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A bstract There are n neigh boring cells in a straight line. A man selects a cell, hides in it and stays there. 
The searcher examines each cell until he finds the hider. Associated with the examination are a traveling 
cost dependent on the distance from the last cell examined and an examination cost which varies from cell to 
cell. The searcher wishes to minimize the expectation of cost of finding the hider, whereas the hider wishes 
to maximize it. The problem is formulated as a two-person zero-sum game and it is solved. 

1. Introduction 

In this paper, it is pointed out that the results in [6] can be generalized to the case 
where the examination cost of each cell depends Oll the location of the cell and the distances 
between cells are different but still additive (See (2.1) below). An optimal strategy for Player 
1 is unique in spite of the varieties of examination. costs and distances. If the examination 
cost of each cell is a rational number and if each cell can be subdivided in any way, then 
our model can be reduced to the model such that the examination cost of each cell does not 
depend on the location. In such case, the signiflcance of the first generalization, i.e., the 
dependence of the examination cost, may decrease. But in the case that each cell cannot be 
subdivided for physical or other reasons, it is still meaningful. This is discussed in Case 1 of 
Section 3. The proof of the main theorem has become shorter and more elegant than t.hat 
of [6], by the uses of the induction on the number of cells and a recursive relation between 
the values of games. 

Gluss [4] analyzed a model in which there are n + 1 neighboring cells in a straight line, 
labeled from 0 to n in that order. An object is in one of them except Cell 0 with a priori 
probabilities PI, ... ,Pn· At the beginning of the search the searcher is at Cell 0 that is next to 
Cell 1. It is required to determine a strategy that minimizes the statistical expectation of the 
cost of finding the object. Associated with the examination of each cell is the examination 
cost. The only difference between his model and the previous one (See [1]) is that while the 
cost is constant in the latter, it varies through time, that is, a traveling cost is added in the 
model by Gluss (See [4]). Gluss treated two cases: PI ~ ... ~ Pn and PI ?: ... ?: Pn. He 
showed that the latter case is trivial, the searcher should examine each cell in the order of 
1,2, ... ,n, and in the other case he found approximately optimal search strategies when Pi 
is proportional to i. These strategies are represented by a parameter. 

While Gluss treats a one decision-maker problem, in Kikuta [6], we assumed a hider with 
his will in place of an object and took the game theoretical point of view. Thus, there are 
a hider and a searcher. While the searcher wishes to minimize the cost of finding the hider, 
the hider chooses a cell so as to maximize it. We :lave a two-person zero-sum game. 

The unique optimal strategy for the hider obtained in [6] can be compared with an a 
priori probability in Gluss [4]. The latter is proportionally increasing and the former is 
hyperbolically increasing as the label of a cell becomes large. 
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366 K. Kikuta 

Another variant of the model of Gluss is in Kikuta [5] (Also see [7]), where the searcher 
is at the central cell at the beginning of the search. But, it is, still, a one decision-maker 
problem. In Chapter 5 of [8] search games on graphs are treated. The game in this paper is, 
in a sense, a search game on a complete graph. A point which must be indicated seems to 
be how are the cost functions. Search games in [9] consider overlooking probabilities. Again, 
the cost functions must be compared. 

In the next section our model is stated as a two-person zero-sum game in detail. In 
Section 3 some strategies are defined and our main theorem is given, which states they are 
optimal. Section 4 is devoted to proving the theorem. In Section 5 some remarks are given. 

2. The Model and Notation 
There are n + 1 neigh boring cells in a straight line, labeled from 0 to n in that order. 

Player 1 (the hider) selects a cell except Cell 0, hides in it, and stays there. Player 2 (the 
searcher) examines each cell until he finds Player 1. 

o 1 

Figure 1. 

Associated with the examination of Cell i(1 ~ i ~ n) is the examination cost that consists 
of two parts: (i) a traveling cost d(i,j) > 0 of examining Cell i after having examined Cell 
j, and (ii) an examination cost c( i) > o. (i) means that the examination cost varies through 
the search and is a function of the cell which was last examined. We assume 

d(i,j) + dU, k) = d(i, k) for all i,j, k such that 1 ~ i < j < k ~ n, 
d(i,j) = dU,i) for all i,j such that 1 ~ i,j ~ n,i -# j,and 

d(i,j) > 0 for all i,j such that 1 ~ i,j ~ n, i -# j. 
(2.1 ) 

For convenience, we let d(i, i) = 0 for all i : 1 ~ i ~ n. There is no possibility of overlooking 
Player 1, given that the right cell is searched. It is assumed that at the beginning of the 
search Player 2 is at Cell O. Before searching (hiding) Player 2 (Player 1) must determine a 
strategy so as to make the cost of finding Player 1 as small (large) as possible. 

A (pure) strategy for Player 1 is to choose an element, say i, of N == {1,2,···,n}, 
which means he determines on hiding in Cell i. This is denoted by i(i EN). The set of all 
strategies for Player 1 is denoted by N == {l,,2, ... , 1l}. A strategy for Player 2 is defined by a 
permutation on N. The set of all permutations on N is denoted by M == {l,,2, ... , m}, where 
m = n!. Thus under a strategy i, Player 2 examined Cells i(1),i(2), ... ,i(n) in this order. 
In particular, 1 expresses the identity and m expresses the permutation m( i) = n - i + 1 for 
i = 1,···, n. We let j(O) = 0 for all j E M. 

