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Abstract In this paper, a comparative analysis of the computational aspects of a bulk-service queueing 
system with variable capacity and finite waiting space is carried out using the Jacobi method of iteration 
and the rootfinding method. Steady-state probabilities and moments of the number of customers in system 
at post-departure epochs have been obtained. In the special case when service is performed in batches of 
fixed size B, a set of relations among post-departure, random and pre-arrival epochs probabilities has also 
been obtained. For this special case, we present various performance measures such as moments of number 
in system at random epoch, probability of blocking, probability that server is busy, etcetera. A variety 
of numerical results have been obtained for several service-time distributions: Erlang, deterministic and 
hyperexponential. It was finally observed that the Jacobi method is less cumbersome than the rootfinding 
method. 

1. Introduction 
The analytic and computational aspects of single-server infinite-waiting-space queue­

ing systems with bulk-service have been discussed by several authors, see e.g., Neuts [14], 
and Briere and Chaudhry [4]. However, in real life, we often encounter queues with fi­
nite waiting space which cannot always be approximated by queues with infinite waiting 
space. Besides, queues run most efficiently when the traffic intensity is unity. Although 
numerical results for batch-arrival queueing systems with finite waiting space are available, 
see e.g., Manfield [13], Baba [1] and Nobel [16], unfortunately, not much seems to have 
been done computationally on the corresponding bulk-service finite-waiting-space queue­
ing models despite the fact that analytical results on such models have been available for 
quite some time and they have a wide range of applications in transportation, computers, 
communications, production process, finite dam, and other areas. 

The first analytic study related to bulk-service, finite-waiting-space queues seems to 
have been carried out by Finch [9] who analyzes the M/MB/l/NB+ B queueing system. 
Singh [18] discusses the more general model by allowing variable service capacity and arbi­
trary service-time distribution. Bagchi and Templeton [2,3] have carried out the analytic 
analysis of the more general model such as M X /GY/l/N + 1 queueing system. 

In recent years, there has been a lot of criticism about the applicability of these available 
analytic results. A practitioner who often finds the solution of many important queueing 
models in terms of probability generating function (p.g.f.) or in some other complicated 
mathematical form, has no easy way of implementing the models in practical situations and 
therefore he ends up with the question: what good is the model, if its implementation is 
difficult? Amongst others, Cohen [8, p. 640] states that a rather neglected area in queueing 
theory is the development of algorithmic and numerical methods, though some systematic 
work, in this direction, has now been started, see e.g. the work of Neuts [15] using the 
phase technique, Briere and Chaudhry [4] using roots. 
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The objective of this paper is to do computational analysis of the bulk-service queue­
ing system with variable capacity and finite waiting space discussed by Singh [18,19) who 
obtains the p.g.f. of the number in system left behind by a departing batch. It was thought 
that one could obtain the complete probability distribution and moments from the prob­
ability generating function. But numerical experiments have shown that it is difficult, if 
not impossible, to obtain any information regarding various queue characteristics from the 
given probability generating function. Similar remarks also apply to the model proposed 
by Lwin and Ghosal [12]. 

We use the Jacobi iterative method to solve simultaneous equations of the model under 
discussion. It not only gives accurate results, but they can be obtained within a reasonable 
amount of time, even on a PC. We also tried the Gauss-Seidel iterative method. For small 
values of N (see later for its definition), it generally gave good results at a faster rate. 
Unfortunately, as N gets large, it took too long 8Jld too many iterations to converge. This 
observation has also been made by Chu [7] in anot.her application. In view of this difficulty, 
we preferred to use the Jacobi iterative method which converged in all the cases that we 
tested. Further, a set of relationships among post-departure epoch (p.d.e.), pre-arrival 
epoch (p.a.e.) and random epoch (r .e.) probabili ties has been obtained in the special case 
when service is performed in batches of fixed sizeo8. The model with batches of fixed size is 
analytically more tractable than the more general model of variable service capacity. From 
the p.d.e. probabilities of M/GIBI /l/N + B, where service is rendered in batches of fixed size 
B, we also obtain p.d.e. probabilities of the number of phases for the model EB/G/I/N + B 
which has been studied analytically by Truslove [20] and Hokstad [11]. They, however, do 
not give any numerical results. In the special case when waiting space is equal to batch 
size, M/GB/I/ B + B, an exact analytical result has been obtained. For numerical purposes 
(see tables), the service-time distribution has been taken as exponential (M), Erlang (E,,), 
deterministic (D) and hyperexponential (HE2 ) which cover a wide range of distributions 
that may arise in practice. The major contribution of this paper is numerical with some 
important analytical results interspersed. 

