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Abstract This paper discusses a stationary departure process from the M /G/l/ N queue. Using a Markoy 
renewal process, we examine the joint density function fk of the k-successive departure intervals. In Section 
2, we discuss the covariance of departure intervals. The departure intervals are statistically independent in 
case of N = 0 or N = 1, but not in case of N = 2 or N = 3. In Section 3, !k in the M/M /1/ N is shown to 
be a symmetric function of arrival and service rates, and we find that cov( d1 , dk ) is not dependent on lag k, 
for k ~ N + 1. Further, we prove that the covariance of departure intervals in the dual (reversed) system is 
equal to one in the original system, for any lag k. 

1. Introduction 

In this paper, we discuss the departure process of a queueing system. In order to examine 
the covariance of departure process, we consider the joint density function of the k-successive 
departure intervals in the M/G/l/N queue. 

Many papers have been published on this subject. Burke [1] and Finch [6] have proved 
that the departure process in the M/M/l queue is again a Poisson process. Jenkins [9] has 
discussed the covariance of departure process in the M/EA/l queue. For the M/G/l/N 
queue, Daley [2] and Daley & Shanbhag [3] have analyzed the departure process. Disney et 
al. [5], Magalhaes & Disney [11], and Simon & Disney [15] have studied the joint distribution 
of departure intervals by using a Markov process. Moreover, King [10] has shown that: (1) 
cov(d1, dk) = 0 for k ~ 2, in the M/G/I/O and M/ D/I/I queue; (2) cov(d1, dk ) = 0 for 
k ~ 3, in the M/G/l/l queue. For the M/M/l queue, Hubbard et al. [8] have noted that a 
probability P(j, t) is a symmetrical expression with regard to an arrival rate A and a service 
rate p, where P(j, t) =Pr{ exactly j customers depart from the system during a time interval 
[O,t)}. Saito [14] has analyzed the departure process in an M/G/s/O queue. Makino [12] 
has discussed a loss probability for the M/M /1/ N ~ / M/I / 1 tandem queue. Furthermore, 
Daley [4] and Reynolds [1:1] have surveyed the departure process. 

Using a Markov process, we examine the joint density function fk(Xl, X2, ... , Xk) ofthe k­
successive departure intervals in the M/G/I/ N queue. In Section 2, we discuss the covariance 
of departure intervals of lag k. The departure intervals are statistically independent in case 
of N = 0 or N = 1, but not in case of N = 2 or N = 3. Especially, in the M/G/1/2 queue, 
we find that the covariance of departure intervals of lag k are represented as a geometric 
progression: cov(d1 , dk) = ,8~-3cov(dl, d3), for k ~ 3, where ,81 =Pr{exactly one customer 
arrives at the system during a service time}. 

Furthermore in the M/M /1/ N queue, for k ::; N + 1, we can see that: (1) fk is symmet­
rical with regard to an arrival rate A and a service rate p; (2) cov( dl, dk) does not depend 
on lag k. Lastly, for any lag k, we find that the covariance in the dual (reversed) system is 
equal to one in the original system. 
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2. The Stationary M/G/l/N Queue 
2.1 The joint density function 

423 

We consider a single server queueing system with a Poisson arrival process with rate A, 
i.e. the density function a( x) = Ae-AX . The service times are independently and identically 
distributed random variables with an arbitrary probability distribution B( x). Suppose that 
the distribution B(x) has density function b(x); b(x) = dB(x)/dx. Let us denote the mean 

service time by: .!. = [00 xb( x )dx. Further, let p == ~ be the traffic intensity, and the queue 
~ h p 

has a capacity N (excluding in service), that is, M/G/1/N. If an arriving customer finds 
the queue is full, then he does not enter into the system. The steady state exists either for 
N < 00(0 < p < 00) or for N = 00(0 < p < 1). 