For a strategy p~r (i,D(i E 1:{,I E M), let k = rl(i). Then the cost of finding Player 
1, written as f(i.,D, is : 

k 

f(i,D = L)d(l(r),i(r - 1)) + c(l(r))]. (2.2) 
r=l 

Thus we have a two-person zero-sum game, which is denoted by (f; N, M). Since both N 
and M are finite sets this game is expressed by a matrix whose (i,j)-component is f(i,j)(i E 
1:{,i E M). The numbers of rows and columns are nand n! respectively. We find that this 
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matrix does not always have a saddle point, by seeing the case of 2-cell. Let n = 2. Let 1 
and 2. be the identity permutation and the other one. Then f(l,l) = c(l) + d(O, 1), f(1, :~) = 
d(O, 2) + d(l, 2) + c(l) + c(2),j(2., 1) = d(O, 2) + c( l) + c(2), and f(2.,2.) = d(O, 2) + c(2). This 
2 x 2 matrix has no saddle point. Thus, we need to have the mixed extension of (1; N, M) 
in order to have a solution for any game. Let r == (1; P, Q) be the mixed extension. The 
elements of P and Q are called mixed strategies, or simply, strategies, without confusion. 
For a strategy pair (p, q) E P x Q,j(p, q) is the expected cost of finding Player 1. 

In this note we fix c(I),· .. ,c( n - 1) and c(n). For k = 1"", n, consider a case that 
there are k + 1 neighboring cells in a straight line, labeled n - k, n - k + 1, n - k + 2" ", n in 
this order. Player 2 is at Cell n - k at the beginning. The examination-cost function and the 
distance function are naturally restricted. In the same way as in the n-cell case, we have a two 
person game, which is referred to as rk. The value of rk is denoted by v k . Unless otherwise 
specified, the superscript, k, corresponds to rk. The payoff function of rk is denoted by 
fk. The sets of strategies are denoted by pk and Qk. N k = {n - k + 1, n - k + 2, ... ,nJ 
and Mk is the set of pure strategies of Player 2 in rk. Thus fn = f, pn = P, Qn =: Q, 
and rn = r. We let ck == (c(n - k + 1),. '.,c(n)),sk == c(n - k + 1) + ... + c(n), and 
bk == c(n - k)/[2d(n - k, n) + sk] for k = 1"", n --1. For convenience, we let bO = +00. For 
convenience and simplicity, we often use the notation r' == n - k + r for r = 0", " k in rk. 
Note that (r - £)' = r' - £, and (r + £)' = r' + £ a,s long as these make sense. 

Our problem is to solve rn. 

3. Optimal Strategies. 

The purpose of this section is to give optima.! strategies and examine their properties. 
Define a k-vector pk for k = 1", " n inductively as follows: 

l = 1/[1 + bk-I](bk- I, pk-I), k = 2"", n, and pI = (1). (3.1 ) 

For each k, 1 ~ k ~ n, pk is a probability vector. All components of pn are positive. The 
following proposition gives properties of pn, which are referred to later. 

Proposition 1. 

(i) bn-i-Ipn/[1 + bn - i - I ] = bn-ipn for i = 1 ... n - 2 and pn = bIpn 1 1+1', , n-I n' 

(ii) Suppose i E Mk, and i(x') = I' for some x. Then 

x x-I x-I 

P~/[L d(i(i' - l),i(i')) + L c(i(i'))] ~ c(1') L Pj(i/) , 
i=1 i=I i=1 -

where we let j(O') = I' for convenience. 
(iii) pUc(l) < pVc(2) < ... < p~/c(n). 

Proposition 1 (iii) means the probability to the examination cost ratio increases as the 
distance from Cell ° becomes large. Proposition 1 (ii) is, in a sense, an inverse inequality. 
For example, let k = n, and j be such that j(l) == 2 and j(2) = 1. Then from Proposition 
l(ii), we have pUc(l) ~ pV[2d(1, 2) + c(2)].- -

Proof: (i) From (3.1), for i = 1" ", n - 1, 

n-I 

pi = bn-ip: Il[l + br-I] and p: = 1/n~=2[1 + br-I]. (3.2) 
r=2 
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From these, bn - i- 1p'/ = bn - i [1 + bn - i- 1]p'/+1 for i = 1;···, n - 2, and P:-l = b1p:. These 
are just (i). 

(ii) By induction on k. When k = 2, it suffices to check 

pi,/c(I') = p~,/[2d(I', 2') + c(2')]. 

Let k = 3. It suffices to check 

p~,/c(I') 2:: max{(p~, + p~,]/[2d(I',3') + c(2') + c(3')], 

p~, /[2d(I', 2') + c(2')],p~, /[2d(I', 3') + c(3')]}. 

These are shown by (3.1) for k = 2,3 and the definition of bk . Assume the inequalities are 
true for 2, ... , k - 1. We check the case of k. Suppose i. (y') = 2'. First assume y' < Xl. 

x x-I x-I 

E == p~'[L: d(i.(i' - I),i.(i')) + L: c(i.(i'))]- c(I') L: Pj(i') 
i=1 i=l i=1 -

x-I 
= p~,[d(I',i.(1')) + L: d(i.(i' - 1),i.(i')) + d(i.(x' - 1),1') + L c(i.(i'))] 

i=2 iY)#2' 

- c(I') L Pj(i') + c(2')p~, - c(I')p~, 
iY)#2' -

x-I 
= p~,[d(2',i.(1')) + L d(i.(i' - 1),i.(i')) + d(jJx' - 1),2') + L c(i(i'))] 

i=2 i..< i')#2' 

- c(l') L Pj(i') + c(2')p~, - c(I')p~, + 2d(I', 2')p~,. 
iY)#2' -

Here from y' < x', we have 

x-I x-I 
d(2',i.{1')) + L: d(i.(i' - I),i.(i')) + d(i.(x' - 1),2') 2:: L: d(1.'(i' -1),1.'(i')), 

i=2 i=1 

where 1.' is defined by : 1.'(0') = 2',i(x' - 1) = 2',i(i') ='jJi') for 1 :::; i :::; y - 1 and 
j'(i') = j(i' + 1) for y :::; i :::; x - 2. Furthermore, by (3.1), p~, = bk-1(I + bk-2)p~,/bk-2 = 

~(1') 2d(2', k') + sk-l k 

c(2') 2d(I', k') + sk-lP2" Hence 

E > c(I') {2d(2', k') + sk-l k [\=! df. .'(., _ 1) "( ")) + " ( .( "))] 
- c(2') 2d(I' k') + sk-l P2' ~ \~ z ,2. z . ~ c 2. z 

