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Abstmci We will point out some relations between potential and barrier function methods for linear 
programming. Then, based on the relations, we will show that the classical logarithmic barrier function 
method for linear programming can be adjusted so that it generates the optimal solution in O( ."jnL) 
iterations, where n is the number of variables and L is the data length. The method can be seen as a barrier 
function version of Ye's "An O( n 3 L) potential reduction algorithm for linear programming". 

1. Introduction 
Since the epoch-making breakthrough by Karmarkar [12], the interior point methods 

for linear programming have been extensively studied in many aspects. One of the focuses 
of the studies is on the central trajectory leading to the optimal point. (See, for example, 
Sonnevend [19], Renegar [17], Bayer and Lagarias [1], Megiddo [15], Kojima, Mizuno and 
Yoshise [13], Monteiro and Adler [16], Goldfarb and Liu [7], Ye and Todd [22], Todd and Ye 
[20].) 

The algorithm dealing with the central trajectory can be classified into two groups: one 
that follows the central trajectory directly and the other that minimizes a substitute function 
of the problem so that the successive points of itera.tion remain in the proximity of the central 
trajectory consequently. Among the latter approaches, some are called large-step algorithms 
in the sense that the step size of the movement in an iteration has no a priori bound but is 
determined by minimizing the substitute function on a line segment. 

There are several types of such functions. We will deal with two of them. One is 
the classical logarithmic barrier functions originated by Frisch [4] and studied by Fiacco 
and McCorrnick [2] as applied to linear programming by many authors. (See Gill, Murray, 
Saunders, Tomlin and Wright [6], Gonzaga [8], Kojima, Mizuno and Yoshise [14] and Roos 
and Vial [18].) The other is the modern potentia.l function introduced by Karmarkar 112], 
which has been studied and extended by many researchers. (See Gonzaga [10], Ye 121], 
Freund [3], Todd and Ye [20], among others.) 

Recently, Roos and Vial [18] have proposed an O( nL) iteration large-step logarithmic 
barrier function algorithms and Ye [21] has developed an O(.,fiiL) iteration potential re­
duction algorithm based on the primal-dual potential function. (Freund [3] and Gonzaga 
[10] have presented similar results.) The O(.,fiiL) iteration seems to be the best theoretical 
bound as of November 1989. 

* This is a revised version of the paper, "An O(.,fiiL) Iteration Large-step Logarithmic 

Barrier Function Algorithm for Linear Programming" appeared in the Institute of Statisti­
cal Mathematics Cooperative Research Report 29 "Nonlinear Optimization-Modeling and 

Algorithm-", pp. 81-98, March, 1991. 
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392 K. Tone 

The purpose of this paper is to point out some relations between the potential function 
and the logarithmic barrier function and to present a new O(.jnL) iteration large-step 
logarithmic barrier function algorithm based on the observations. Although Gonzaga (9) has 
presented an algorithm with the same polynomial bound in the same track, the formula for 
the control of the parameter is different from the present method. Gonzaga reduces it by 
a fixed rate when a centering condition comes to be satisfied, while our method reduces it 
adaptively from iteration to iteration. 

2. Barrier Function and Potential Function 
We will deal with the primal form of the linear programming problem: 

<P> min { eT x : Ax = b, x;::: O} (2.1 ) 

where A is an (m, n) matrix, band e are m- and n-dimensional vectors respectively, x is 
the variable n-dimensional vector to be determined optimally and the symbol T denotes the 
transpose. 

The dual form of <P> is expressed as 

<D> (2.2) 

where sand y are variable n- and m-dimensional vectors respectively. 
For all x and y that are feasible for <P> and <D>, we have 

bT y ::; zOP ::; eT x (2.3) 

where Zop denotes the minimal (maximal) objective value of <P> «D». As far as notations 
are concerned, e denotes the vector of all ones. The upper case letter (X) designates the 
diagonal matrix of the vector (x) in lower case. 

For <P> and <D>, we assume that 
(1) the relative interior of the feasible regions of <P> and <D> is nonempty and we 

have an interior feasible solution xO and yO for <P> and <D> such that 

and 

(2) A has full row rank, 
and 

(3) the objective function value eT x is not a constant on the feasible region. 

