Journal of the Operations Research © 1991 The Operations Research Society of Japan
Society of Japan
Vol. 34, No. 3, September 1991

ON AN AUTOMATED TWO-MACHINE FLOWSHOP SCHEDULING
PROBLEM WITH INFINITE BUFFER

Hiroshi Kise
Kyoto Institute of Technology

(Received June 13, 1990)

Abstract A new flowshop scheduling problem related to automated manufacturing systems such as FMS’s
and FMC'’s is discussed. The problem is shown to be an extension of the two-machine flowship problem
addressed by Johnson (or a special case of the three machine flowshop problem), and to be NP-hard. Some
solvable cases are discussed.

1. Introduction

Recent innovations in manufacturing systems such as FMS's and FM('s aun not only
at the realization of fully automation, but also at the realization of customizable production
with high efficiency. Such systems consist of an automated warehouse, versatile machines
such as machining centers, automated transportation and material handling systems such
as AGV’s (automated guided vehicles) and robot hands, all of which are controlled by com-
puters. Wassenhove [11] and Jaikumar[6] surveyed over half the FMS’s worldwide (93 in
Japan, 35 in the USA and 27 in Europe), and concluded that there is a definite trend toward
more integrated independent cells, each independent cell having a relatively small number
of versatile machines, fairly large buffer and simple part routings (also see Kise et al [8] for
the usefulness of such cells).

This paper considers a new flowship scheduling problem arising from such automated
manufacturing systems. That is, there are two machines, an AGV (or a robot hand), a load-
ing station and an unloading station. Jobs are processed on two machines in the same order.
Each machine has sufficient capacity of buffer where partially finished jobs can temporarily
be stored to utilize machines and the AGV efficiently. The AGV can send at most one job at
a time between two buffers. The loading station where jobs are picked up for being processed
on the first machine have sufficient capacity of storage. The unloading station where johs
finished on the second machine are deposited also have sufficient capacity of storage. For
this system, we seek an optimal schedule of the jobs that minimizes the maximum comple-
tion time (i.e., makespan)}. If the machines have no buffer. the problem can be solved in
polynomial time, [10]. However, if they have finite buffer. it is NP-hard (see Papadimitriou
and Kanellakis [9]), strongly suggesting that there is no polynowmial time algorithm for it. If
the transportation time of the AGV is neglected, the problem is the classical two-machine
flowshop scheduling problem addressed by Johnson [7]. There have been found some solvable
cases that are extensions of the Johnson’s problem (see Graham et al [5]). However, it will be
shown that the new problem is a special case of the 3-machine flowshop scheduling problem,
and NP-hard. Some solvable cases are discussed.

2. Description and Formulation of the System

354

Automated Two-Machine Flowshop Scheduling 355

The system considered here basically consists of two machines M, and M, an AGV,
a loading station 57 and an unloading station 5,. Machine M, has sufficient capacity of
buffer B, where jobs finished on M, are deposited until the AGV is ready to transport
them. Machine M} also has sufficient capacity of huffer Bj, where jobs from B, is deposited
until My is ready to process them. Each machine can process at most one job at a time
without pre-emption. The AGV repeatedly runs between B, and By, carrying a job at a
time from B, to Bp. Loading and Unloading stations $; and S, have sufficient storage
capacity where unfinished and finished jobs are deposited, respectively. In this system each
of n jobs stored in S} is processed on M, transferred to B,, carried to By, processed on My
and then deposited to S,. Jobs flow in the same order as they are loaded from S;. This
order is referred to as a sequence of jobs.

The following notation is used to formulate the schedule which depicts the flow of each
job.

J ={1,2,---,n}: the set of n jobs to be processed.
pali], pp(j): positive processing times of job j on machines M, and M, respectively, in-

cluding setup times for changing tools and loading and unloading job j from and to
a machine, none of which depends on the schedule.

t.p : nonnegative transportation time for the AGV to carry a job from B, to By, includ-
ing time for loading a job from B, to the AGV and unloading it to By.

tpe @ nonnegative time for the empty AGV to travel from B, to B,.

trnd = tap + tpe: the turnaround time of the AGV between B, and By,

We define key time instants in a schedule as follows:

Salj), Sply): time instants when M, and M, start processiug job j, respectively.

T.lj), Tpls): time instants when the AGV with job j starts from B, and arrives at By,
respectively.

Foljl, Fply): time instants when job j is finished on M, and My, respectively.