, 1=1 2.(1')#2' 

2d(2' k') + sk-l 2d(2' k') + sk-l 
+ 2d(I', 2') 2d(1': k') + sk-l p~, + c(2') 2d(1< k') + sk-l p~, 
- c(2') L: Pj(i') - c(2')p~,}. 

i(i')#2' -
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By the induction hypothesis, 

> c(l') 2d(2', k') + sk-l, k 
- c(2') {2d(l' k') + sk-l c(2) L Pi(;') 

, iJi')#2' 

2d(2' k') + sk-l 2d(2' k') + sk-l 
2d(l' 2')' k ('1')' k + , 2d(l', k') + sk-l P2' + c", 2d(l', k') + sk-l P2' 

- c(2') L Pj(i') - c(2')p~,} 
i(;')#2' -

c(l'){ 2d(l',2') '",' k 
= c(2') - 2d(l' k') + sk-l c(2 ) . L" Pi(;') 

, l.J")~2' 

., , 2d(2', k') + sk-l k 'I' 2d(2', k') + sk-l k , k} 
+ 2d( 1 ,2) 2d(l', k') + sk-l P2' + C(L') 2d(l', k') + sk-l P2' - c(2 )P2' 

c(l'){ 2d(l',2') [( (") k-l) k (') """ k ] 
= (2') 2d(l' k') + k-l 2d 2 , k + s P2' - c 2 L.J Pi(i') 

c , s i(;')#2' 

2d(l',2') , k} 
- 2d(l', k') + sk-l c(2 )P2' . 

Here by (3.1), 

Hence 

Thus, 

(2d(2',k') + sk-l)p~, = c(2')j[1 + bk- 1J,and 

k 1 1 
L Pi(i'):S 1 + bk- 1 1 + bk- 2' 

i(i')#2' 

(2d(2', k') + sk-l)p~, -- c(2') L pj(;,) 
i(;')#2' -

> c(2') (2') 1 1 _ (2') k 
- 1 + bk- 1 - c 1 + bk-.1 1 + bk-2 - c P2" 

c(l') 2d(l', 2') , k 2d(l', 2') , k 
E 2: c(2') {2d(l', k') + sk-l c(2 )P2' -- 2d(l', k') + sk-l c(2 )P2'} = o. 

Second assume y' > x'. 

x x-I x-I 
E = P~'[L d(jji' - l),.W')) + L cCi.(/))] - c(l') L pj(;,) 

;=1 ;=1 ;=1 -
x-I x-I 

= p~,[d(2', ,i.(1')) + L d(,i.( i' - 1),.i.< i')) + d(,i.( x' - 1),2') + L c(,i.( i'))] 
;=2 ;=1 

x-I 
- c(l') L pj(;.) + 2d(l', 2')p~,. 

;=1 -
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k k-I k-2 k k-2 c(I') 2d(2', k') + Sk-I k 
By(3.1),PI,=b (l+b )P2,/b =c(2')2d(I',k')+sk- IP2,.Hence 

E = c(I') {2d(2', k') + sk-I k [d(2' '(1')) + ~ d( '(i' _ 1) '(i')) 
c(2') 2d(I', k') + sk- IP2',2 ~ 2 ,2 

x-I x-I 
+ d(t,(x' - 1),2') + L c(t.(i'))J - c(2') L P~(i') 

i=1 i=1 -

2d(2' k') + sk-I 
+ 2d(I', 2') 2d(l< k') + sk-l p~,}. 

Applying the induction hypothesis, 

c(I') 2d(2', k') + sk-l ,x-I k , x-I k 
E 2': c(2') {2d(1', k') + sk-l c(2 ) ~ PjJi') - c(2 ) ~ PiJi') 

2d(2' k') + sk-l 
+ 2d(I', 2')2d(1< k') + sk-lP~'} 

c(I') 2d(1',2') , x-I k 
= c(2') { 2d(I', k') + sk-I c(2 ) ~ PiU') 

2d(2' k') + sk-I 
+ 2d(I', 2')2d(1< k') + sk-IP~'} 

c(I') 2d(1',2') { " k-I)k (')~k} 
c(2') 2d(I', k') + sk-I (2d(2, k) + S P2' - c 2 ti Pi(i') . 

Again applying (3.1), we have 

c(l') 2d(1' 2') > '(2') k > 0 
- c(2') 2d(1', k') + sk-I c P2' - . 

(iii) Since (i) holds and since bI = c(n - 1)/[2d(n - I, n) + c(n)J, we have p~_dc(n -
1) = b1p:/c(n - 1) = p:/[2d(n - l,n) + c(n)J < p:/c(n). Furthermore, p'!lc(i) = [1 + 
bn-i-lJbn-ipn,"+I/[C(;)bn-i-Ij 2d( i + I, n) + sn-i n / (" 1) n / (" 1) f " • 2d( i, n) + sn-i P,+l c l + < Pi+I c l + or l = 
1" ",n - 2. Q.E.D. 

For any i E M, define pj E M by 

pj(i) = i(n + 1 - i) for all i = 1,,,,, n. (3.3) 

pj reverses the order of examination under j. Thus, if j is expressed as an n-vector, that is, 
i = [2(1),i(2),··· ,i(n)], then Ei = [i(n), .. -: ,i(1)J· W~ can assume i is as follows: 

i(l) < i(2) < ... < t,(iJ), 

i(iJ) > i(iI + 1) > ... > i(i2), 

i(i2) < i(i2 + 1) < ... < i(i3), 

j(i2h-d > j(i2h-I + 1) > ... > j(n). - - -
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Thus, i has h peaks and we say i is a h-peaked strategy. We set i(n + 1) = i(O) = 0 for 
convemence. 

Example 2. The next illustration is a 3-peaked strategy when n = 14. j= [1,2,5,10,6, 
3,8,4,9,11,14,13,12,~. -

1 2 5 10 

start 3 
I ::1 

~,""~ _1_1_--.14 

• Ol--------------~--------~d~.~-

n = 14 

o • I 

goal 7 12 13 

Figure 2. 

