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Abstract A new flowshop scheduling problem related to automated manufacturing systelIls such as FMS's 
and FMC's is discussed. The problem is shown to be an extension of the two-machine f10wship problem 
addressed by Johnson (or a special case of the three machine flows hop problem), and to be NP-hard. Some 
solvable cases are discussed. 

1. Introduction 

Recent innovations in manufa,cturillg systems such as F:\IS's allcl FM( "s aim llot only 
at the realization of fully automation, but also at the realization of customizable production 
with high efficiency. Such systems consist of an automated warehouse, versatile machines 
such as machining centers, automated transportation and material handling systems such 
as AGV's (automated guided vehicles) and robot hands, all of which are controlled by com­
puters. Wassenhove [11] and Jaikumar[6] surveyed over half the FMS's worldwide (93 in 
Japan, 35 in the USA and 27 in Europe), and concluded that there is a definite trend toward 
more integrated independent cells, each independent cell ha.ving a relatively small number 
of versatile machines, fairly large buffer and simple part routings (also see Kise et al [8] for 
the usefulness of such cells). 

This paper considers d new flowship scheduling problell1 arising frolll such automa.ted 
manufacturing systems. That is, there are two machines, an AGV (or a robot hand), a load­
ing station and an unloading station. Jobs are processed on two machines ill the same order. 
Each machine has sufficient capacity of buffer where partia.lly finished jobs can temporarily 
be stored to utilize machines and the AGV efficiently. The AGV can send at most one job at 
a time between two buffers. The loading station where jobs are picked up for being processed 
on the first machine have sufficient capacity of storage. The unloading station where jobs 
finished on the second machine are deposited also have sufficient ca.pa.city of storage. For 
this system, we seek an optimal schedule of the jobs t.hat l1linimizes the maximum comple­
tion time (i.e., makespan). If the machines have no buffer. t!Je problelll call be solved in 
polynomial time, [10]. However, if they have finite buffer. it is \f P -hanl (see P apa.dilllitriou 
and Kanellakis [9]), strongly suggesting that there is no poly lIomial time a.lgorithm for it. If 
the transportation time of the AGV is neglected, t.he problem is tilE' classical two-machine 
flowshop scheduling problem addressed by Johnson [7]. There ha\'e been found some solvable 
cases that are extensions of the Johnson's problem (see Gra.ham et. al [.5]). HO'oVE'ver, it will be 
shown that the new problem is a special case of the 3-ma,chine ftowshop sclieclLJling problem, 
and NP-hard. Some solvable cases are discussed. 

2. Description and Formulation of the System 

354 
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The system considered here basically consists of two machines lvIa. and Mb, an ACY, 
a loading station SI and an unloading station S".. Machine 1\1" has sufficient capacity of 
buffer Ba where jobs finished on Ala are deposited until the AGV is ready to transport 
them. Machine .Mb also has sufficient capacity of buffer BII where jobs from B" is deposited 
until Mb is ready to process them. Each machine can process at most one job at a time 
without pre-emption. The AGY repeatedly runs between B" and Bb, carrying a job c~t a. 
time from Ba to Bb. Loading and Unloading stations SI a.nd Su have sufficient storage 
capacity where unfinished and finished jobs are deposited, respectively. In this system each 
of n jobs stored in S( is processed on 1I1a, transferred to Ba, carried to Bb, processed on 1I1b 
and then deposited to Su. Jobs flow in the same order as they are loaded from SI. This 
order is referred to as a sequence of jobs. 

The following notation is used to formulate the schedule which depicts the flow of each 
job. 

J = {I, 2"", n}: the set of n jobs to be processed. 
Pa [j], Pb(j): positive processing times of job j on machines M.a and ;\;h, respectively, in­

cluding setup times for changing tools and loading and unloading job j from and to 
a machine, none of which depends on the schedule. 

t"b : nonnegative transportation time for the AGY to carry a job from Ba to Bb, includ­
ing time for loading a job from Ba to the AGY and unloading it to Bb. 

tba : nonnegative time for the empty AGV to travel frolll B/J to B". 
te1l d = ta./J + t/Ja.: the turnaround time of the AGV betwe(-'ll /3" alld l-h. 

We define key time instants in a schedule as folloll"s: 

Su[j], Sb[j]: time instants when M" and Mb start processillg job j, respectively. 
Ta[j], Tb[j]: time instants when the AGY with job j starts from Ba and arrives at Bb, 

respectively. 
Fa[j], Fb[j): time instants when job j is finished on AI" and '\h. respectively. 