Let Te denote the epoch of departure of the ~-th customer and let de denote the departure 
interval: de = Te-Te-l(~ = ... , -1, 0,1", .). Further, let Qe denote the number of customers 
in the system just after the ~-th customer departs. 

Let us introduce some notations as follows: 

Pr{x ~ de < x + d:r, Qe = Qe-l + j - 2 < N 1 Qe-l > O} /dx = (j ~ 1)! (Ax )j-1e-AXb(:r) 

=bj(x) (j=1,2, ... ,N), 
j-l 

Pr{x ~ de < x + dx,Qe = NI Qe-l = N + 2 - J}/dx = b(x) - L bk(x) 
k=l 

= bj(x) (j = 2,3, .. ·,N + 1), 

Pr{x ~ de < x + dx I Qe-l = O}/dx = foX a(x - t)b(t)dt 

= c(x) 

Pr{x ~ de < x + d:r,Qe = j -1/ Qe-l = O}/dx = foX a(x - t)bj(t)dt 

=Cj(x) (j = 1,2, .. ·,N), 

and 
N 

Pr{x ~ de < x + dx,Qe = N I Qe-l = O}/dx = c(x) - L q(x) 
k=l 

= CN+I(X). 

Here, it is well known that the bivariate process {( de, Qen is a Markov renewal process with 
a kernel: U(x) = [Uij(X)] (1 ~ i ~ N + 1 and 1 ::; j ~ N + 1), 

where for i = 1; 

for i = 2,3"", N + 1; 

and for i = 3,4,,,,, N + 1; 

Ulj(X) = cj(:r) 

CN+l(X) 

Uij(X) = bj-i+2(X) 

bN+J-i(X) 

(j = 1,2, ... ,N), 

(j = N + 1), 

(j=i-1,i, ... ,N), 

(j = N + 1), 

(j = 1,2,,,,, i - 2). 
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So we have a transition probability matrix: U = [uij](1 ~ i ~ N + 1 and 1 ~ j ~ N + 1), 

where Uij = lX! uij(x)dx. 

Let qn denote the probability of n customers in the system at the departure epoch in 
the steady state, i.e., qn = lim Pr{Q€ = n}. That is, the imbedded probability distribution 

€-<oo 
{qn} (the stationary system-size of the departure process) is the stationary distribution of 
{Qd. The imbedded distribution {qn} is a solution of the equilibrium equation: 

1'~U =1' ~, (where l' <.l. = [qO, q1, ... , qN D. 

In general, the above imbedded distribution {qn} is not equal to the stationary distribu­
tion {Pn} at an arbitrary point of time. The relation between qn and Pn is given by: 

Pn=Cqn (n=O,I,···,N), 

1 - C (n = N + 1), 

where C = _1_, (see §5.1.8 in Gross & Harris [7]). 
qO + p 

Moreover, the matrices U(x) and U have the following properties: 

(2.1 ) 

(2.2) 

and 

(2.3) 

N+1 
U(xk = §'l C(X) + L §.ib(X) 

i=2 

= §.tlc(x) - b(x)] + §.b(x), 
U§. = §., 

j+1 
U(xkj =: §'l Cj(X) + L §.jbj+2_i(X) (j = 1,2,···,N), 

i=2 

N+1 
U(XkN+1 = §.lCN+1(X) + E §.ibN+3-i(X), 

i=2 

where ~ is a column vector each of whose elements are unity; ~ =1' [1,1, ... ,1] and ~j is the 
j-th fundamental vector; ~J. =T [0, 0,· .. ,0, 1 ,0, ... ,0]. 