Associated with <P>, we consider the logarithmic barrier function 

where J.L is a positive parameter. 

(2.4 ) 

(2.5) 

(2.6) 

The function f is strictly convex on the relative interior of the feasible region and achieves 
a minimum value at a unique point in it. In contrast to the classical barrier function f(x,J.L), 
several authors have been studying extensively other types of functions motivated by Kar­
markar [12). ([8], [20], [21], [22)). 

We will consider here two of them: 
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the primal potential function for an interior feasible x 

n 

Jp(x,~) = pln(eT x - ~C) - L In(xj) 
j=1 

the primal-dual potential function for an interior feasible pair (x, y, S) 

n 

JPD(X, s) = p In(x T s) -- L In(xjsj) 
j=1 

where ~ is a lower bound to zOP and p is a positive parameter. 
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(2.7) 

(2.8) 

For a pair of interior feasible primal-dual solution (x,y,s), let ~ = bTy, then we have a 
relation between the primal and the primal-dual potential functions: 

n 

iPD(X,S) = Jp(x,~) - L In(sj). 
j=1 

(2.9) 

For an interior feasible x O and a positive parameter J-L 0 , the projected Newton (ascent) 
direction associated with J is given by XOp, where 

and 

Xos 
p=----e 

J-Lo 

s=e-A'I y 

(2.10) 

(2.11) 

(2.12) 

For an interior feasible x O and a lower bound ~~o to zOP, the projected gradient direction 
associated with Jp is given by XOpp, where 

P vD 
pp = T ° OA S - e 

e x -~ 

s=e-ATy 

and 

(2.13) 

(2.14) 

(2.15 ) 

For the derivation of the above formulae, see Hertog and Roos [11]. It is evident that if we 
choose the parameter /-to as 

then we have 

° eT x O _ ~O 
J-L =--­

p 

p =pp. 

This fact is the basis on which our algorithm stands. 

(2.16) 

(2.17) 

Now, we consider a line segment in the interior feasible region of <P> starting from an 
interior feasible xO with a direction d. The line segment is expressed in the parameter f3 as 

x(f3) = xO + f3d (2.18) 
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where (3 ~ 0, Ad = 0 and x((3) > O. 
On the line segment, we define a "gap function" between the barrier function and the primal 
potential function as 

9((3) = f(xo + (3d,Jlo) - fp(xo + (3d,~o). (2.19) 

Then, we have the lemma: 

[Lemma IJ 
TOO 

If JlO = c x - ~ , then 9((3) is increasing for (3(0::; (3 < (300), where (300 = min{ -xJ/dj : 
p 

dj < O,j = 1,2,· ·.,n}. 

Proof. 

Q.E.D. 

Moreover, it is easy to see that 9((3) is convex in (3. 
Lemma 1 means the following: 

[Lemma 2J 
TOO 

If JlO = e x - ~ and the logarithmic barrier function f( xO + (3d, Jl O) decreases a certain 
p 

amount from f (xo, JlO) on the line segment xO + (3d at (3 = (30, then more reduction can be 
expected in the primal potential function fp(xO + (3d,~O) from fp(xo,~O) at (3 = (30. 

Based on the relations demonstrated by Lemma 2 and other lemmas explained later, 
we can construct an O(.,fiiL) iteration large-step logarithmic barrier function method which 
can be seen as a natural extension of Roos and Vial [18J and Ye [21). 

3. Algorithm and Complexity 
The following is a barrier function version of Ye's primal-dual algorithm [21) where the 

primal- or dual-step is chosen according to the 2-norm of pp. This algorithm generates 
successive pairs of interior feasible solutions (xO, sO), (xl, sI), ... , from a given initial pai r 
(xO,sO). Since (xk+l,sk+l) is completely determined by (xk,sk), we describe the algorithm 
as the process for generating (xl, sI) from (x O, sO). 