For a sequence <> = [j(1),j(2), .... j(n)) where j(/.:) represellts the k-th job to be pro­
cessed, these time instants are expressed by the following recursi ve equations: 

Let 

Sa [j (1)] = O. (l) 

1"a [j (1)] = Sa [j ( 1)] + ]l" [j (1 )]. (:2) 

'1~,[j(l)] = F,,[j(l)]. (3) 

1b[j(l)] = Ta[j(l)] + t"b' (4) 

Sdj(l)] = Tb[j(l)]. (.5) 

F/,[j(l)] = Sb[j(l)] + Pb[j(l)]. (6) 

S,,[j(k)) = F.,[j(l,-l)). /.., = 2.:3,···,n.(7) 

1~, [j(":)] = S,,[j("')) + p,,(j( "')]. /... = 2. :3.· .. ,11.(8) 

Ta [j ( k )] = rnax { F:, [j ( k )]. 1/1 [j (le' - 1)] + II}() } . k = :2, :3, ... , It. ( 9 ) 

'1/,[j(k)] = 1~[j(/..:)] + tub, ", = 2,3"" ,n.( 10) 

Sb[j(k)] = max{Tb[j( /.:)), Sb[j( /.. - 1)] + Pb[j( ", - l)j}, k = 2,3,·· . ,n.( 11) 

l~[j(k)] = Sb[j(k)] + Pb[j("')), k = 2, :3", " n.( 12) 

( 13) 
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then Fmax(s) is referred to as the makespan for sequence 8. Our objective is to find a.n 
optimal sequence s* such that Fmax(s*) S; Fmax(s) for any sequence s. It can easily be 
shown that these key time instants can be expressed as follows. 

Lemma 1. For a sequence s = [j(l),j(2), ... ,j(I1)]. 

k-L 
Sa[j(k)] = L Pa[j(i)]' 

;=1 

k 

Fa[j(k)] = L Pa[j(i)]' 
i=1 , 

Ta[j(k)] = ma.x {L Pa[j(h)] + (k - i)trnd}, 
l:5':5 k h=1 

, 
n[j(h~)] = ma.x {L ]J,,[j(h)] + (k -i)"I/,t} + tab· 

1:5.:5 k 11=1 

9 

Sb[j(/d] = ma.x {L ]Ja[j(h)] + (i - g)trud 
1 :5y:5':5 k h=1 

k-1 

+ L Pb[j(h)]} + tab, 
h=i 

9 k 

k=1,2,···,n. (14) 

k = 1,2,···,n. (15) 

k=1,2,···,n. (16) 

k=l.:2.···,II. (17) 

/';=1,2,"',11. (18) 

Fb[j(k)] = max {L ]Ja[j(h)] + (i - g)trnd + L Pb[j(h)]} + tal" 
1:5g:5':5k h=1 "=i 

Thus we have 

3. NP-Hardness 

, 
Fln;LX(S) = max {L Pa[j( 11)] + (I.' - i)trlld 

1:5'9:5n h=1 

n 

+ L Pb[j(h)]} + t,tb' 
h=k 

I.: = 1,:2,· .. , n. ( 19 ) 

(20) 

We show that our scheduling problem is NP-hard by reducillg the following NP-coll1plete 
knapsack problem to a special case of our problem. 

The Knapsack Problem: Given a set of N positive integers {a( 1), a(2), ... ,a( N)} where 
N is an even number, and an integer b such that 

N 

2b = L a(i) and a(i) < b, i = 1,2.···, .V. 
;=1 

then decide whether there is a subset 1 of {I, 2 ...... V} such that 

La(i) = b, where 111 = Nj2. 
iEi 

(21 ) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Automated Two-Machine Flowshop Scheduling 357 

For any instance of this knapsack problem, define an instance of our scheduling problem 
by 

n = N +3, 

tab = b, tba = 1, trnd = b + 1, 

ParOl = 1, Pb[O] = N(b+ 1)/2+ 1, 

Pari] = Pb[i] = a(i), i = 1,2,· .. , N, 

Pa [N + 1] = Pb [N + 1] = .V ( h + 1) t2 + L 

Pa[N + 2] = N(b + 1)/2 + 1, and Pb[N + 2] = l. 
Before showing the :'IP-hardness, the following facts on an optimal sequence (denoted s = 
[j(1),j(2),· .. ,j(n)]) should be noted. 

Fact 1. Any schedule s is optimal if it satisfies 

F;nax(8) = nib + 1) + 1. (22) 

Proof. Note that Pa [j], Pb[j] 2: 1, inl> = b ami t rlld = b + 1. Thell by let tillg i = 1 and 
k = 11 in (20), 

Fmax(s) 2: Pa[j(1)] + (n - 1 )tr1ld + Pb[j(ll)] + inl> 2: n(b + 1) + 1. 