(j) 
Let fk(X1, X2,· .. , Xk) be the joint density function ofthe k-successive departure intervals, 

at the stationary: 

fk(X1,X2,···,Xk)dx1dx2···dxk 

= }im Pr{x1 ~ d€+l < Xl + dxl, X2 ~ de+2 < X2 + dX2,···, Xk ~ dHk < Xk + dxd. 
~-+oo 

In the stationary M/G/1/N queue, fk can be expressed using a matrix form: 

fk(Xl, X2,···, Xk) =T ~U(X1)U(X2)··· U(xkk, 

(see Disney et al. [5) and Simon & Disney [15]). 
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2.2 The Covariance of lag k 
Let us denote the marginal density functions by: 

fk+l(e,xl,x2,···,XA,) = 10
00 

fl;+1(y,Xl,X2,···,Xk)dy 

and 

fk+l(Xl,X2,···,Xk,e) = 10
00 

h:+l(Xl,X2,···,Xk,y)dy 

By the stationary assumption we can write: 

425 

In the stationary, we abbreviate de, dHl, de+2 and dHk, to d, dl , d2 and db respectively. 
Let ft(x),E(d) and V(d) denote the density function, the expectation and the variance of 
d, respectively: 

ft(X) =T 9.U(x)!l 

= b(x) + qoa(x), 
1 1 1 

E(d) = P, + qOI and V(d):= Vb + ,\2qo(2 - qo) 

where a(x) = c(x) - b(x) and li = Jooo x2b(x)dx - -/;to 

Let us dentoe the degenerative density function by: 

Furthermore, let us denote the covariance of lag k by: 

(k ~ 2), 

where d1'l,k(Xl, Xk) = !t,k(Xl, Xk)dxldxk - ft(xl)h(Xk)dxldxk· 
In this paper1 we have assumed B(x) has a density. However, this assumption is not 

essential. If B( x) has not density, then we can derive similar results for the jointcumulative 
distribution function Fk: 

Fk(Xl, X2,···, :Xk) = )im Pr{O :::; dHl :::; Xl, 0:::; dH2 :::; X2,···, 0:::; de+k :::; xd· 
.,-00 

• 

2.3 Examples 

(1) N = o. Clearly we have: qo = 1, U(x) = c(x), ft(x) = c(x), 

k 

fk(xl, X2,···, Xk) = IT ft (Xi) and d'Yl,k(Xl, Xk) = 0 (k ~ 2). 
i=l 

In this M /G /1/0 case, the departure intervals are statistically independent and the interde­
parture process is a renewal process. 
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(2) N = 1. It is easily to see that: 

and 

qo = {30, ql = 1 - f30, U ( x) = [~~ ~ ~ ~ ~~ ~ ~ n ' U = [~~ ~ = ~~] , 
d,I,2(Xl, X2) = [qOCl(xI) + ql bl(Xl) - q5o:(xI) - qOb(Xl))O:(X2)dx1dx2, 

1 
cov(dI,d2) = - ).,2 (p{3o - (31), 

where {3j = Pr{ exactly j customers arrive at the system during a service time} 

= 10
00 

bj+l(X)dx 

= 10
00 

cj+l(x)dx (j = 0,1", .). 

In this case the matrix U satisfies U = f. T 9" so that we have: 

and 

!I, 3 (XI, X3) =T 9,U(Xl)UU(X3k 

=T 9,U(Xl)(f. T !})U(x3k 

= !I(Xl)!I(X3) 

In the same manner we have: 

(2.4) (k 2 3), 

and 

(2.5) (k 23). 

The above (2.4) and (2.5) imply that the separate intervals are statistically independent in 
the M/G/l/l queue. 

If the service times are constant, then {30 = e-P, (31 = pe-P and cov( d1 , dz) = O. So the 
departure intervals are statistically independent and the interdeparture process is a renewal 
process in the M/D/l/l. The above conclusion of N = 0 and N = 1 have been already 
shown by King [10]. 