[Algorithm AJ 
Set p = n + 1J.,fii with a constant IJ ~ 1 and 

a = 0.4. 
Given xO, sO and yO such that Axo = b, xO > 0 and sO = c - AT yO > 0, 

Compute 

~O = bTyo 

° eT xO _ ~O 
Jl = 

p 

y = (A(XO)2 AT)-lAXO(XOe - JlOe). 

s=e-ATy 

(3.1 ) 

(3.2) 

(3.3) 

(3.4 ) 

(3.5) 

(3.6) 
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XOs 
p = -0- ._- e 

p. 

then begin the primal-step as follows: 

xl = xO - {30 XOp with {30 = argminp>of(xO - {3Xop, p.0) 

else begin the dual-step as follows: 

end. 

y1 = yO 

.{1 =l 
sI = sO 

Xl = x O 

y1 = Y 

.{1 = bTy 

sI = s 

The process terminates if the relation 

eT xk - bT l < 2-L 

is satisfied for some k. 

The following two lemmas are essentially proved by Roos and Vial [18]. 

[Lemma 3) 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 
(3.11) 

(3.12) 

(3.13) 

(3.14) 
(3.15) 

(3.16) 

If Ilpll < a then (y, s), defined by (3.5) and (3. 15), is an interior dual feasible solution and 
we have 

eTxO - zOP < eTxO - bTy:::; l(n + avln). 

Hence, noting xl = ;ro, P.0 = (eTxO - .{O)/(n + vy'n), sI = sand.{l = bTy, we have 

( l)T 1 _ T 1 1 n + a-Jii( T, ° 0) _ n + a-Jii( O)T ° x s -e x -,g, :::; r.:: e.r -,g, - r.:: x s. 
n+vyn n+vyn 

(3.17) 

(3.18) 

Thus, the duality gap is reduced at least by a factor (n + a-Jii)/(n + v-Jii) « 1). 

Proof. See Appendix 1. 

[Lemma 4) 
If a step length of 73 = (1 + liplioo)-l is taken from xO along the direction -Xop, then 

the change in the barrier function f, denoted by L':l.f satisfies 

tlf:::; -lipli + In(1 + lipli)· (3.19) 

If lipli :2: a = 0.4, then 
tlf:::; -0.04. (3.20) 
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Proof. See Roos and Vial [18J. 

The following two lemmas are derived from those by Ye [21J. 

[Lemma 5J 
Let 0 <, < 1/V2 and p = n + v..(ii with /I 2': l. 
If IIpll < " then we have 

° ° ° /I ,2(1+,/~) 
JPD(X ,s)::; hD(X ,s ) - /I + 1 + ), + 1) + 2(1-'- 2,2) 

° 0 1 , ,2(1 +,/~) 
::; JPD(x ,s ) -"2 + 2" + 2(1- 2,2) (3.21) 

where s is defined by (3.6). 
If we set, = 0.4, then the reduction in the primal-dual potential function is as follows: 

(3.22) 

Proof. See Appendix 2. 

[Lemma 6J 
Let p = n + /I..(ii with /I 2': 1 and (xk, sk) (k = 0,1,2, ... ) be a series of interior primal­

dual feasible solutions with hD( xo, sO) = O(..(iiL). If, for a positive D independent of n, the 
relation 

JPD(XH1,sHl)::; iPD(xk,sk) - D 

holds for each k, then in o (/I..(iiL ) iterations, we have 

If /I = 0(1) moreover, then the polynomial bound of iteration is O(..(iiL). 

Proof. See Appendix 3. 

Now we are ready to show the theorem. 

[Theorem IJ 

(3.23) 

If Algorithm A starts from an interior primal-dual feasible solution (xO, sO) with iPD(XO, sO) 
= O(..(iiL), then it terminates in O(..(iiL) iterations. 

Proof. 
Let the series of the interior feasible primal-dual solutions generated by Algorithm A 

be (xk, sk) (k = 0,1,2, ... ). For each (xk, sk), we have three potential functions J, Jp and 
JPD defined by (2.6), (2.7) and (2.8) respectively. We will show that, for each iteration, the 
primal-dual potential function reduces at least by a positive value D = 0.04 and then we have 
the conclusion by Lemma 6. 

The case IIplI 2': a: 
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In this case we move in the primal space from ;,;0 to xl as defined by (3.8). From Lemma 
4, we have 

J( xl, {to) - J( XO, j.t0) ~ -0.04. 

Using the gap function g, the change in the primal potential function is expressed as 

Jp(xl,~O) - Jp(xo,~o) = J(xl,j.t°) - g((30) - J(xo,j.t0) + g(O) 

~ -0.04 - g((30) + g(O). 