2. The Model M/GY/I/N + B 

Analytically, the model is well described in Chaudhry and Templeton [5, p. 186] and 
we follow their notations. For the sake of completeness, necessary details are also given 
here. Customers arrive one at a time according: to a Poisson process with parameter ).. 
The customers are served in batches of variable capacity with maximum capacity B, i.e., 
not more than B customers can be served at any time. Let Uo = 0, U1, U2, ••• , Un, ••• be the 
epochs of departure of the successive batches. The service times, Vn , are independently 
identically distributed random variables (i.i.d.r.vB.) with distribution function (D.F.) B(u). 
The sequence {Vn } is independent of the arrival process. If Yn customers are already preBent 
with the server at epoch Un, then the server takes min(B - Yn, whole queue length) at Un· 

Suppose that Yn are i.i.d.r.vs. with distribution I~iven by 

where E~ bm = 1. 

{

bm, OS mSB 
P(Yn = m) = 

0, m>B, 

The waiting room has a fixed capacity N £:>r customers who wait for service while 
another B customers are being served so that N + B customers can be present in the 
system at any time. Furthermore, the maximum number of customers in the system at a 
departure epoch of a batch is N. 

As stated earlier, this paper starts where many others stopped, i.e., for the model under 
consideration the equations giving the p.d.e. probabilities are (for details, see Chaudhry 
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and Templeton [5, pp. 187-189]): 

B-1 B-1 B 
P/ = kj L P,+tPB-i + L Pi+ L kj-HB-rbr 

i=l r=B-i+1 
N B 

(2.1) + L p;+ L ki-HB-rbr, j = 0, 1, 2, ... , N - 1 
i=B r=O 

B-1 B-1 B 
P: = IN L P;+tPB-i + L P,+ L IN-HB-rbr 

i=l r=B-i+1 
N B 

(2.2) + L p;+ L IN -HB -rbr 
i=B r=O 

with 

(2.3) 

where N;t = number of customers in the system immediately after the nth batch departure, 
and 

N 

P/ = !~~ Pr(N;t = j), P+(z) = LP/zi; 
i=O 

i i 
tPi = P(Y,. ~ j) = Lbi' ibi(z) = L bizi ; ibB(1) = tPB = 1, tPO = bo; 

i=O 

k. = 100 e->'v (AV)' dB( ) 
1 '1 V, o ,. 

00 
K(z) = L kJzi = ~(A - AZ), 

i=O 
00 B 

13 = B - ib~)(1) = B - Libi . 

i=r i=O 

It should be remarked that the actual expression of the p.g.f. P+(z) involves two parts, 
the first part gives the required terms {zi}~ and the second the terms {Zim+B which are 
not required. The first part of the p.g.f. P+(z) is denoted as Q(z) and given in (2.3). If 
the expression (2.3) is expanded in a power series in some suitable region of convergence, 
then Pt, j = 0, 1, 2, ... , N, the coefficient of zi can be obtained. However, this is not simple 
except in the case of exponential service times or single service. 