If j E M is h-peaked then pj is also h-peaked. In particular I-peaked strategies are interesting 
since less traveling costs ~e required under them. Thus let M1 be the set of all I-peaked 
strategies of Player 2. The number of all elements of M 1 is 2n-1. Define a 2k - 1-vector qk 
for k = 1", ., n inductively as follows: For k = 2" .. , n, 

(3.4) 

and for k = 1" .. , n - 1, 

2d(O', k') + sk+1 2d(1', k') + sk d(") (') ak
-

1 

-'--'---,k:--- = k 1 + 0,1 +c 1 k l' 
I+a I+a - l+a-

and aD = +00. (3,5) 

Extend a 2k- 1-vector l to a k!-vector q*k by adding the zero-vector of dimension k!_2k--1. 
That is, q*k = (qk, 0). Here the components in the first half and in the second half of qk 
correspond to I-peaked strategies such that j(I') = I' and pj(1') = I' respectively. The 
zero-vector corresponds to other strategies (S~ (3.8) below). -

Our main result is : 

Theorem 3. pn is the unique optimal strategy for Player I. q*n is an optimal strategy for 
Player 2. The value vn can be calculated by the recursive relation: For k = 1"" , n, 

(3.6) 

or alternatively, 
(3.7) 

Theorem 3 gives only an optimal strategy for pla.yer 2, and it says nothing about the set 
of all optimal strategies for Player 2. Let n = 3. Let 1 = [1,2,3] and 2 = [1,3,2]. Assume 
c(l) = c(2) = c(3) and d(i, i + 1) = 1 for i = 0,1,2. All optimal strategies for Player 2 are 
tI + {1/2 - t)2 + {I/2 - t)p2 + tpl for 0::; t·::; 1/2. 

- -
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It is interesting to give properties of pn and q*n. From (3.4) we have for i E Mi and 
k = 2"" ,n, 

k-l 

qj = IT ak
-

i
/ IT (1 + a i

). (3.8) 
- i-1(i)<i- 1(k) i=1 

Case 1. e(i) = efor all i = I,···,n. 

From (3.5) we have a k = 1 for k = 1" ",n -1. Hence q'j = I/2n
-

1 for all i E M 1. By 

(3.2), if e --+ 0, then pn --> (0,0,···,0,1). pile --+ I/[2d(i,n)] for i = I,···,n -1, and 
p~/e --+ +00 as e --+ 0. If e --+ +00, then bk --+ I/k for all k, and pn --+ (l/n,···, l/n). 
Further if dei, i + 1) = d for i = 0"", n -1, then the model reduces to the case in [6]. From 
(3.6), vk = d(O', k') + (k + I)e/2 for k = 1"" ,no 

3 e 3 e 2d(I, 3) + 2e 3 3 3 S 
Let n = 3. PI = 2d(I, 3) + 3e' P2 = 2d(I, 3) + 3c' 2d(2, 3) + 2c' P3 = I-PI -P2' uppose 

Cells 1 and 2 merge into one cell. Renumber two cells from I' to 2'. how should we evaluat.e 
the examination cost of Cell }' in order that pi, = p~ + p~? 

Conversely let n = 2,c(l) = 2c,c(2) = C,c > 0. Suppose Cell 1 is divided into two cells, 
I' and 2' so that c(I') = c(2') = C. Renumber Cell 2 as 3'. Then by letting d(l', 2') = 0, we 
have pr = p~, + P~" and P§ = p3,· The last argument extends to the n-cell case. 

Case 2. c(i) --+ +00 for some i. 

If 1 ~ i ~ n - 1, then bk 
--+ ° for k 2 n - i + 1 and bn

-
i 

--+ +00. Thus by (3.2), p~ --+ ° 
if i' -# i, and pi --+ 1. If i = n, then bk --+ ° for k 2 1. By (3.2), pn --+ (0,···,0,1). 
By (3.5), an- i 

--+ +00 and a k 
--+ ° for all k 2 n - i + 1. By (3.7), qj > ° implies 

i-1(i -1) > [1(n), ... ,{-1(1) > i-l(n) and i-l(i) < [1(n). Consequently-qj > ° implies 

j(I) = i since i is I-peaked. From (3.6), v k --+ +00 for k 2 n - i + 1. -

Case 3. dei, i + 1) --+ +00 for some i. 

bk --+ ° for k 2 n - i. Hence pn --+ (O,pn-i), where 0 is the i-dim. zero-vector. By (3.5), 
ak 

--+ 1 for k 2 n - i. Hence by (3.4), qj = q'} if i(z) = £(z) for z = i + 1"", n. From 

(3.6), vk --+ +00 for k 2 n - i. --

Case 4. c( i) --+ ° for some i -# n. 

bn- i 
--+ 0. Hence pi --+ ° by (3.2). 

4. Proof of the theorem. 

In this section we prove the theorem by the induction on k. 

Lemma 4. For k = 1"" ,n, and for all pE pk, 

(4.1 ) 

Proof: First we note that (4.1) holds when k' = 1, observing the right-hand side of (4.1) 
is den - 1, n) + c(n) by (3.5). We show (4.1) for k, assuming (4.1) for k - 1. For i. E N such 
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that 2 ~ i ~ k, 

jk(i.', q*k) = L jk(i',jJqj 
iEM~ -

= L jk(i.',jJak- 1q7,-I/[1 + ak- l ] 
iEM~:i.(I')=I' -

+ L jk(i.',jJq;,-I/[1+ak- 1
] 

i.EM~:i.(k')=I' -

= ak- l {d(O', 1') + c(l') + L jk-l(i.' ,l)q7,-I} /[1 + ak- l ] 
i.EM~:i.(I')= \' -

+ {d(O', 1') + L jk-I(i.',llq7,-I}/[1 + ak- l ] 
iEM~:Z(k')=l' -

= ak- 1{d(O', 1') + c(l') + jk-I(i.',q*A-I)}/[l + ak- 1] + {d(O', 1') 