(3) N = 2. In this part we have: 

1 z 1 1 
qo = 1 _ {3/0' qI = 1 _ (3/0(1 - (30), qZ = 1 _ {31 (1 - (30 - (3I), 

[

CJ(X) cz(x) ~3(X)1 [{30 {31 1 - {30 - (31] 
U (x) = b1 (x) bz (x) b3 (x) ,U = {30 {31 1 - {30 - {31 , 

o b1 ( x) b2 ( X ) 0 {30 1 - (30 

d,I,2( xl, X2) = - [q3o:( xI) + qob( xI) - qocI (xI) - ql b1 (xI)]o:( x2)dxI dX2, 

and 
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The matrix U can be represented as U = RAR-1 where 

[ 

1 - /30 - /31 1 /31 - /30 + 136] [ /31 0 0 1 
R = 1 - /30 - /31 1 -/30 + /36 and A = 0 1 00 . 

-/30 1 /36 0 0 

So that we obtain: 

h,k(Xl, Xk) =T qU(xJ)Uk- 2U(Xkk 

=T 9'y(xJ)RAk- 2 R-1U(Xkk (k ~ 3), 

d'l,k(Xl, Xk) = -/3:-3dK(Xl)O(Xk)dxk (k ~ 3), 

and 
(k ~ 3), 

where 

and 

In general, we see that the departure intervals are generally not independent. The results 
are summarized as the following theorem. 

THEOREM 1. In the stationary M/G/l/2 queue, the covariances of lag k are given 
as follows: 

1 2 
cov(d1,d2) = - .\2[qO + pqo - qo(/3o + plJ) - ql/3d, 

1 2 
cov(d1,d3 ) = - .\2{qO + pqO - /3o[qo(/3o + 2/31 + 2(32) + ql(/31 + 2(32) + q2/3d} 

and cov(d), dk) = /3:- 3cov(d1, d3) (k ~ 4). 

(4) N = 3. In this case we have: 

81 == /31 + j /30/32, 82 = /31 - #ofh H = (8
1 

_ 1 )l( 8
2 

_ 1) 

qO = H/3g, ql = H/3~(l - (30), q2 = H/3o(1 - /30 - (31)' q3 = 1 - H/3o(l - /3J), 

d'I,2(Xl, X2) = [qOCl(XJ) + q1b1(xt} - QO!t(xl)]a(x2)dx ldx 2, 

and for k ~ 3, 

1 
cov(d1,d2) = .\2 [qo(/3o + /3I) + ql/31 - qo(qO + p)] 

d'l,dXl, Xk) = [8f-2 H1Vl(XJ) + 8!;-2 H2v2(xJ)]a(xk)dx1dxk, 

1 
cov(d1, dk) = :x [8f-2 HIE( VI) + 8~-2 H2E( V2)] 
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v;(x) = /3gh(x) + qO[h;,lCl(X) + h;,2C2(X) + h;,3C3(X)] 

+ b1 (X)[ql h;,l + q2 h;,2 + q3hi,3] + b2(x)[q1h;,2 + q2 h;,3] + b3(x)q1hi,3, 

E(Vi) = }{/3g(qO + p) + qO[h;,1(/30 + /3J) + hi,2(/31 + 2(32) + h;,3(/32 + 3(33)] 

+ /31 [q1 h;,1 + Q2 h;,2 + Q3 hi,3] + /32[Q1h;,2 + Q2 h;,3] + /33Q1 hi,3} 

hi,l = hi,2 = /30(8i -1)(/30 - /31 + 8i), h;,3 = /3~(8i -1) (for i = 1,2). 

3. The Stationary M/M/l/N Queue 
3.1 The joint density function 

In this section we derive a closed form for fk(Xl, X2," ., Xk) in the case of exponential 
service times i.e. b( x) = p.e-Ilx . We temporally suppose that p =1= 1, but this assumption is 
not essential. Here, we have: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

and 

(3.7) 

Qn = (1 -- p)HNpn 

b(x) =. 1 (>.x)j-1p.e-(A+Il)x 
J (j-1)! 

j-1 

bj(x) = b(x) - E b;(x) 
i=l 

1 
c(x) = -[a(x) - pb(x)], 

1-p 
j 

Cj(x) = a(x)pi-1 - E b;(x)pi+1-i 
;=1 

N 

CN+1(X) = c(x) - E Cj(x) 
j=l 

(n = 0,1"", N), 

U = 1,2,··· ,N), 

(j = 2.3,···.N + 1). 