Obtaining the roots of the denominator of (2.3) is not a problem and they can be easily 
found by the Chaudhry QROOT [6] software package for values of p ~ 1. But the problem is 
with the numerator of (2.3) which involves the unknown probabilities PC:, pi, pi, ... , PJ'-l' 
This difficultly may be explained as follows. Suppose we keep the unknowns and use partial 
fractions of (2.3). This not only leads to solving all the N + 1 equations, but makes the first 
B equations redundant. This is explained in the appendix by means of a simple example, 
i.e., M/M3/1/7. All this implies that even after obtaining 'the zeros of the denominator 
of (2.3) and then expanding Q(z) using partial fractions, the problem reduces to a set of 
N + 1 simultaneous equations whose solution, in turn, requires a numerical procedure if N 
is quite large. In fact, in the case of the finite-waiting-space bulk-service general model, 
the p.g.f. of the number in system at a departure epoch leads to a lengthier solution 
procedure. Besides, it does not even give moments as are generally obtained very easily 
using the infinite-waiting-space model, see, e.g., Briere and Chaudhry [4]. So the problem 
can, in general, be best dealt with using the Jacobi method (or the Gauss-Seidel method 
which, as stated earlier, works better for small values of N) on the equations given in (2.1) 
and (2.2) which, in fact, lead to very accurate results that are given in the attached tables. 
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3. Special Cases of the Model M/GY /l/N + B 

(i) M/GB/l/N + B 
Here the service is rendered in batches of size less than or equal to B. 
Assuming 

{ 

0, r l- ° 
br = 

1, r ,= ° 
so that tPB-. = 1 = <1>B-'(Z) = <1>B(Z), the model M/CY /l/N + B reduces to M/GB/l/N + B. 
(ii) M/GIBI/l/N + B 

407 

If we assume that the service is performed in batches of fixed size B, then the new 
model is denoted by M/GIBI/l/N + B. As in the infinite-waiting-space model, the p.d.e. 
probabilities for cases (i) and (ii) are the same. Besides, in this case, it is easy to get the 
relationship among p.d.e, p.a.e. and r.e. probabilities. Let P;-, P; and p/ be the p.a.e., 
r.e. and p.d.e. probabilities, respectively. Now, first note that since the arrivals follow the 
Poisson process, {Pj}~+B = {p,:-}~+B. This well known fact is used in the derivation of the 
result given in (3.5) below. The relationship between the probabilities P,:- and P/ is given 
in the following theorem. 
Theorem: The probability distributions {p,:-}~+B and {pt}~+B are related to one another 
by 

j 

P:- = I-' "1'.+ , ° ~ i ~ N + B-1 
, A-I-'P++BI-' ~ • .=;-B+1 

and 

where 
N+B-1B-1 B-1 N 

p+= L LP,t.= LiP/+ L BP/. 
;=B .=0 ;=1 ;=B 

Proof: Define 

N. = # in the system, N.". = # in service, and N t = # in queue 
so that 

(3.1) N. = N ••• + Nt , 

where 

{
a, 

N ••• = 
B, 

° ~ N. ~ B-1 

N. ~B. 

In steady state, let NA and ND be the total number of steps in the arrival and departure 
processes, respectively, over a given long period of time. Using the level crossing method 
due to Foster and Perera [10] or Shanthikumar and Chandra [17], in the steady state, the 
number of times a given level is crossed in the :arrival process can differ at most by one 
from the number of times it is crossed in the departure or service process, i.e., the rate 
at which it is crossed from above and the rate at which it is crossed from below must be 
equal. It is the product of the p.a.e. probabilities with NA which gives the rate up; the 
rate down is the product of ND with p.d.e. probabilities, i.e., the general relationship for 
the rates of crossing level i is: 

B-1 
(3.2) NAPj- = ND L Pt-i' 0 ~ i ~ N + B-1 

i=O 
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with boundary conditions: 

P;-, pt = 0, ,. < OJ P;- = 0, ,. > N + Bj and pt = 0, ,. > N. 

Summing both sides of (3.2) over,. from 0 to N + B-1, we get 

N+B-1 N+B-1B-1 
NA L P;- =ND L LPt-, 

;=0 ;=0 '=0 
or 

, or 

(3.3) ND 1-PN+B 
NA = B . 

So from (3.2), the p.a.e. probabilities can be written as 

(3.4) 
1- P- B-1 

p-:- = N+B " P7 . 0 <_ " <_ N + B-1. 
J B ~ J-" 

'=0 

Now, using the argument that, in steady-state, customers must depart the system at the 
same rate at which they join it, 

N+B 
(3.5) A(1- PN+B) = I-'B L P

J
-:-. 