+ jk-1(i.', q*k-1)}/[1 + ak- 1] 

= d(O', I') + a k
- 1c(l')/[1 + ak

-
l

] + [2d(l', k') + sk]/[l + ak
-

1
] 
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by the induction hypothesis and (3.5). Here j' E M1-1 is defined by : j'(z') = j(z') for all 
2 ~ z ~ k when j(I') = 1', and 1'(z') = j((z =- 1)') for all 2 ~ z ~ k wh~n j(k'f= 1'. Next 
let i = 1. - - - -

Lemma 5. 

jk(l',q*k) = L ak- 1q7,-I[d(O', 1') + c(I')l![1 + ak- l ] 
i.EM~:i.(I')=I' -

+ L q7,-I[d(O', k') + d(k', 1') + c(l') + ... + c(k')] 
iEMU(k')=l' -

/[1 + ak
-

1
] 

= d(O', I') + c(l') + [2d(1', k') + c(2') + ... + c(k')]/[l + ak
-

l
] 

= d(O', 1') + ak- 1c(I')/[1 + ak- l ] + [2d(1', k') + sk]/[l + ak- 1]. 

, k 
For k = 1"" ,n, and for any i E NIl' 

l(pk,jJ = d(O', 1') + c(l') 
k-1 z 1 

+ L[d(z', z' + 1) + c(z' -I- 1)] IT 1 bk- r ' 
z=l r=l + 

Q.E.D. 

(4.2) 

Proof: First we note that (4.2) holds when k = 1, observing the right-hand side of 
(4.2) is d(n - 1, n) + c(n). We show (4.2) for k, assuming (4.2) holds for k - 1. Let 

k 

i = [i 1,···, iy, iy+1,"'] and iy+1 = k'. jk(pk,jJ = L pf,jk(i.',jJ. Suppose ih < i' < ih+1 
;=1 
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for some h,O ~ h ~ y. Here io = 0'. Assume first il > I' and i' ~ 2'. Then 

h 

fkU:,j) = d(O', k') + d(i', k') + sn+l-i' + L: c{ir) 
r=l 

h 

= d(O', I') + d(I', k') + d(i', k') + sn+l-i' + L: c(ir ) 
r=l 

= d(O', I') + f k
-

1 (i!, n, 
where j'(z') = j((z - 1)') for 2 ~ z ~ k, and j' E M~-l. Furthermore, it is easy to see for 

• r = 0, :-: . , y + C -

Thus 

fk(lnj) = d(O', I') + f k- 1(lni). 

k 

fk(pk,j) = p~'fk(l',j) + L:p~,-l[d(O', I') + f k- 1(i!,i)]/[1 + bk- 1] 
i=2 

k 

= p~,fk(J:, j) = {d(O', I') + L: pt-1 fk-1(i!, i)} 1[1 + bk- 1] 
i=2 

= bk- 1 [d(O', k') + d(I', k') + sk]/[1 + bk- 1] + {d(O', I') + f k- 1 (pk-l, n} 
1[1 + bk

-
1

] 

= d(O', I') + c(I') + f k- 1 (pk-l, i)/[1 + bk- 1]. 

By the induction hypothesis, 

f k- 1 (pk-l, jJ = d(I', 2') + c(2') 
k-l z 1 

+ L:[d(z', z' + 1) + c(z' + 1)] IT 1 bk- 1- r • 
z=2 r=l + 

Hence 
fk(pk ,D = d(O', I') + c(I') + {d(I', 2') + c(2') 

k-l z 1 
+ L:[d(z', z' + 1) + c(z' + 1)] IT 1 bk- 1- r }/[1 + bk- 1] 

z=2 r=l + 
= d(O', I') + c(I') + [d(I', 2') + c(2')]f[1 + bk- 1] 

k-l z 1 
+ (L [d(z', z' + 1) + c(z' + 1)] IT 1 bk- 1- r }/[1 + bk

-
1] 

z=2 r=l + 
k-l z 1 

= d(O', I') + c(I') + L:[d(z',z' + 1) + c(z' + 1)] IT 1 bk- r · 
z=l r=l + 

Next assume i 1 = I', i ~ 2 and ih < i' < i h+1 . Then 

k h 

fk(i',j) = d(O', k') + d(i', k') + L: c(z') + L: c(ir) + c(I') 
z=i r=2 

where i(z') = i(z') for 2 ~ z ~ k, and i E M~-l. 
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Furthermore, for r = 1, ... ,Y + 1, 

Thus 

k 
jk(pk, jJ = pt,jk(l/, jJ + L p~,-1 [d(O', 1/) + c(I/) 

;=2 

+ jk-l(i',i'))/[1 + bk- 1) 

= p~,jk(l/,jJ + {d(O', 1/) + c(I/) + .rk- 1(l-1 ,i')}/[1 + bk- 1] 
k-l z 1 

= d(O', 1') + c(I/) + L[d(Z', Zl + 1) + C(ZI + 1)] IT bk- r ' 
z=1 r=1 1 + 

Lemma 6. For k = 1"" ,n, and for all i E Mk, 

jk(pk,jJ Z d(O', 1/) + c(I/) 

k-l z 1 
+ L[d(z',z' + 1) + C(ZI + 1)] IT 1 bk- r ' 

z=1 r=1 + 

375 

Q.E.D. 