(j = 1,2.··· ,H), 

a(x) N j 
= c(x) - ~(1 - pN) + E E /bj+1_k(X), 

P j=lk=l 
1 

a(x) = -[a(x) - b(x)], 
I-p 

h(x) =1'1U(x)f. 

= HN[a(x) - pN+1b(x)], 

E(d) = ~HN{l- pN+2), 

V(d) = ::2 Hff [(1- pN+2)2 - 2pN+l(1 - p)2] 

/2(X1,X2) =T 1U(Xl)U(X2k 

= HN[a(xt}a(x2) - pN+lb(xt}b(X2)]' 
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where 
1 

HN = 1 _ pN+f 

pN+1 
- pN+1 _ AN+!· 

Now, we prepare two lemmas. 

Lemma 1. For j = 1,2,···, N, we have: 

Proof: Using (2.2), (3.1) and (3.4), it is easy to show: 

j+1 
T 9.U(x)§.j =T 9.[.f1 Cj(X) + L f.i bj+2-i(X)] 

i=2 
j+1 

= qOCj(x) + L qi-1 bj+2-i(X) 
i=2 

j+1 j+1 
= (1 - p)HN[a(x)pj-1 - L /--1bj+2_i(X)] + L qi-1 bj+2-;(X) 

;=2 i=2 

429 

(j = 1,2, ... ,N). 

Lemma 2. For j = N + 1, we have: 

(3.9) T qU(X)§.N+1 = (JNc(x). 

Proof: Using (2.2), (2.3) and (3.1) - (3.5) we have: 

N+1 
TT", -

9.U(XkN+1 = 9.[f.1CN+1(X) + ~ f.jbN+3--i(X)] 
i=2 

N+l 
= QOCN+1(X) + L Qi-1bN+3-i(X) 

i=2 

1 N j 

= (1 - P)HN{[C(X) - --(1 - pN)a(x) + L L bj+1-k(X)/] 
1- p . k )=1 =1 

N+! N+2-i 
+ L pi-1[b(x) - L bj(x)]} 

i=2 j=1 

:= (1 - P)HN{C(X) - _1_(1 -- pN)[a(x) - pb(x)] 
1-p 

N N N+1-k 
+ L pk[L bi+1- k(X) - L bj(x)]} 

k=l j=k j=l 

:= (1 - P)HN[C(X) - (1 - pN)c(x)] 

:= QNC(X). 
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From the above lemmas we obtain the following theorem. 

THEOREM 2. In the stationary M/M/l/N queue, for k S; N + 1, the joint density 
function can be expressed as follows: 

I; I; 

(3.10) fl;(Xl' X2,"', XI;) = HN[TI a(x;) - pN+l TI b(Xi)] 
;=1 ;=1 

1 I; I; 

= N+l _ AN+1 [JlN+l TI a(Xi) - AN+1 TI b(Xi)]. 
Jl i=1 i=1 

Proof: We prove (3.10) by the induction on k. From (3.6) and (3.7), for k = 1 and 
k = 2, (3.10) holds. Assuming its validity for k = h(S; N), we shall show (3.10) for k = h+l. 
From (2.1) and (2.2) we have: 

U(yk = f.b(y) + f.la(y) 

and 
U(Yl)U(Y2k = f.b(Yl)b(Y2) + f.l[a(Yl)b(Y2) + q(yI)a(Y2)] + f.2 bl(Yl)a(Y2). 