;=B 

While the left-hand side of (3.5) represents the effective arrival rate, the summation on the 
right-hand side gives the probability that the server is busy at arrival epoch and hence, in 
this model, at random epoch. Substituting P;- from (3.4) into (3.5), 

N+B-1B-1 
(3.6) A(1- PN+B) = 1-'(1- PN+B) L L P/_, + I-'BPN+B· 

;=B .=0 

Letting 

N+B-1B-1 B-1 N 
(3.7) " "P7. = ",'P7 + " BP7 = p+ ~ ~ J-' ~ J ~ J-

;=B .=0 ;=1 ;=B 

and using (3.7) in (3.6), we have 

P_ _ A-I-'P+ 
N+B - A-I-'P++I-'B 

Interestingly, the service time distribution only enters into this through the value of P+. 
The remaining p.a.e./r.e. probabilities can be expressed as 

; 
p-:- = I-' " 1';+ , 0 ~ ,. ~ N + B-1. 

J A-I-'P++I-'B ~ 
'=;-B+1 

Hence the stated result. 
Once we have the p.a.e./r.e. probabilities {p;-}{i+B, the performance measures such as 

probability of blocking (PBL) and probability server is busy (PB) are given by PN+B and 
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1- Po, respectively. Also, the expected value (L) and the variance of the number in system 
can be easily obtained using 

N+B 
L == E(N.) = L nPn 

,.=0 
N+B 

Var(N.) = L n2p~ - E(N.)2. 
n=O 

(iii) EB/G/1/N + B from M/G(B(/1/N + B 
Whereas the model M/G(BI/1/N + B gives the distribution of the number in system 

at a p.d.e., EB/G/1/N + B gives the number of phases at the corresponding epoch. The 
relationship 

nB+B-1 
P:= L p/. n~O 

i=,.B 

gives the probability of n in the system for EB/G/1/N + 1 at a departure epoch. 
(iv) M/G(B(/1/B+B 

In this case, the number of waiting spaces, i.e., the number in queue is equal to the 
fixed capacity of the service batch. It can be easily seen that from equation (2.1) we get 
an explicit analytical expression for Pt: 

Pt = lei. 0:5 ,. S B-1 
B-1 P: = 1- L lei · 
i=O 

4. Service Time Distributions 
In this section, we give the expression for len for various service-time distributions. 

(i) Erlang (El<) 
Here, the service-time distribution with le-exponential phases is such that each phase 

has a mean 1/~. As the mean service time for E.~ is Ie/~, the utilization factor p becomes 
~. This gives 

13 )-1< 
K(z) = (1+ Pie (1-z) • 

which is the p.g.f. of a random variable following a negative binomial distribution with 
parameters le and Ie/(Ie + l3p). This yields 

leo "" (Ie/(Ie + l3p))1< 

le,. = kn_t{n + le - 1)l3p / n(l3p + le). n ~ 1. 

Clearly, k = 1 in the above case gives the results for exponential service-time distribution. 
(ii) Deterministic (D) 

In this case, the service time has a constant value, 1/~, which implies that 

K(z) = e-Bp(l-.). 

whence 

lea = e-Bp 

kn = lc,._ l l3p/n. n ~ 1. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



410 ML. Chaudhry. U.C Gupta & B.R. Madill 

(iii) Hyperexponential (HE2) 
In this case, the service time follows a two-phase hyperexponential where one phase 

has a mean of 1/1-'1 and the other of 1/1-'2. Also, two parameters 0"1 and 0"2 are such that 
0"1 + 0"2 = 1. If we define Pl ,= ~B and P2 = -).-, then P = O"lPl + 0"2P2. Given this information, 