Proof: First we note that Lemma 6 holds when k = 1, observing both sides become 
d(n - 1,n) + c(n). We show Lemma 6 for k, assuming it holds for k - 1. For i E Mk, let 
i(X') = 1/. 

k 

jk(pk ,D = L p~,jk(i', jJ 
;=1 

k 

= p~'fk(l/,D + LP~,-ll(i',jJ/[1 + bk- 1] 
;=2 
x-I 

- k jk(I' .) + {~ k-l [d(O' 1/) + jk-l (" ")) -PI' -,2. L.JPj(z') ' 1,2. 
z=1 -

k 

+ L p;~~)[d(OI, 1/) + d(i(x' - l),,i(x')) + d(i(x'),i(x' + 1)) 
z=x+l -

- d(i(x' - 1),i(a;1 + 1)) + c(l/) + jk-l(i' ,l)]}/[1 + bk- 1j, 

where jl(ZI) = j(ZI) if z :::; x-I, and = j(Z' + 1) if z 2: x. 
Here, n~te that- -

l(l/,D = d(O', 1/) + c(l/) + jk-l(i(x' -- I),£) + d(i(X' - 1),i(x' )), 
x-I k 

L p;~~)jk-l(i!,i') + L p;~~)jk-lU',£) = jk-l(l-1 ,£), 
z=1 - z=x+l -
x-I k 
~ k-l t ~ k-l 1 d L.J Pj(z,) . L.J Pj(z') = ,an 
z=1 - z=x+l-
pt, = bk- 1 /[1 + bk- 1j. 
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jk (pk, jJ = d(O', 1') + jk-I (pk-I, ,i')/[1 + bk- I] + e(I') 

+ p~,[jk-I(i.(x' - 1),i) + d(jJx' - l),i(x'))] 
x-I 

- e(I') E p;(~V[1 + bk- I] 
z=1 -

k 

+ E p;~~)[d(i(x' - 1),i(x')) + d(i(x'),i.(x' + 1)) 
z=x+1 -

- d(i(x' - 1),i.(x' + 1))]/[1 + bk- I]. 

By Proposition l(ii), 
x-I 

p~,[jk-I(i(x' - l),i') + d(i(x' - 1),i(x'))]- e(I') E p;~V[1 + bk- I] 
z=1 -

~ O. 

Hence, noting (2.1), 

jk(pk,jJ ~ d(O', 1') + jk-l(pk-I,,i')/[1 + bk- I] + e(I') 
k 

+ E p;(:~)[d(i(x -l),i(x)) + d(i(x),i(x + 1)) 
z=x+1 -

- d(i(x - 1),i(x + 1))]/[1 + bk- I] 

~ d(O', 1') + jk-l(pk-I,i)/[1 + bk- I] + e(I'). 

By the induction hypothesis, 

jk-I(l-I,,i') ~ d(I',2') + e(2') 

k-2 z 1 
+ E[d(z' + 1, z' + 2) + e(z' + 2)] IT 1 bk- r - I · 

z=1 r=1 + 
Hence, 

k-I z 1 
~ d(O', 1') + e(I') + + E[d(z', z' + 1) + e(z' + 1)] IT 1 bk- r · 

z=1 r=1 + 

Corollary 7. For k = 1,···, n, 
k-I 

v
k 

= d(O', 1') + e(I') + 1 : bk- I ' and 

k-I (1') 
vk = d(O' 1') + a e + vk-I. 

, 1 + ak- I 

Proof: From Lemma 4 and Lemma 5, letting p = pk, 

d(O' 1') + e(I')ak- 1 /[1 + ak-I] + 2d(1', k') + sk 
, 1 + ak - I 

= jk(pk, q*k) = E qj jk(pk ,D 
iEM~ -

k-I z 1 
= d(O', 1') + e(I') + E [d(z', z' + 1) + e(z' + 1)] IT 1 bk- r · 

z=1 r=1 + 

Q.E.D. 
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From this and Lemmas 4, 5, and 6, we see pk and q*k are optimal strategies. The vahle of 
the game is : 

k-I z 1 
vk = d(O', 1') + c(I') + E[d(z',z' -+- 1) + c(z' -+- 1)] IT 1 bk- r ' 

z=1 r=1 + 
= d(O' 1') + c(I')ak- 1 /[1 + ak-I] -+- 2d(I', k') + sk 

, 1 + ak - I 

From these we have recursive relations on v k . Q.E.D. 

Lemma 8. Let j[r] = [1, ... ,r -1,n,n -1, .. ·,r](1 :::; r :::; n) be I-peaked strategies 
for Player 2. Let An be an n-by-n matrix whose (s, t)-component is fCt,j[n - s + 1]) for 
s = 1, ... , nand t = 1, ... , n. Then the rank of An is equal to n. 

Proof: We show the rank of An is n, by basic transformations of matrices. For each 
x = 2"", n, subtract the first column-vector from the xth column-vector of An. Then 
make a matrix An-l by sweeping out the first column and the nth row by the pivot element 
f(1,j[I]). The (s, t)-component of An- I is : 

r-I(t,j[n - s + 1]) == f(t,j[n - s + :,]) - f(l,j[n - s + 1]) + a;-I 

for s = 1" .. , n - 1 and t = 2, ... , n. Here for t =: 2, ... , n, 

n-I . f(1,j[2]) 
at = [d(l, t) + c(l) + ... -, c(t - 1)] f(l,j[I])' 

Here, note that f(1,j[2]) = .. , = f(l,j[n]). The (n, I)-component of An- I is 1 and the 
others are O's. For each x = 3"", n, subtract the second column-vector from the x-th 
column-vector of An-I. Then make a matrix An-2 by sweeping out the second column and 
the (n -1)st row by the pivot element r- I (2.,j[2]). The (s,t)-component of An-2 is : For 
s = 1", ., n - 2 and t = 3"" , n, --

r-2(t,j[n - s + 1]) == r-I(t,j[n - s + 1]) - r-I(2.,j[n - s + 1]) + a;-2 

= f(t,j[n - s + 1]) - [d(O,2) + c(l) + c(2)] + [a;-I - a~-l] + a;-2. 

Here for t = 3, ... , n, 

n-2 = [fn-I(2 '[2]) _ fn-I(t ·[2])]r-
I
(2.,j[3]) 

at _,J_ _,J_ r- I (2., j[2]) . 