Thus we can write recursively, 

and 

h 

U(Yl)U(1I2)'" U(Yhk = f.b(yI)b(Y2)··· b(Yh) + L f.jLh,j 
j=1 

h 

=T ~f.b(Yl)b(Y2)'" b(Yh) +T ~ L f.jLh,j 
j=1 

h h 

= TI b(Yi) + L Qj-1 Lh,j, 
;=1 j=1 

where each Lh,j is a certain unknown function. 
For h S; N, using the inductive hypothesis we have: 

h h 

(3.11) L Qj-1 Lh,j = h(Yl, Y2,'" ,Yh) - TI b(Yi) 
j=1 i=1 

h h h 
= HN[TI a(xi) - pN+l TI b(Xi)]- TI b(Xi} 

i=1 i=1 i=1 
h h 

= HN[TI a(x;) - TI b(Xi}] (h S; N). 
;=1 i=1 

Considering the function of the (h + 1}-successive departure intervals x, Yl, Y2,'" ,Yh, only 
h S; N, from (2.1), (3.8) and (3.11) we obtain: 

(3.12) fh+l (x, Yl, Y2, ... ,Yh) =T ~U(x )U(Yl)U(Y2) ... U(Yhk 
h h 

=T ~U(x){f.TI b(Yi) + Lf.jLh,j} 
i=1 j=1 
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h h 

=T 1[~b(x) + ~la(x)] IT b(y;) + L qj_1a(x)Lh,j 
;=1 j=l 

h h h 
= [b(x) + qOa(J:)] IT b(y;) + a(X)HN[IT a(y;) - IT belJi)] 

;=1 ;=1 ;=1 
h h 

= HN{a(x) IT a(y;) + [(1 - pN+1)b(x) - b(x)] IT b(y,)} 
;=1 i=1 
h h 

= HN[a(x) IT a(y;) - pN+lb(x) IT b(Yi)]. 
;=1 ;=1 

Obviously, (3.12) is just the same as (3.10) for k = h + 1. 

In the above calculations, we need not refer to (3.9) because of k ~ N + 1. In case of 
k 2: N + 2, we must use (3.9), and for k = N + 2 we have: 

fN+2(X1, X2,"', X}V+2) =T 1U(Xt)U(X2)'" U(X1V+2k 
N+2 N+1 

=T 1U(X1)[~ IT (Xi) + I: ~jLN+1,j(X2' X3,"', XN+2)] 
i=2 j=l 

N+2 N 
=T 1[~b(xJ) + ~la(xJ)] n b(x;) + E qj-1a(xJ)LN+1,j 

i==2 j=l 

+ qNC(X1)LN+1,N+1 
N+2 N+2 N+2 

= [b(xt) + qoa(xJ)] IT b(x;) + a(xJ)HN[ IT a(Xi) - IT b(Xirl 
i=2 ;=2 ;=2 

+ qN[C(Xt) - a(x1)]LN+1,N+1 
N+2 N+2 

= HN[ IT a(xi) - pN+1 IT b(Xi)] + RN+2, 
i=l i=l 

where 

REMARK 1. In case of k 2: N + 2, we have: 

k k 
ik(X}, X2,"', Xk) = HN[IT a(x;) - pN+l IT b(Xi)] + Rk(x}, X2,"', Xk) 

i=l ;=1 

where Rk is some unknown function. 

3.2 The covariance of the departure intervals 

On the basis of Theorem 2, we obtain the following results. 

Proposition 1. In the stationary M/M/l/N queue, for k ~ N + 1 we have: 

!t,k(X1,Xk) = HN[a(xt}a(xkl - pN+1b(X1)b(Xk)] 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



432 A.Ishikawa 

and 

Proposition 2. In the stationary M/M/l/N queue, for k ::; N + 1 the covariance 
cov( dI, dk) is independent of lag k, as follows: 

cov(dI,dk) = - ;2 Hff(l- p)2pN+1 

>'-f..L 2 N-l 
= -[.AN+! _ f..LN+ll (>'f..L) . 

REMARK 2. Supposing that p < 1. Then for arbitrary k, the limit exists: 

1 k k 
lim fk(Xl,X2,'" ,Xk) = lim N+l[IT a(x;) - pN+l IT b(xi)l 

N-oo N-oo 1 - P ;=1 ;=1 

k 

= IT a(x;). 
;=1 

This conclusion has been already discussed in [1], [6] and [10]. 