For a sequence s = [j(1),7(2), - .j(n)] where j{k) represents the k-th job to be pro-
cessed, these time instants are expressed by the following recursive equations:

S.()] = 0. (1)
Fu[5(1)] = Sali(1)] + peli(1)]. (2)
T.i(1)] = Fu[5(1)]. (3)
Toli (V)] = Tal5(1)] + tap (4)
Syl (1)) = Tl5(1)]. (3)
B[] = Spli(1)] + peli(1)]- (6)
SR = Fuli(k = 1)), k=23, ,n(7)
F 7R = Sy (k)] + pa(G(R)]. k=2.3,--,n(8)
Tuly (k)] = max{F (ML Tk — D] + lo) k=23, n./(9)
L[5 (k)] = Talj (R)] + tap, k=2,3,--,n(10)
Sp[7 (k)] = max{Ty[j(K)], Seli(k = D] + puo[y(k = DI}, b = 2,3, (1)
Fyli (k)] = Seli(B)] + poli (k)] k=23,,n(12)
Let
Fhax(s) = B[j(n)], (13)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

356 H. Kise

then Flax(s) is referred to as the makespan for sequence s. Our objective is to find an
optimal sequence s* such that Fiax(s*) < Fpax(s) for any sequence s. It can easily be
shown that these key time instants can be expressed as follows.

Lemma 1. For a sequence s = [j(1),7(2), -, j(n)],

Sali(k)) = 3_ pali(d)], k=1,2,---,n. (14)
k
k) = Zpa[j(i)], k=1,2,---,n. (15)
Lulitk)) = f?t‘dZ Pali ()] + (k = i)trna}. E=12n (16)
Tilj(k)] = ln<1d\ Zpu =)teud} + Lab. k=12 n. (17)
. g . .
Splith)] = | max k{:é,] Pali (W] + (i = 9)trua
+ Zm[j(h)]} + tab, k=12 n (18)
Fb[](k)] = 1<n12x<k{z pa[] h] + rnd + hi:lpb h } + tuln

k=1,2,--,n. (19)
Thus we have

Frax(s) = 1<rln<akx<n{2pa[1 (h)] + (k= Oty

+ Z poli (P)]} + tap- (20)

3. NP-Hardness

We show that our scheduling problem is NP-hard by reducing the following NP-complete
knapsack problem to a special case of our problem.

The Knapsack Problem: Given a set of V positive integers {a(1), @(2),---,a(N)} where
N is an even number, and an integer b such that

a(2) and a(2) < b, ¢=1,2.---, N,

an

then decide whether there is a subset I of {1,2.--.. N} such that
> a(i) = b, where || = N/2. (21)
el

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Automated Two-Machine Flowshop Scheduling 357

For any instance of this knapsack problem, define an instance of our scheduling problem
by
n=N+3,

tab = b, tpa = 1, trpg = b+ 1,

Pal0] = 1, po[0] = N(b+ 1)/2+1,

pelt] = poli) = alz), 1 = 1,2, N,

PN+ 1] =[N+ 1] =Nb+1)/2+ 1.

Pa[N +2]=N(b+1)/2+1, and py[N +2] = 1.

Before showing the NP-hardness, the following facts on an optimal sequence (denoted s =
[7(1),7(2),---,j(n)]) should be noted.

Fact 1. Any schedule s is optimal if it satisfies
Frax(s)=n(b+ 1)+ 1. (22)
Proof. Note that p,[j], psly] = 1, tes = b and f,,4 = b+ L. Then by letting i = 1 and
k =mnin (20),
Frax($) 2 pa[7 (V)] + (n — D)topa + poli(n)] + ey > n(b+1) + 1.

The right hand side of this inequality does not depend on schedule s, and hence constitutes
a lower bound of the minimum makespan. a

Fact 2. For any two jobs ¢ and j such that

Pali] < palj] and pyli] > pylj]

there is an optimal sequence in which job ¢ precedes job .

Proof. It can easily be shown by (20) that a sequence in which job i precedes job
18 never worse than the sequence obtained by exchanging the positions of two jobs 7 and j.
This completes the proof. O

Fact 3. Job 0 and job N 4 2 are optimally sequenced as the first and the last jobs,
respectively.

Proof. Note that job 0 has the minimum and the maximum processing times on M,
and My, respectively, while job N + 2 has the maximum aud the minimumn processing times
on M, and My, respectively. Thus, it follows from Fact 2. a

Fact 4. Job N + 1 must be the (n 4+ 1)/2-th job for an optimal sequence s to satisfy
(22).