Note that r-1(2.,j[3]) = ... = r- 1(2.,j[n]). The (n, 1) and (n - 1, 2)-components of An-2 
are l's and the others are O's. Continue with this process. We will finally have for s = 1,2 
and t = n - 1, n, 

f2(t.,j[n - s + 1]) == f3(t.,j[n - s + 1]) - f3(n - 2,j[n - s + 1]) + a; 
= f(t,j[n - s + 1]) - [d(O, n - 2) + c(l) + ... + c(n - 2)] 

+ [ n-I n-l] + [n-2 n-2] + + [3 3] + 2 at - an_2 at - an-2 . . . at - an _2 at· 

Furthermore for u = 2" .. , n - 1 and t = n + 1 - u,"', n, 

u u+l . u+l' r+l(n - u,j[n - u + 1]) 
at = [f (n - u,)[n - u]) - f (t,)[n - u])] f +l( .[ ]). 

--- u!!:...=.J!, J n - u 

(4.3) 
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Figure 3 

We show inductively that for u = 2" ", n - 1, 

(I) r+l(n - u,j[n - u] > r+l(n - u,j[n - u + 1]) = ... = r+l(n - u,j[n]). 

u r+l(n - u,j[n - u + 1]) 
(11) at = [d(n - u, t) + c(n - u) + ... + c(t - 1)] fU+l( .[ ]) 

n - U,] n - u 

n fZ(n+l-z,j[n+2-z]) 
X IT (1 - . ), 

z=u+2 fZ(n + 1 - z,][n + 1 - z]) 

for t = n - u + 1", " n. 

(Ill) r(1,j[n - s + 1]) = f(1,j[n - s + 1]) - [d(O, n - u) + c(l) + ... + c(n - u)] 
n-l 

+ E [a: - a~_u] + af > ° 
z=u+l 

for s = 1" .. , u and t = n - u + 1", . , n. 

First, let u = n-l. (I) By the definition of r, r(l,j[l]) = d(O, n)+d(n, l)+c(1)+·· ·+c(n). 
r(1,j[2]) = ... = r(l,j[n]) = d(O, 1) + c(I). -

(11) an-l = [fn(1 '[1]) _ fn(t '[I])]r(1,j[2]) 
t -,]- -,}- r(l,j[l]) 

r(1,j[2]) 
= [d(l, t) + c(l) + ... + c(t - 1)] r(l,j[I])' 

by the definitions of a~-l and r. 
(Ill) For s = 1 ... n - 1 and t = 2 ... n , , , " 

r- 1(1,j[n - s + 1]) = r(1,j[n - s + 1]) - [d(O, 1) + c(I)] + af-l > ° 
since r(.t.,j[n - s + 1]) > d(O, 1) + c(l) and af-l > ° by (2.2) and (11) for u = n - 1. 
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Assume (I), (11), and (Ill) hold for u + 1, ... , n. We check (I), (11), and (Ill) for u. 
(I) From (Ill) for u + 1, we have 

r+1(!!..=....!!,j[n - s + 1]) = r(!!..=....!!,j[n - s + 1]) - [d(O, n - u - 1) + c(l) + ... 
n-l 

+ c(n - u - 1)] + I: [a~_u - a~_u_l] + a:~~ 
z=u+2 

for s = 1,···,u + 1. Here by the definitions of f" and j[n - s + 1], 

r(~,j[n - u + 1]) = ... = r(!!:..=.J!,j[n]) 

= d(O,n - u) + c(l) + ... + c(n -- u), and 

r(~,j[n - u]) = d(O, n) + d(n, n - u) + c(l) + ... + c(n). 

These imply (I) for u. 
(II) From the definition and (Ill) for u + 1, we have 

u _ u+1 . u+1. , j"+1(n - u,j[n - u + 1]) 
at - [J (~,)[n - u] - f (t,)[n - u])J f +l( .[ ]) 

--- u ~,)n-u 

= {r(~,j[n - u]- r(t,j[n - u])J 

n-1 z z r+l(~,j[n - u + 1]) 
+ I: [an_u-at]} fU+l( '[ ]) z=u+1 n - U,) n .~ 

From (11) for z = u + 1, ... , n - 1, 

z F+1(n - z,j[n - z + 1]) 
a ~-u - at = - ~-,:::;:==:.;==~=:===:.. 

fZ+1(n - z,j[n - z]) 

n F(n+l-r,j[n+2-r]) 
X IT (1- . )[d(n-u,t)+c(n-u)+ .. ·+c(t-l)]. 

r=z+2 r(n + 1 - r,)[n + 1 - r]) 

Summing these for z = u + 1,·· ., n - 1, 

n-1 
I: [a~_u - at] = -[d(n - u, t) + c(n ,- u) + ... + c(t - 1)] 

n-l r+1(n - z,j[n - z + 1]) n '1 F(n + 1 - r,j[n + 2 - r])) xI: ITI- . 
z=u+1 r+1(n - z,j[n - z]) r=z+2' r(n + 1 - r,j[n + 1 - r]) 

379 

Noting that f"(~,j[n - u]) - r(t, j[n - u]) == d(n - u, t) + c(n - u) + ... + c(t - 1) by 
the definition of f n , and also by elementary algebra, 

n-1 jz+1(n - z,j[n - z + 1]) n F(n + 1 - r,j[n + 2 - rJ) 
1- I: jz+1( .[ ]) IT (1- jT( 1 "[ 1 ])) z=u+1 n-z,)n-z r=z+2 n+ -r,)n+ -r 

n F(n+l-r,j[n+2-r]), 
= r=ll.2 (1 - r(n + 1 - r,j[n + 1 - r]))' 

we have 

U f"+1(n - u,j[n - u + 1]) 
at =[d(n-u,t)+c(n-u)+ ... +c(t-l)] f +1( .[ ]) 

U ~,)n-u 

n F(n+l-r,j[n+2-rJ) 
x IT (1- -) 

r=u+2 r(n + 1 - r,j[n + 1 - rJ) . 
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(Ill) By the induction hypothesis, 

rU.,j[n - s + 1]) = r+1(i,j[n - s + 1]) - r+l(n - u,j[n - s + 1]) + af 

= r(i,j[n - s + 1]) - [d(O, n - u - 1) + c(l) + ... + c(n - u - I)J 
n-l 

+ L [a: - a~-u-d + af+l 
z=u+2 

- {r(n - u,j[n - s + 1]) - [d(O, n - u - 1) + c(l) + ... + c(n - u - I)J 
n-l 

+ L [a!_u - a~_u_d + a::!:~} + af 
z=u+2 

n-l 

= r(i,j[n - s + 1]) - r(n - u,j[n - s + 1]) + L [a: - a~-uJ + af· 
z=u+l 

Here note that r(n - u,j[n - s + 1]) = d(O, n - u) + c(l) + ... + c(n - u). Thus it remains 
to prove r(i,j[n - s + 1]) > 0. By the definition of at, 

