(t){2d(i.(iI),i(i2)) + d(O, n) + d(n,i(t)) 

r=l t=;3+s+k1 + ... +kr_1 +1 -
t 

+ E cCi.(w))} + .... 
w=l 

On the other hand, seeing that 1.' is I-peaked, 

~ ~ t 

f(p,i.') = ... + E Pj(t){d(O,i(t)) + E c(i(w)) + E (i(w))} 
t=;2+1 - w=l w=;2+1 

;3+S ;1 t 
+ E Pj(t) {d(O, n) + d(n,i(t)) + E c(,i.(w)) + E c(i(w))} 

t=;3+1 - w=l w=;2+1 
u i3+s+k1 + ... +kr i1 

+ E E Pj(t){d(O,n) + d(n,i(t)) + E c(i(w)) 
r=l t=;3+s+k1+ ... +kr_1+1 - w=l 

t ;1+r-1 u 

+ 2: c(i(w))+ 2: c(,i.(w))} + EPj(;1+'r){d(O,n)+d(n,i(i1 +r)) 
w=;2+1 w=i1 +1 r=l -

i1 i3+s+k1 + ... +kr i1 +r 
+ E c(i(w)) + E c(i(w)) + E c(i(w))} 

w=l w=;2+1 w=;1+1 

Hence, 

f(p,D - f(p,i) = A + B, 
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where 

13 i3 +s 
A =2 L Pj(t)d(i(iI),i(i2)) + 2 L P)(t)d(i(iI),i(i2)) 

t=i2+1 t=i3+1 --
u i 3 +8+k, + ... +kr U 

+ 2 L L Pj(t)d(i(i1),i(i2)) - 2 L Pj(i,+r)d(i(iI), n) 
r=1 t=i3+8+k, + ... +kr_, +1 - r=1 -

~+8 U 

=2d(i(iI),i(i2)) L Pj(t) - 2d(i(iI), n) L Pj(i,+r) 
t=i2+1 - r=1 -

U i 3 +8+k, + ... +kr 
+ 2 L L Pj(t)d(i(i1),i(i2)) 

r=1 t=i3+8+k, + ... +I;r_' +1 -
U i 3 +8+k, + ... +kr 

;:::2 L L Pj(t)d(i(iI),J,(i2)) > 0, 
r=1 t=i3+8+k, + ... +kr_, +1 -

by (2.4). Furthermore, 

i3 U i3+8 U 

B = L Pj(t) L c(i(i1 + W)) + L Pj(t) I: c(i(i1 + w)) 
t=i2+1 w=1 t=;3+1 - w=1 

U i 3 +8+k, + ... +kr i2 U i3+8+k, + ... +kr 
+ L L Pj(t) L cCzJw)) - LPj(i,+r) L c(i(w)) 

r=1 t=i3+8+k,+ ... +kr_,+1 - w=i,+r r=1 - w=i2+1 
U i3+8 U i2 kr 

= L c(i(i1 + w)) L Pj(t) + L L c(i(W)) L Pj(i3+8+k,+ ... +kr_,+t) 
w=1 t=i2+1 - r=1 w=i, +r t=1 -

i3+8 U U r i3+8+k,+ ... +I;, 
- L c(i(w)) L Pj(i,+r) - L Pj(i,+r) L L c(i(W)) 

w=i2+1 r=1 - r=1 - t=1 w=i3+8+k,+ ... +k,_,+1 
u i3+8 i3+8 U 

= L c(i(i1 + w)) L Pj(t) - L c(i(W)) L Pj(i,+r) 
w=1 t=i2+1 - w=i2+1 r=1 -

U U kr 
+ L L c(i(w + i1)) LPj(ia+8+k,+ ... +kr--,+t) 

r=1 w=r t=1 -
U U kr 

- L L Pj(i,+w) L c(i(i3 + 8 + k1 + ... + kr- 1 + t)) 
r=1 w=r -. t=1 

>0, 

by (2.3). Q.E.D. 

Lemma 7'. Let i E M. be a 2-peaked strategy such that i = [2(1), ... ,i(iI),'" ,i(i2), 

j(i3),··· ,j(n)], where j(iI) > j(i3) and j(i1 + 8) > j(i3) > j(i1 + 8 + 1). Let j' 
[i(I), ... ,1(iI),'" ,i(i1 +8),i(i3),i'(i1 +8 +2), ... ,i'(n)]~ where (l'(i1 +8+2)"" ,i'(n)} = 
U(i1 + 8 + 1), ... ,i(i2),i(i3 + 1)"" ,.i.(n)} and i(i3) > i'(i3 + 8 + 2) > .,. > i'(n). Then 
f(p,D > f(p,i'). 
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Proof: Let u = i2 - i1' Noting that ia = i2 + 1, 