Proof. Assume that job N+ 1 is the p-th job in a sequence s and p # (n+1)/2. Then
the following two cases are possible.
1) p<(n—1)/2: Let : = p and k = n in (20), then

p~-1
Frmax(s) > Pa[o] + Z Pa[j(h)] + Pa.[j(l’)] + (0 — p)ta + Pb[”} + tus

h=2

>nlb+1)+2.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

358 H. Kise

i) p>(n+3)/2: Leti =1 and k = pin (20), then

n—1
Fmax(s) 2 Pa [0] + (P - l)trnd + Pb[j(P)] + z Pb[J(]l)] + Pb[”] + tap
h=p+1
>n{b+1)+2
This completes the proof.)

Lemma 2. There is an optimal sequence s satisfying (22), if and only if the knapsack
problem has a solution I satisfying (21).

Proof. By the above four facts, an optimal sequence takes a form such that

s=1[0.7(2),- - J{(n = U/2A N+ 1L 5({(n+3)/2). - jn = 1).N +2]. (23)
Let

(n—-1)/ (n—1)/

A= z pali(R)] = Z polj(R)] and
h=2 h=2
n—1 n—1

B = Z pu[i(R)] = Z poli(h)] = 20— A4,

h=(n+3)/2 h=(n+3)/2

then the following three cases on the value of A (or B) are possible.
1) A< band B > b: By letting ¢ = 1 and k = (n + 1)/2 in (20},

Fuax(8) 2 pal0] + (n — Dtyna/2 + po[N + 1]+ B+ pp[N + 2]+ ta
>n(b+1)+1.

it) A= B = b: Note that
pali(R)] < b+ 1 = trnas k=1, (n=1)/2.n+3)/2, - .n-1.
then by (16),
Tuli (k)] = paJ(1)] + (k = D)tpa = 1+ (k = 1)(b + 1). k=120 (= 1)/2. 0 (24)
Furthermore, by (9), (10), (15) and assumption ii).

Tu[i((n+1)/2)] = max{Fu[7((n + 1)/2), T, [j((n — 1)}/2)] + trna}
: pol7(1)] + max{b+ N(b+1)/24+ 1, N(b+1)/2+ b+ 1}
14 (n—1)(b+1)/2. (25)

By the same argument as the above,
Ti(0) = palf(1] + (k= Dtgua = L4+ (k=)b+ 1) k= (n+3)/20n. (26)

Note that by (19) and (21),

Fy[5(1)] = pa[f (] + polJ (V)] + ey = (0 = 1)(b+ 1) /2 + 1, (27)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Automated Two-Machine Flowshop Scheduling 359

then by (10), (11) and (24),

Spli (k)] = max{Tu[j(k)] + tap, Foli(k — 1)]} = max{k(b+ 1), F[5(k = 1)]}
= Fy[jk=1)], k=23, (n—-1)/2
This implies by (12) and (1) through (6) that
B[j(B)] = Spli(k)] + poli (k)] = Fpli(k — 1)] + pulJ (k)]
= R[]+ ,ﬁ:{’m[j(h)]
=n-D0b+1)/2+1+ ’Xk:)pb[j(h)], k=2, (n—-1)/2. (28)
Furthermore, by (9), (10), (11), (25), (28) and assumption ii).
Sp[i((n 4+ 1)/2)] = max{Tu[j((n + 1)/2)] + tw. Fpli((n — 1)/2)]}
=(n+ 1)(b+1)/2.
Thus by (12) and (23),
Fli((n+1)/2)] = S[j((n+ 1)/2)] + ph((n + 1)/2)] = (n = 1)(6+ 1)+ 1. (29)

The same argument as the above leads by (26) and (29) that

k-1
S = Btk —) = Bl + 0/21+ 52 wlih)
h=(n+3)/2
k-1
=(n-=10G+1)+1+ D k)], k=m+3)/2,--,n.
h=(n+3)/2

Thus by (23) and assumption ii),
Frnax(s) = Blj(n)] = (n = 1)(b+ 1)+ 1+ B+ pyliln)] = n(b+ 1) + 1.
Therefore sequence s satisfies (22).
1) A > band B < &: By letting ¢ = (n + 1}/2 and k = n in (20).

Frnax(8) Zpa[j ()] + A+ ppli((n + 1)/2)] + ((n = 1)/ 2)t,00 + pols (1))
ity >n(b+ 1)+ 1.