"', ",.B 
we have 

This gives 

2 

Kz= . E J.'iC1i 

() i=1 J.'i + ~(1 - z) 

ko _ 1 + BP' 
- 2 

1 + (Pl + P2)B + PlP2B 

kl = -Bp' + ko{B(Pl + P2) + 2P1P2B2 } 

1 + (P1 + P2)B + PlP2B2 

-kn - 2 BplP2 + kn - 1 {B(P1 + P2) + 2P1P2~} 
kn = 2 n ~ 2, 

1 + (Pl + P2)B + PlP2B 

where P' = P10"2 + P20"l· 

5. Numerical Results and Comments 
Extensive numerical work has been carried out for the model under discussion. It has 

been observed that when traffic intensity P ~ 1 and the waiting space N is moderate, say 
< 20, the method converges very fast. But when P = 1 and N is large, the convergence is 
slow, as one would expect. All the calculations were performed on a COMPAQ 286 PC 
in double precision. Though a large number of tables have been produced, only a few are 
presented here. The selection has been done in such a way that by looking at them one gets 
a feel and appreciation of the general applicability of the numerical procedure discussed in 
this paper. 

Table 1 gives the probability distribution of the number in system at p.d.e. for the 
case when B = 10, ho = 0.1, h5 = 0.2, ha = 0.2 and hlO = 0.5. The service time distribution 
is taken as Erlang with three phases (E3). Results have been obtained for P = 0.5, 1 and 
2. At the bottom of the table, mean (I-') and standard deviation (0") of the number in 
system are also given. In the special case when service is performed in batches of fixed 
size, performance measures such as probability of blocking (PBL), probability server is 
busy (PB), and average number in system (L) at r.e. are given in table 2 for P = 0.5, 1, 2, 
and 5, N =10, 20, 50, 100, and 200 and service distribution E3. The PBL in cases when 
the service-time distribution is exponential, deterministic or hyperexponential is given in 
table 3. It can be easily seen from tables 2 and 3 that, for a given p, the PBL decreases 
as waiting space increases irrespective of the service time distribution. Also, when P < 1, 

the decay is faster as N increases and tends to 0 for large N. In the case of P = 1, the 
decay in PBL is very slow. But for p::> 1, PBL -+ 1- l/p for large N. This can be easily 
seen to follow from equation (3.5). Since for p::> 1, the server is unlikely to be idle, the 
result follows. In table 4, we present the effect of batch size on PBL for waiting space 
N = 20. It is observed that PBL increases as B increases. That is, to reduce the PBL the 
server should serve batches of smaller size. Finally, in table 5, for P < 1, we present the 
comparison of the results obtained using the present method and those obtained through 
the truncation ofthe M/Er/1/00 model. The first column gives the probability of number in 
system at p.d.e. when N = 20 and the second column gives the results of N = 00 truncated 
and normalized at N = 20. This is presented for P = 0.2 and 0.99. It can be seen that when 
traffic is light, the finite-waiting-space probabilities can be approximated from those of 
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the infinite waiting space by truncating and normalizing at N. However, in heavy traffic, 
the approximation, as one would expect, is not very good. The cumulative distribution 
functions (CDFs) of the number in system for these models are shown in figure 1. Finally, 
in table 6, we obtain the distribution of number in system for EB/G/I/N + I at p.d.e. using 
the result obtained through phases. These results again match those of infinite waiting 
space by truncating and normalizing at N. Once again, in light traffic, the approximation 
through the infinite-waiting-space model is good. 

6. Conclusions 

We have successfully studied the behavior of the model under discussion. In short, 
we can say that though Singh gives analytically closed-form results for the model un­
der discussion, they are computationally non-tractable. It is shown here that for both 
M/GB/I/N + Band EB/G/I/N + B, the results can easily be dealt with numerically. Though 
we have considered commonly used service-time distributions, the method can be used for 
more general service-time distributions, discrete or continuous. Finally, a remark may be 
made about the future work related to this model. We expect to obtain, though it does 
not appear to be feasible at this stage, the relatitonship among the p.d.e., p.a.e. and r.e. 
probabilities in case of variable service capacity which may be helpful in obtaining various 
performance measures such as PBL, PB, etcetera. 
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Appendix 

It can be easily shown from (2.1) and (2.2) tha.t for M/MB/I/N + B the following rela­
tionships between the ratios of the last B probabilities hold: 

(AI) 

(A2) 

Pj =.-..!!.L 
Pj-l Bp+l' 
PN --=Bp. 