By Lemma 1, we have g((30) 2': g(O). 
Hence, 

Jp(xl,~O) - !P(xo,.!<.o) ~ -0.04. 

Noting sI = sO in this case, we have 

n 

!PD(x1,sl) = Jp(x 1,.!<.0) - L In(s~) 
j=l 

The case lipli < a: 
From Lemma 5, we have 

4. Concluding Remarks 

n 

~ Jp(xo,l) - L In(s~) - 0.04 
j=l 

~ JpD(Xo,So) - 0.04. 

We will point out several features of our algorithm. 

4.1 On primal- and dual-step 

Q.E.D. 

In algorithm A, we choose either the primal or the dual step depending on lipli. Specifi­
cally, if Ilpli 2': a( = 0.4), then we employ the primal, otherwise the dual. The value 0.4 is not 
mandatory, but is used to assure a constant reduction in the primal-dual potential function 
even in the worst case. So, in the implementational phase of the algorithm, the following 
procedure may be recommendable: 

If IIpll < 1 and (xO,s) (s defined by (3.6)) reduces JPD a certain amount, then we go into 
the dual step, otherwise into the primal. Also, the minimization of JPD with respect to .!<. 

may be considerable. 

4.2 On updating ;.. 

If lipli < 1, then we have, from (3.18), 

(4.1 ) 

Thus, we can update the lower bound strictly. This fact means that if we start from;..o that 
is very close to zOP, then the centering condition "pli < 1 rarely holds and so we have few 
chances to visit the dual step. 
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It should be noted that to be in a proximity of the center, as characterized by IIplI < 1, 
is not the object or goal of the path-following algorithm, but just a stimulus. By choosing 
p, = (ex - ~) / p, we change the stimulus, in a sense, adaptively and continuously. This shows 
a sharp contrast to Roos and Vial [18] and Gonzaga [9] where the centering condition is a 
necessity to promote their "outer step". 

4.3 On the choice of p 

Although we employ p = n + /ly'n with /I 2: 1, it is interesting to observe the case 
p = (}(n + /ly'n), with () > 1. From Lemma 6, the polynomial bound of iteration is O(nL), 
worse than O( y'nL) of the present algorithm. Then, if IlplI < a and we go into the dual 
step, it holds 

Thus, the duality gap reduces at least by a factor 1/(}( < 1). If we set () = 2, then Algorithm 
A will behave similarly to Roos and Vial [18] although the correspondence is not exact. 

4.4 On the step size of the algorithm 

Algorithm A uses the the logarithmic barrier function I to determine the step size in the 
primal step. If, instead, we employ the primal potential function Jp for this purpose, then 
Algorithm A coincides with Ye's primal potential reduction algorithm [21]. In this context, 
it may be possible that other types of the substitute functions with the same polynomial 
bound exist. 

As for the step size, let 

( 4.3) 

and 
(4.4 ) 

Then, we have 
( 4.5) 

as otherwise Lemma 1 does not hold. 

4.5 On the dual barrier function algorithm 

The dual barrier function 1 and the dual potential function ID for linear programming 
are defined as 

and 
n 

ID(Y,z) = pln(z- bTy) - L In(sj), 
j=l 

where p, and p are positive numbers, z is an upper bound to the optimal objective value zap 

and S = e - ATy. 
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By considering the difference between 1 and iD in the same way as in the primal case, we 
can develop an O(.,fiiL) iteration large-step dual harrier function algorithm. See Appendix 
4 in details. (cf. The dual algorithm in Ye [21].) 
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Appendix 

Appendix 1. (Proof of Lemma 3.)(Roos and Vial [18]) 
Since 

XOs 
IIplI = 11-0 - ell <: a < 1, 

1-£ 

(s,y) is an interior dual feasible solution and so Kl = bTy < ZOP. 

On the other hand, 

and 
T XOs (xO)Ts cTxO_bTy 

e (-0- - e) = --0 - - n == ° - n. 
1-£ 1-£ 1-£ 

Hence, noting xl = xo, 1-£0 = (cT xO - KO)/(n + vv'1i"), sI = sand Kl = bT y, 
we have 

( I)T 1 _ T 1 1 < n + aVn( T (I 0) _ n + aVn( O)T ° x s -cx -z r,;;cx -z - r,;;x s. 
- - n+vyn - n+vyn 

Appendix 2. (Proof of Lemma 5) 
First, we will show a lemma. 