Noting that (3.10) is a symmetrical expression with regard to >. and 1-'" we consider 
M(>.)/ M(f..L)/I/ N and its dual M(f..L)/ M(>.)/I/ N. In the dual (reversed) system, let fZ(xI, X2, 
... , Xk) denote the joint density function corresponding to fk(Xl, X2,"', Xk)' Similarly, let 
cov(di, diJ denote the covariance of lag k in the dual system. The relations between the dual 
systems are given as follows: 

and 

THEOREM 3. In the dual systems, fo.r any k we have: 

fZ(Xl, X2,"', Xk) = fk(Xk, Xk-l ... , Xl) 

Proof: See Appendix. 

For k ::; N + 1, from 01.1 0) we obtain the following relation. 

Proposition 3. For k ::; N + 1, the two functions fk and !k equal to one another: 
h(Xl,X2,'" ,Xk) = !k(Xl,X2,'" ,Xk). 

3.3 In case of p = 1 
In this case, the results are given as follows: 

1 
qn = N + 1 (n = 0,1,· .. , N), 

c(x) = >.2xe-'\x, a(x) = >.(>.x _l)e-'\x, 

fl(X) = qo>'(>'x + N)e-'\x, 
1 1 

E(d) = ),qo(N + 2), V(d) = >'2q~(N2 + 4N + 2). 
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And for k ~ N + 1: 

k 

fk(X1, X2',·· ., Xk) = qo[N + 1 - k + '\(X1 + X2 + ... + Xk)] IT a(xi), 
;=1 

and 

Acknow ledgements 
The author is indebted to Professor TOJI MAKINO, Science University of Tokyo for 

his suggestions to complete this work. Also he would like to acknowledge the continuing 
guidance and encouragement of Professor YOSIRO TUMURA. The author wishes to tha,nk 
the referees for their helpful comments and suggestions. 

References 
[1] P.J. Burke: The output of a queuing system. Operations Research, Vol. 4 (1956),699-

704. 
[2] D.J. Daley: The correlation structure of the output processes of some single server 

queuing systems. The Annals of Mathematica.l Statistics, Vol. 39 (1968), 1007-1019. 
[3] D.J. Daley and D.N. Shanbhag: Independent inter-departure times in M/C/1/ N queues. 

J.R. Statist. Soc. E, Vol. 37 (1975),259-263. 
[4] D.J. Daley: Queueing output processes. Adv. Appl. Prob., Vol. 8 (1976), 395-415. 
[5] R.L. Disney, RL. Farrell and P.R de Morais: A characterization of M/C/1 queues with 

renewal departure processes. Management SClence, Vol. 19 (1973), 1222-1228. 
[6] P.D. Finch: The output process of the queueing system M/C/l. J. R. Statist. Soc. E, 

Vol. 21 (1959), 375-380. 
[7] D. Gross and C.M. Harris: FUNDAMENTALS OF QUEUEING THEORY. John Wiley, 

New York, 1985. 
[8] J.R Hubbard, C.D. Pegden and M. Rosenshine: The departure process for the M/M/1 

queue. J. AppI. Prob., Vol. 23 (1986), 249-25~i. 
[9] J.H. Jenkins: On the correlation structure of the departure process of the M/ EA/1 queue. 

J. R. Statist. Soc. E, Vol. 28 (1966), 336-344. 
[10] RA. King: The covariance structure of the departure process from M/C/1 queues with 

finite waiting lines. J. R. Statist. Soc. E, Vol. 33 (1971),401-405. 
[11] M.N. Magalhaes and RL. Disney: Departures from queues with changeover times. 