The right hand side of this inequality does not depelld Oil schedule 8, and hence constitutes 
a lower bound of the minimum makespan. D 

Fact 2. For any two jobs i and j such that 

Pa[i] ::; Pa[j] and Pb['i] 2: Pb[j], 

there is an optimal sequence in which jobi precedes job j. 

Proof. It can easily be shown by (20) that a sequellce ill which job i precedes job j 
is never worse than the sequence obtained by exchanging the positiollS of two jobs i and j. 
This completes the proof. D 

Fact 3. Job 0 and job N + 2 are optimally sequencecl as the first ami the last jobs, 
respecti vely. 

Proof. Note that job 0 has the minimum alld the maxilllum processing times on 1Ha 
and Nh, respectively, while job N +:2 has the maximum amI the tllinimulll processing times 
on Ma and Mb, respectively. Thus, it follows frOllt Fa,ct '2. 0 

Fact 4. Job N + 1 must be the (11 + 1 )/2-th job for an optimal sequence ., to satisfy 
(22). 

Proof. Assume that job N + 1 is the p- th job in a sequellce 8 and }J =I- (n + 1) /2. Then 
the following two cases are possible. 
i) P ::; (n - 1)/2: Let i = }J and k = n in (20), then 

p-l 

Fmax(s) 2: ParOl + L }Ja[j(hl] + p,,[j(p)] + (/I - p)trnd + Pb[n] + tab 

2: n( b + 1) + 2. 
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ii) p;::: (n + 3)/2: Let i = 1 and k = p in (20), then 

n-l 

Fmax(s) ;::: ParOl + (p - l)trnd + Pb[j(P)] + L Pb[j(h)] + Pb[n] + tab 
h=p+l 

;::: nib + 1) + 2. 

This completes the proof. o 

Lemma 2. There is an optimal sequence s satisfying (22), if and only if the knapsack 
problem has a solution I satisfying (21). 

Proof. By the above four facts, an optimal sequence takes a form such that 

oS = [0.j(2),···. j((n - 1 )/2). N + l,j((n + :3)/2).··· .j(n - l) .. V -<- '2]. (2:3) 

Let 
(n-l)/2 (n-l)/2 

A = L Pa[j(h)] = L Pb[j(h)] and 
h=2 
It-I It-I 

B = L Pu[j(h)] = L Pb[j(h)] = 2b -.4., 
h=(n+3)/2 

then the following three cases on the value of .4. (or B) are possible. 

i) A < band B > b: By letting i = 1 and k = (/I + 1)/2 ill (20). 

Fmax(';;) ;::: p,,[O] + (n - l)trnd/2 + Pb[N + 1] + 1J + pb[N + 2] + tnb 

> n( b + 1) + l. 

ii) A = B = b: Note that 

Pa[j(k)] < b + ] = t'nd' k = 1. .... (n - 1)/2. (17 + :3)/:2 ... ·./1 -- L 

then by (16), 

Ta[j(k)] = Pu[j(I)] + (k - l)t,.ncl =] + (I.' -1)(b+ 1). 1,=],2,···.(/1-1)/2. (2-!) 

Furthermore, by (9), (10), (15) and assumption ii). 

Ta[j((n + 1)/2)] =: max{Fa[j((n + 1)/2)], T,,[j((ll - 1)/2)] + trn,d 

=: Pa [j ( 1 )] + max { b + N ( b + 1) / 2 + 1, N ( b + 1) /2 + I> + I} 

=: 1 + (n - l)(b + 1)/2. (25) 

By the same argument as the above, 

T,,[j(k)] = Pa[j(l)] + (I.' - l)trlld = 1 + (". - l)(b + I). k = (/I + :3)/2.· . " /I. (26) 

Note that by (19) and (21), 

Fb[j(l)] =~ p,,[j(I)] + Pb[j(l)] + t"b = (/I - I )(b + 1)/2 + 1. (27) 
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then by (10), (11) a.nd (24), 

Sb[j(k)] = max{Ta[j( k)] + tab, Fb[j( k - I)]} = ma.x{ k( b + 1), Fdj( k - I)]} 

=Fb[j{k-l)], 1.:=2,:3,···,(1l-1)/"2. 

This implies by (12) and (1) through (6) that. 

Fb[j(k)] = Sb[j(k)] + Pb[j(I.:)] = Fb[j(l.· - 1)] + fil,[j("')] 
k 

= Fb[j(l)] + L pdj(h)] 
h=2 

k 

= {n - l)(b + 1)/2 + 1 + L Pb[j(h)], I.: = 2.···. (n - 1)/2. (28) 
11=2 

Furthermore, by (9), (10). (11), (25), (28) and assumption ii). 