[Lemma 7] 
Given two numbers a and v with 0 < a < v, the function 

h(x) = x In((x + a)/(x + v)) 

is decreasing for x > O. 

Proof. 
I a-v (v-a)x 

h (x) = In(1 + --) + ( )( ) x+v x+a x+v 

Since (a - v)/(x + v) > -1 for x > 0, we have 

a-v (v-a)x 
h' (x) < -- + ...,--'---.,...,..--''----:-

- x+v (x+a)(x+v) 
a(a- v) 

(x + a)(x + v) < O. 

Now, we prove Lemma 5. 

Q.E.D. 

Q.E.D. 
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Ye [21, page 247) proved that if lipli < '''"In/(n + ,2) with, < 1 then the following 
inequality holds 

Thus, for iipli < a with a < 1/-/2, we have 

o T ~ 0 0 T 0 ~ 0 0 a
2

(1 + aJn/(n - a 2)) 
nln(x ) S - ~ In(xjsj) ~ nln(x ) S - ~ In(xjsj) + 2(1 _ 2 _ 2/ ) 

j=1 j=1 a a n 

o T 0 ~ 0 0 a2(1 + a/~) 
~ nln(x ) S - f:1 ln(XjSj) + 2(1 _ 2a2) . (AI) 

On the other hand, we have from (3.18), 

(A2) 

By Lemma 7 above, the right hand side of (A2) attains a maximum at n = 1 for n 2' 1. 
Thus, 

OT oTO 1+a a-II vn(1n(x ) S -In(x ) S ) ~ In -- = In(1 + --) 
1+11 l+v 

a-v l+a 
< --= -1+--. 

1+11 1+11 

From (AI) and (A3), we have, for a < 1/-/2, 

o 0 0 11 a2(1 + a/~) 
!PD(x ,S)~!PD(X ,S )-1I+ 1 +)a+l)+ 2(1-2a2) 

o 0 1 a a 2(1 + a/~) 
~ !PD(X ,S ) - 2" + "2 + 2(1 _ 2a2) , 

because -11 + lIe a + 1) / (1 + 11) attains its maximum at 11 = 1 for 11 2' 1. 

Appendix 3. (Proof of Lemma 6)(Ye [21)) 

n 

!PD(X, s) = pln(xTs) - E In(xjsj) 
j=1 

n 

= (p - n)ln(xTs) - E In«xjsj)/(xTs)). 
j=1 

From the inequality of the geometric mean and the arithme~ic mean, we have 

Hence, 

n 

- Eln«xjsj)/(xTs)) 2' nlnn. 
j=1 

(p - n) In(cT x - bTy) = (p - n) In(x T s) ~ !PD(X, s) - n In n 

~ !PD(x, s). 

(A3) 

Q.E.D. 
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Thus, if we can reduce jPD at least by 8 (a constant independent of n), at each iteration, we 
have, after (p - n)LJ8 iterations, 

Assume that jPD(XO,SO) = O(VnL) and p = n + IIVn, then after O(IIVnL) iterations, we 
have 

Appendix 4. The dual barrier function algorithm 

[Algorithm B] 
Set p = n + IIVn with a constant 11 2:: 1 and 

a = 0.4. 
Given xo, sO and yO such that Axo = b, 

xO > 0 and sO = c - AT yO > 0, 
Compute 

zO = cTxO 

p,0 = (xO)T sO 

P 
Xl = (SO)-2 AT(A(SO)-2 AT)-lb 

x2 = (SO)-l(1 - (SO)-l AT(A(SO)-2 AT)-l A(SO)-l)(SO)-lc 

° X = Xl + P, x2 

and 

If lipli 2:: a 

end. 

then begin the dual-step as follows: 

n 

with (J0 = argminp~o{(xTSOp)(JJp,o - L In(1 + (Jpj)) 
j=l 

else begin the primal-step as follows: 
xl = X 

sI = sO 

The process terminates if (xk?sk < 2-L is satisfted for some k. 
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