PN - 1 

N-B+15:;5:N-1 

We discuss later how these relationships can be used fruitfully. 
M/M3/1n, ha = 1 

Here, the denominator of (2.3) is z3/1 + 3p(1 - z)l - 1. In this case, the zeros are 

Zo = 1, Zl = 1.446, Z:I,3 = -0.3898 ± 0.5559i, for p = 0.5. 

From (2.3), we have 

(A3) 
p+(z:l + z + 1) + P+(Z2 + z) + p+ z:l Q(z) = 0 1 :I 

-3p(. - zt}(z _. Z:I)(z - Z3) 

or by making partial fractions and picking coefficients of zn 

(A4) 

where 

3 3 3 
p+ p+ ~ A, p+ ~ B, p+ ~ C, 

n = - 0 ~ n+l - 1 ~ n+l - :I ~ n+l' 
~1~ ~1~ ~1~ 

n = 0, 1, 2, 3, 4, 

Z? 
C, = 3 • • 

-3p nj=l ( .. - Z;) 
'i'; 

The numerical values of the Ao's, Bo's and co's are 

(AS) 

where 

Al = -0.6409 A:I,3 = -O.0129±0.1747i 

Bl = -0.4431 B:I,s = 0.2216 =F 0.1322i 

Cl = -0.2620 C2 ,3 = 0.1310 ± 0.1670i. 

1 = PetTo + PiT] + piT:I 

pet = petao + Pipo + pi'7o 

pi = Po+al + pip]. + P2+'71 

pi = peta:l + Pip:1 + pi'7:1 

pt = petas + Pip:, + pi'73 

pt = pet a, + pi 13.&+ pi '7, 

3 A 1 -5 
To = I: _---.!..--=.!L 

'=1 Zi 1 - z;l ' 

11 C, 1- Z:-5 

T2 =I:--'-'­'=1 z, 1- Z,-l 

11 Ai 
an = I:- n+l' 

i=1 zi 

3 Bi 
Pn = I:- n+l 

i=l Z, 
and 

11 Ci 
'7n = I:- n+l' 

i=1 Z, 
n = 0, 1, 2, 3, 4. 
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Solving for the various unknowns, we get 

From (A5), we have 

(A6) 

To = 1 

5 
Tl =-

2 

ao = 1 al = 0 a2 = 0 

5 
/30 = 0 /31 = 1 /32 = 0 /33 = -1 /34 = Z 

T2 = 0 10 = 0 11 = 0 12 = 1 13 = -1 14 = o. 

Pd"=Pd" 

pi=pi 

pi=Pi 

p,+ - ~p,+ - p+ - p,+ 
3-20 1 2 

+ S + 5 + 
P4 = -zPo + zP1 

It can be easily seen that three equations become redundant, and thus we have three 
equations in five unknowns. Consequently, these can be solved by using two equations 
from set (1). But testing shows that when the first two equations of set (1) are solved 
using the last two equations of set (A6), they become redundant. Consider now the last 
two equations of set (1), viz. the equations corresponding to pi and pi. These equations 
give pi = 11285 + 11;5Pt and P3+ = :2~ + 6326sPt. Solving these alongwith the set (A6) gives the 
solution 

Pd" = 0.3433, pi = 0.2627, P2+ = 0.1576, P3+ = 0.0946, pt = 0.1419. 

We could have obtained the above solution using two equations from the equations in 
(AI) or (AI) and (A2). It may be remarked that though all the numerical calculations 
were done in double precision, they are given here only up to four decimal places. The 
solution to the system of equations in set (1) using the Jacobi method agrees with the 
solution obtained above using roots and the Jacobi method. 