Sb[j((n + 1)/2)] = max{Ta[j((n + 1)/2)] + t"b. Fb[j((lI - 1)/2)]} 

= (n + l)(b + 1)/2. 

Thus by (12) and (~~3), 

Fb[j((n + 1)/2)] = S'b[j((n + 1)/2)] + Pb[)((n + 1)j:Z)] = (n- l)(b + 1) + 1. (29) 

The same argument as the above leads by (26) alld (29) that 

1.--1 

Sb[j(k)] = Fb[j(/.: - 1)] = Fb[j((n + 1)/2)] + L fib[.i(h)] 

1.:-1 

=(n-l)(b+1)+I+ L Pb[j(h)], 1.-=(17+:3)/2,"',11. 
h=(n+3)/,:~ 

Thus by (23) and assumption ii), 

F max (s) == Fb [j (n)] = (n - 1)( b + 1) + l + B + p!>lj ( 1/ )] = 1/ ( h + 1) + 1. 

Therefore sequence s satisfies (22). 

iii) A> band B < h: By lettingi = (n + 1 )/2 and k = 11 in (20). 

Fmax(s) 2Pa[j(I)] + A + pdj((n + 1)/:2)] + ((/I - 1)/2)t",d + Pb[j(n)] 

+ tab> n( b + 1) + 1. 

This completes the proof. o 

Theorenl 1. The automated two-machine flo\\'shop sclwduling problf'lll wit.h inhllite 
buffer is NP-hard. 

Proof. The knapsack problem is NP-complete [3], allCI can be reduced to a special case 
of the scheduling problem in a polynomial time of the problem size, as shown in Lemma 2. 
This implies the NP-hardness of the scheduling problem. 0 
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In the following we show that our scheduling problem is equivalent to a special case 
of the classical three-machine flowshop scheduling problem where no transportation time is 
considered (e.g., see [7]). 

The three-Machine Flowshop Problem: Let A.(j), B(j) and C(j) be pOSItIve process­
ing times of job j 011 the first, the second and the third machines, respectively. Let 
s = [j(1),j(2), .. · ,j(n)] be a sequence of n jobs to be processed on these machines. The 
makespan Cmax (s) for a sequence s is given by 

i k n 

Cmax(s) = max {L A[j(h)] + L B[j(h)] + L C[j(h)]}. 
l~l~k~n h=l h=i h=k 

Then, find a sequence s that minimizes Cmax (s ). 

Here, assume that 

A[j] = Pa [j], B[j] = trnd and C[j] = }Jb[jl, j = L. 2 .... ,11. 

then 
I /I 

Cmax(s) = max {L Pa[j(h)] + (k: - i + l)t r.,." + L Pb[j(h)]}. 
l~l~k~n h=l h=k 

(30) 

Obviously, Minimizing (:30) is equivalent to lllinimizing (20). The followillg corollaries call 
be obtained from this equi l"a.ll'llcy. 

Corollary 1. The three-machine flowshoj) probleJl1 i~ \' J> -lwl'd. ('\'('11 if the processing 
times of all jobs on the second machine are identica.!. 

Corollary 1 had been open long time (see Szwarc [10]). and Garey, et al. [4] have shown 
the NP-hardness for a more general three machine ftowshoj) scheduling problem where jobs 
are allowed to have different processing times on the three machines. 

Corollary 2. The automated two-machine ftowshop scheduling problel1l with infinite 
buffer has an optimal permutation schedule. 

Proof. By the same property for the three-machine flol\"shop scltedulillg problem [7]. 
D 

Corollary 3. The automated two-machine ftowsllOj) scheduling probll'lll with infinite 
buffer can be solved in polynomial time, if one of the followillg conditions is sa.tisfiecl: 

i) trnd -::; max{minl~j~1I p,,[jl, minl~J~n Pb[j]} , 
ii) trnd 2: min{maXl~)~;ll Pa[jl, maXl~J~1I Pb[j]} , 
iii) p,,[i]-::; Pa[J] implie~ Pb[i] 2: pdj] for any pair of i and j. or 
iv) [min{p,,(i),tr/l"} -min{p"(j),tr,,d}] 

x[min{Pb(j),trnd - min{Pb(i),t,nJ}] 2: O. i.j = 1,2. ... . 11. 

Proof. The above four are sufficient conditions for the three-lllachine ftowshop problem to 
be solved in polynomial time. Condition i) has been a.ddressed by Johllson [7], condition 
ii) by Arthanari and Mukhopadhyay [1], condition iii) by SZ\\"aJc [10] all(1 condition iv) by 
Burns and Rooker [2]. D 
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