Hence 

u u+l . u+l. r+l(n - u,j[n - u + 1]) 
at = (J (n - u,][n - u]) - f (i,][n - uJ)] fU+l( .[ J) n-u,]n-u 

= {d( n - u, t) + c( n - u) + ... + c( t - 1) 

n-l z z r+1(n-u,j[n-u+l]) 
+ L [a n _ u - at]} r+1( _ .[ _ ]) . 

z=u+l ~,] n u 

r(i,j[n - s + 1]) = r(t,j[n - s + 1]) - r(!!....=...!!,j[n - s + 1]) 

r+l(n - u,j[n - s + 1]) 
+[d(n-u,t)+c(n-u)+ ... +c(t-l)J f +l( .[ J) 

u ~,]n-u 

n-l z z r+l(n - u,j[n - s + 1H 
+ L [at - a n _ u ](1 - r+l( .[ ])). 

z=u+l ~,] n - u 

Here r(i,j[n-s+l]) = d(O,t) + c(l) + ... + c(t), if n - u + 1 ~ t ~ n - s, and 
r(i,j[n - s + I)) = d(O, n)+d(n, t)+c(I)+ . ·+c(n-s)+c(n)+··· +c(t), if n-s+ 1 ~ t ~ n. 
Thus we see r(i,j[n - s + 1]) > d(O,n - u) +c(l) + .. ·+c(n -u) = r(~,j[n - s + 1]). 
From (11) for u+l,·· ., n-l, we have at -a~_u > ° for z = u+l,···, n-l. From (I) for u+ 1, 

r+l(n - u,j[n - u + 1]) 
we have 1 - fU+l( .[ J) > 0. Consequently we have r(i,j[n - s + 1]) > 0. 

!!.=]!,] n - u 
This completes the proof of (I), (11) and (Ill). 
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From (4.3), 

n-1 

f2(n - l,j[nJ) = d(n - 2,n - 1) + c(n --·1) + L[a~-l - a~_2) + a~_l' 
- z=3 

n-·1 

f2(Zl,j[n -1)) = d(n - 2,n) + c(n) + L:[a~ - a~_2) +a~, 

f2(n - l,j[n - 1)) = d(n - 2, n) + d(n, n - 1) + c(n - 1) + c(n) 
n-1 

+ L [a~_l - a~_2) + a~_l' 
z=3 

n-1 

f2(Zl,j[n)) = d(n - 2,n) + c(n -1) + c(n) + L[a~ - a~_2) +a~. 
z=3 

From (Ill) for u = 2, we have f2(n - l,j[n - 1)) > f2(n - l,j[nJ) > ° and f2(Zl,j[n]) > 
f2(Zl,j[n - 1)) > 0. Hence det(A2) -# 0. - Q.E.D. 

Proof of the theorem: By Corollary 7, it remains to prove the uniqueness of the optimal 
strategy for Player 1. Suppose p' is an optimal strategy for Player 1. By Lemma 4 and 
Corollary 7, f(p',q*n) = L q;nf(p',j) = vn and f(p',j) ~ vn for all i E M I . Hence 

tEMI 
f(p', j) = vn for all i E M l' This, combined with Lemma 5 and Lemma 8, implies p' = pn. 

Q.E.D. 

5. Remarks. 

(i) It is interesting to compare the value of the game with the minimum value of the one
person problem which is derived from the model here by replacing Player 1 by the natllfe. 
If an object is in one of n cells with a priori probabilities PI, ... , Pn, the problem becomes: 
Minimize f(p,q) subject to q E Q. If a one decision-maker problem is uncertain (that is, not 
risky) the decision-maker may assume the uniform distribution. Thus, let pU be the uniform 
distribution on N. That is, pU = (l/n,··· ,1/n). Then Min{f(pU,q): q E Q} ::; f(pu,q*n) = 
vn by Lemma 4 and Theorem 3. If c(l) = c(2) == ... = c(n) = c, then Min{f(pU,q) : q E 

Q} = Min{f(pu,j) : i E Md = Min{(n + l)c/2 +.!. td(O,i) + 3. L d(i,n))} = 
n i=l n rl(i)~t-I(n) 

(n + 1)c/2 + .!. t d(O, i) = f(pU ,1), where 1 is the identity permutation. On the other hand, 
n i=1 

vn = d(O, n) + (n + 1 )c/2. 
Gluss [4) considered the minimization problem: Minimize f(p#, j) subject to j E M1• 

Here P.#i = 2i/[n(n + 1)) for i = 1"", n. But he assumed c(l) =- ... = c(n) ~ c and 
d(i,i + 1) = d for i = O,···,n -1 (See p. 279 of [4), and p. 185 of [6)). 

(ii) It is interesting to consider a continuous version of the model dealt with in this note, 
in which the interval of [0,1) is given instead of the n-cells. Player 1 chooses one point in 
it and hides there. We must define strategies for Player 2 suitably before beginning the 
analysis (see [2) or [3)). 

Both Fristedt [2) and Gal [3) treated linear search games, in which the cost is the time 
the searcher requires to discover the hider divided by the distance of the hider from the 
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origin of the real line. Thus it is an interesting problem to solve the case where the cost, 
f(i., i), is replaced by f(i.,i)/i, and to compare with results by them. 

(iii) The second variant is a model in which Player 2 is at the central cell at the beginning 
of the search. Kikuta [5] treated a one-person problem in which Player 1 is replaced by the 
nature. The analysis of this model has not been done yet. 
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