On the basis of the above example and several other cases which we tested, it may 
be remarked that in M/MB/l/N + B, the above method produces B redundant equations. 
Since it also makes the first N - B + 1 equations of set (1) redundant, we either use the 
last B-1 equations in set (1) or B-1 equations from set (AI) or sets (AI) and (A2) to 
solve this system completely. Furthermore, using this method, one first needs to find the 
roots and then solve the equations by borrowing from set (1) or (AI) or sets (AI) and 
(A2). Although we discuss one example when G = M to show that B equations become 
redundant, the same thing was observed if we take G = E2 • In view of this, it is felt that 
the redundancy of equations will hold for an arbitrary G. As such, it is better to solve the 
original set directly for any service-time distribution than go'through the above method, 
although the above method will generate more zero elements so that less calculations will 
have to be performed to solve the system of equations. 
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Table 1 

Probability distribution of number in system 
10 at post-departure epoch for MVE3 /1/35. 

n p = 0.5 P = 1.0 P = 2.0 

0 0.152983 0.016874 0.000206 
1 0.176587 0.028005 0.000462 
2 0.151794 0.033331 0.000724 
3 0.120194 0.035512 0.000993 
4 0.092931 0.036306 0.001282 
5 0.071393 0.036596 0.001626 
6 0.054764 0.036716 0.002055 
7 0.041993 0.036749 0.002581 
8 0.032199 0.036716 0.003202 
9 0.024688 0.036622 0.003915 

10 0.018933 0.036617 0.004791 
11 0.014519 0.036654 0.005881 
12 0.011131 0.036596 0.007182 
13 0.008534 0.036504 0.008719 
14 0.006541 0.036307 0.010485 
15 0.005039 0.038050 0.015647 
16 0.003857 0.038119 0.020364 
17 0.002940 0.036909 0.023777 
18 0.002244 0.035371 0.026163 
19 0.001711 0.033798 0.027964 
20 0.001350 0.036147 0.035782 
21 0.001020 0.035449 0.042191 
22 0.000752 0.032660 0.045712 
23 0.000599 0.033139 0.053108 
24 0.000432 0.030564 0.057583 
25 0.000874 0.133690 0.597607 

E p+ 1.000000 1.000000 1.000000 
n 

Il 3.728010 13.932439 22.686253 
(1' 3.753287 7.758390 3.983750 
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Table 2 

Probability of blocking (PBL). Probability of server busy (PB) and Average number in system (L) for 
M /E~ IlIN + B , k = 3 , B = 10. 

N 
P 

0.5 1 2 5 

PBL 0.026896 0.203159 0.518873 0.800381 
10 PB 0.994868 0.999020 0.999893 0.999996 

L 3.388008 5.938935 11.202922 16.263877 

0.001042 0.106971 0.501088 0.800001 
0.995275 0.999627 0.999997 0.999999 

20 6.219504 7.704186 16.669771 24.495860 

0.000000 0.043125 0.500000 0.800000 
0.995280 0.999849 0.999999 1.000000 

50 17.551189 17.881155 34.006643 49.213077 

0.000000 0.021614 0.500000 0.800000 
100 0.995280 0.999924 1.000000 1.00004 

33.377778 40.983459 62.953323 90.408492 

0.000000 0.010820 0.500000 0.800000 
200 0.995280 0.999962 1.000000 1.00000 

46.912520 92.672459 120.846699 172.799321 
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Table 3 

Probability of blocking for M 1MB Il/N + B , B = 10. 

N 
P 

0.5 I 2 5 

10 .074719 0.278261 0.551132 0.803988 

20 .017532 0.186235 0.515778 0.800393 

50 .000253 0.092437 0.500477 0.800000 

100 .000000 0.050228 0.500001 0.800000 

200 .000000 0.026253 0.500000 0.8000 

Probability of blocking for M /DB Il/N + B , B = 10. 

N 
P 

0.5 1 2 5 

10 0.002213 0.111198 0.500205 0.80000 

20 0.000000 0.035113 0.500000 0.80000 

50 0.000000 0.011302 0.500000 0.80000 

100 0.000000 0.0053005 0.500000 0.800000 

200 0.000000 .002578 0.500000 0.800000 
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Table 4 

Effect of batch size (B) on the 
3 probability of blocking for M/E3/1/20+B. 