~ t 

f(p,j) = ... + L Pj(t) {d(O,,i,(i1)) + d(i.(t),,iJi1)) + L c(i.(w))} 
~+~1- w~ 

i3 

+ Pj(i2+1) {d(O,i.(i1)) + d(i.(i2),i.(i1)) + d(i.(i2 + I),i.(i2)) + L c(i.(w))} 
- w=l 

u-s-1 i2+1+ko+ ... +kr 
+ L L Pj(t) {d(O,,i(i1)) + d(,i(i2),,i(iI)) 

r=O t='2+1+ko+ ... +kr_1 +1 -

t 

+ d(,i(i2 + I),i.(i2)) + d(,i(t),,i(i2 + 1)) + L c(i.(w))} + .... 
w=l 

On the other hand, seeing that ,i' is I-peaked, 

il+s 
f(p,,i') = ... + Pi(i2+1) {d(O,i.(iI)) + d(i.(i2 + I),i.(iI)) + L c(,i(w)) + C(,i(i2 + I))} 

w=1 

u-s-l i2+1+ko+ ... +kr 
+ L L Pj(t){d(O,i.(i1)) + d(i.(t),,i(iI)) 

r=O t=i:I +1+ko+ ... +kr_1 +1 -

t i2 

+ L c(i.(W)) - L c(i.(w))} 

u-s 
+ L Pj(it+s+r){d(O,,i(i1)) + d(i.(i1 + s + r),i.(iI)) 

r=l -

i2+1+ko+ ... +kr_1 i2 

+ L c(,i(w)) - L c(,i(w))} + ... 
w=l 

Hence, 

f(p,D - f(p,,i') = A + B, 

where 

A =Pi(i2+1)2d(i.(i2 + I),,i(i2 )) 

u-,~-l i2+1+ko+ ... +kr 
+ ~= L Pj(t)2d(i,(i2 + 1),,i(i2)) > 0. 

r==O t=i2+1+ko+ ... +kr_1 +1 -
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Further, 

12 u-'s-l 12+1+ko+ ... +kr 12 

B =Pj(12+1) I: cCi.(w)) + L 2: Pj(t) L c(i(w)) 
- W=11 +s+l r=O t=12+1+ko+ ... +kr_1 +1 - W=11 +s+r+1 

u-s 13+ko+ ... +kr_1 

- L Pj(11+s+r) L c(i(w)) 
r=l - W=13 

;2 U-8 

=Pj(12+1) L c(i(w)) - L Pj(11+s+r)C(i(i3)) 
- w=11+s+1 r=l -

u-s 13+ko+ ... +kr_1 12 u-s 13+ko+ ... +kr_1 

+ L L Pj(t) L C(i(W)) - LPj(11+s+r) L C(i(w)) 
r=l t=i3 +ko+ ... +kr_2+1 - w=i1+s+r r=l - w=13+1 

i2 1.&-8 

=Pj(12+1) I: c(i(W)) - L Pj(11+s+r)C(i(i3)) 
- w=11+s+1 r=l -

u-s kr-1 u-s 

+ L L PJ(13+ko+ ... +kr-2+t) L c(i(i1 + 8 + w)) 
T=l t=l -. w=r 
u-s T k,-l 

- L Pj(i1+s+r) L L c(i(i3 + ko + ... + kt- 2 + w)) 
r=l - t=l w=l 

;2 u-s 

=Pj(12+1) I: c(i(W)) - L Pj(11+s+r)c(i(i3)) 
- W=11+s+1 T=l -

u-s kr-1 u-s 

+ L L Pj(i3+ko+ ... +kr_>+t) L c(i(i1 + 8 + w)) 
T=l t=l _. w=r 

u-s u-s k'_1 

- L L Pj(i1+s+r) L C(i(i3 + ko + ... + kt- 2 + w)) 
t=l T=t - w=l 

u-s 

= L {Pj(13)C(i(i1 + S + r) - Pj(11+s+T)C(i(i3))} 
T=l - -

u-s kr_1 u-s 

+ L L 2::: {Pj(i3+ko+ ... +kr_2+t)cCi.(il + oS + w)) 
T=l t=l W='T -

- P,i.(i1+ S+W)c(i(i3 + ko + ... + kt - 2 + t))} 

> 0, 

by (2.3). 

Corollary 8. For any i E M\M}, there is i' E M 1 such that f(p,i) > f(p,i')· 

Q.E.D. 

Proof: Suppose j E M is h-peaked(h 2': 2). Let j' E M be a I-peaked strategy which is 
transferred from j 1,y repeated operations indicat.ed in Corollary 6, Lemma 7 and Lemma 
7'. Then f(p,i) ? f(p,i). 

Q.E.D. 

This corollary implies Theorem 1. 

4. A Remark 
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It is interesting to compare the condition z(i) > b(i) in (2.10) with the condition Pi > v(i) 
in Lemma 5.3 of [6]. Let w(m,i) == me(i) + 2max{d(0,i),d(i,n)} for i = 1,"',n and 
m = 1,2,···. Let c!nin == min{e(i') : i' =F i} for i = 1,,'" n. Define 

vm(i) == w(m, i)/[w(m, i) + e~in] and 

v(i) == min{vm(i): m = 1,2,,, .}. 

Since vm(i) is increasing in m, we have v(i) = vI(i). Assume d(i,j) = Ij - il for all i,j, 
and e(i) = e for all i. Then, if n ;::: 3, the condition PI > v(l) becomes PI > [c + 2(n -
1)]/[2c+2(n-l)]. On the other hand, z(2) > b(2) becomes PI > cf[nc+2(n-l)]. Thus two 
conditions are different. (2.1) and (2.3) imply PI < 11n since c(l) = ... = c(n). We have 
[e + 2(n -1)]/[2e+ 2(n -1)] > 1/n. Thus Lemma 5.3 in [6] may not apply at least for i = 1. 
In [6] conditions are discussed in a more general setting. Indeed, overlooking probabilities 
are kept in mind. This seems to make the analysis more difficult. 
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