Queueing Systems, Vol. 5 (1989), 295-312. 
[12] T. Makino: Quasi loss probability and quasi throughput of the system M / M/l/ N --+ 

/M/l/l. SUT Journal of Mathematics, Vol. 26, No. 1 (1990), 101-109. 
[13] J.F. Reynolds: The covariance structure of queues and related processes - a survey of 

recent work. Ad1J. Appl. Prob., Vol. 7 (1975), .383-415. 
[14] H. Saito: The output of loss systems with general service time distributions. Operations 

Research Letters, Vol. 7 (1988), 321-324. 
[15] B. Simon and R.L. Disney: Markov renewal processes and renewal processes: Some 

conditions for equivalence. New Zealand Oper. Res., Vol. 12 (1984), 19-29. 

Appendix 

(proof of Theorem 3) 
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For the dual system i.e. M(J-l)/M(>..)/l/N queue, let q* denote the vector of the imbed­
ded probability, and U*(a:) denote the kernel, correspon-ding to q and U(x), respectively. 
Naturally, we suppose p i= 1, then we have: -

Tt = H N (1 - p) [pN , pN -1, ... , p, 1] 

and 
U*(x) = [uij(x)] 

where for i = 1; 

(i = 1,2"", N + 1 and j = 1,2"", N + 1), 

* 1 "-U1j(X) = p -Jbj+1(x) (J" = 1 2 ... N) " , , 
p-NCN+1(X) (j = N + 1), 

for i = 2,3, ... ,N + 1; 

(j=i-1,i, .. ·,N), 

(j = N + 1), 

and for i = 3,4, .. " ,N + 1; 
uij(x) = 0 

Let us denote a transform matrix Z by: 

(j = 1,2, ... , i - 2)" 

where 

(i = 1,2"", N + 1 and j = 1,2"", N + 1), 

(i+j=N+2), 
(otherwise) " 

It is easy to see that: 

Here, we note that: 

[Z TU(X)Z-l]ij = p-N[ZTU(x)Z]ij 

Each element becomes as follows. 

= p-N Zi,N+2-iUN+2-j,N+2-i(X)ZN+2-j,j 

= pi-juN+2_j,N+2_i(X). 

For i = 1 and j = N + 1 : [Z TU(x)Z- l h,N+1 = p-N UI,N+I(X) 

-N- () = P CN+1 x 

= Ui,N+I(X), 

For i = 1 and 1 ~ j ~ N: [Z T U(x)Z-lhj = p1-juN+2_j,N+1(X) 
1 "-= p -Jbj+1(X) 

= uij(x). 
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For 2 ~ i ~ N + 1 and i-I ~ j ~ N : [ZTU(x)Z-l]ii = pi-iuN+2_i,N+2_i(X) 

= pi- jbj+2_i(X) 

= utj(x). 

For 2 ~ i ~ N + 1 and j = N + 1: [ZTU(x)Z-l]i,N+l = pi-N-lu1 ,N+2_i(X) 
i-N-l ( ) = P CN+2-i x 

= ut,N+l(X). 

For 3 ~ i ~ N + 1 and 1 ~ j ~ i - 2: [ZTIJ(x)Z-l]ij = pi-juN+2_j,N+2_i(X) 

=0 

= utj(x). 

Therefore, we get: 

for any k, we obtain: 

fk(Xl, X2,·· ., Xk) =T tU*(Xt)U*(X2)··· U*(Xk)§. 

=T 9.*(Z TU(xI)Z-1)(Z TU(X2)Z-1 ... (Z TU(Xk)Z-l§. 

=T t Z{TU(Xl)TU(X2)·· .TU(Xk)}Z-l§. 

=T §.{TU(XlfU(X2) ... TU(Xk)}9. 

=T {T !J.U(Xk)U(Xk-d ... U(X2)U(Xl)§.} 

= A(Xk, Xk-b···, X2, ~~t). 

Using another expression, we have: 

and 

So the theorem is proved. 

cov(di,dt) = cov(dk,d1 ) 

= cov(dt,dk)· 
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