B P = 0.5 p = 1.0 P = 2.0 

2 0.000000 0.039385 0.500000 

4 0.000003 0.055667 0.500022 

6 0.000049 0.072367 0.500049 

8 0.000297 0.089482 0.500314 

10 0.001042 0.106971 0.501088 

12 0.002617 0.124881 0.502797 

14 0.005278 0.124881 0.505704 

16 0.009128 0.161145 0.509282 

18 0.014125 0.178057 0.513048 

20 0.039385 0.193631 0.516727 
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Table 5 

Probability distribution of number in system at 

post-departure epoch for J!V E~ /1/24 
4 

HI E3 /1/00 truncated and normalized at 

and 

N=20. 

p = 0.2 p = 0.99 
n 

N 00 N 00 

0 0.489004 0.489004 0.013630 0.014146 
1 0.311037 0.311037 0.027272 0.028304 
2 0.132049 0.132049 0.037403 0.038819 
3 0.0467TI 0.046TI7 0.043989 0.045654 
4 0.014934 0.014934 0.047903 0.049716 
5 0.004456 0.004456 0.050039 0.051933 
6 0.001268 0.001268 0.051073 0.053004 
7 0.000349 0.000349 0.051447 0.053397 
8 0.000093 0.000093 0.051450 0.053403 
9 0.000024 0.000024 0.051264 0.053193 

10 0.000006 0.000006 0.050958 0.052868 
11 0.000002 0.000002 0.050494 0.052483 
12 0.000000 0.000000 0.050192 0.052067 
13 0.000000 0.000000 0.049949 0.051638 
14 0.000000 0.000000 0.049290 0.051204 
15 0.000000 0.000000 0.04TI33 0.050769 
16 0.000000 0.000000 0.050582 0.050335 
17 0.000000 0.000000 0.049060 0.049905 
18 0.000000 0.000000 0.043409 0.049477 
19 0.000000 0.000000 0.035766 0.049053 
20 0.000000 0.000000 0.097097 0.048632 

E p+ 1.000000 1.000000 1.000000 1.000000 
n 

IJ. 0.808589 0.808589 10.984300 10.628650 
er 1.014090 1.014090 5.827328 5.638382 
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Table 6 

Probability distribution of number in system at 

post-departure epcoh for E4 / E3 /1/24 and 

E4 / E3 /1/~ truncated and normalized at N=20. 

p = 0.5 P = 0.99 
n N ~ N ~ 

0 0.767965 0.767965 0.038564 0.037841 
1 0.206568 0.206568 0.063215 0.062028 
2 0.023089 0.023089 0.064398 0.063190 
3 0.002164 0.002164 0.062494 0.061321 
4 0.000195 0.000195 0.060394 0.059261 
5 0.000017 0.000017 0.058349 0.057254 
6 0.000002 0.000002 0.056372 0.055315 
7 0.000000 0.000000 0.054463 0.053441 
8 0.000000 0.000000 0.052617 0.051630 
9 0.000000 0.000000 0.050835 0.049881 

10 0.000000 0.000000 0.049112 0.048191 
11 0.000000 0.000000 0.047449 0.046558 
12 0.000000 0.000000 0.045841 0.044981 
13 0.000000 0.000000 0.044288 0.043457 
14 0.000000 0.000000 0.042788 0.041985 
15 0.000000 0.000000 0.041338 0.040562 
16 0.000000 0.000000 0.039937 0.039188 
17 0.000000 0.000000 0.038575 0.037860 
18 0.000000 0.000000 0.037087 0.036578 
19 0.000000 0.000000 0.033626 0.035338 
20 0.000000 0.000000 0.018258 0.034141 

L p+ 1.000000 1.000000 1.000000 1.000000 
n 

~ 0.260115 0.260115 8.835112 9.041883 
(!' 0.504340 0.504340 5.717369 5.857749 
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p=O. 2, N=:20 and N=oo 

1.00.-------~--------------------------------~~---------. 

0.75 
p=O.99, N=oo 

p=O.99, N=20 
t.... 
8 0.50 

0.25 

o.oo~---------.----------.----------,-----------.--------~ 
o 5 10 15 20 25 

n 

Fig. 1: CDFs of the number in system for the examples given in Table 5. 
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