This completes the proof. O

Theorem 1. The automated two-machine Howshop scheduling problem with infinite

buffer is NP-hard.

Proof. The knapsack problem is NP-complete [3], aud can be reduced to a special case
of the scheduling problem in a polynomial time of the problem size, as shown in Lemma 2.
This implies the NP-hardness of the scheduling problem. O

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

360

H. Kise

In the following we show that our scheduling problem is equivalent to a special case
of the classical three-machine flowshop scheduling problem where no transportation time is
considered (e.g., see [7]).

The three-Machine Flowshop Problem: Let 4(j), B(j) and C(j) be positive process-
ing times of job j on the first, the second and the third machines, respectively. Let
s = [5(1),7(2),- -, j(n)] be a sequence of n jobs to be processed on these machines. The
makespan Cpax(s) for a sequence s is given by

i k
Cmax(s) = max {Y_ A[i(R)] + Y Bli(h)]+ Y_ ClH(A)]}-
h=1 h=i

1<i<k<n
Then, find a sequence s that minimizes Cpax(s$).

Here, assume that

Alj] = pelj)s BU] = trna and C[J] = pply], J = L2 on.
then

] n

Cmax(s) = max {Z pa[](h)] + (k=4 Dt + Z poly ()]} (30)
= h=k

Obviously, Minimizing (30) is equivalent to minimizing (20). The followiug corollaries can

be obtained from this equivalency.

Corollary 1. The three-machine flowshop problem is NP-hard. even if the processing
times of all jobs on the second machine are identical.

Corollary 1 had been open long time (see Szwarc [10]). and Garey. et al. [4] have shown
the NP-hardness for a more general three machine flowshop scheduling problem where jobs
are allowed to have different processing times on the three machines.

Corollary 2. The automated two-machine flowshop scheduling problem with infinite
buffer has an optimal permutation schedule.

Proof. By the same property for the three-machine Howshop scheduling problem [7].
O

Corollary 3. The automated two-machine flowshop scheduling problem with infinite
buffer can be solved in polynomial time. if one of the following conditions is satisfied:

1) trpd < max{mini<;<n pefj], mini< < piljl},

i) tyna > min{maxi<;<n paly], maxi<j<n pplil}.

i) poft] < poly] implies pyld] > pplJj] for any pair of i and j. or

iv) {nlin{l)a(iL trml} - I1li1]{[)(,(_j), tru(l}]

S

xmin{py(J): trna} — min{py(), trpa}) > 0.) =1, TS

Proof. The above four are sufficient conditions for the three-machine flowshop problem to
be solved in polynomial time. Condition i) has been addressed by Johuson (7], condition
ii) by Arthanari and Mukhopadhyay [1]. condition iii) by Szwarc [10] and condition iv) by

Burns and Rooker [2]. 0

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Automated Two-Machine Flowshop Scheduling 361

Acknowledgement: The author would like to thank Prof. Toshihide Ibaraki of Kyoto
University for his valuable comments.

(1]
[2]

[10]

(11]

References
T.S. Arthanari and A.C. Mukhopadhyay: A Note on a Paper by W. Szwarc, Nuval
Research Logistics Quarterly, Vol. 15 (1971), 135-138.
F. Burns and J. Rooker: A Special Case of the 3 x n Flow-Shop Problem, Naval Resecrch
Logistics Quarterly, Vol. 22 (1975), 811-817.
M.R. Garey and D.S. Johnson: Computers and Intractability, W.H. Freeman and Com-
pany, San Francisco, 1979.
M.R. Garey, D.S. Johnson and Ravi Sethi: The Complexity of Flowshop and Jobshop
Scheduling, Mathematics of Operations Research, Vol. 1, No. 1 (1976), 117-123.
R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan: Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey, Annals of Dis-
crete Mathematics, Vol. 5 (1979), 287-326.
R. Jaikumar: Postindustrial Manufacturing, Harvard Business Review, Nov.-Dec. 1986.
S.M. Johnson: Optimal Two-and Three-Stage Production Schedules with Setup Times
Included, Naval Research Logistics Quarterly, Vol. 1 (1954), 61-68.
H. Kise, T. Shioyama and T. Ibaraki: Automated Two-Machine Flowshop Scheduling:
A Solvable Case. Transactions of IIE, Vol. 23, No. 1 (1991), 10-16.
C.H. Papadimitriou and P.C. Kanellakis: Flowshop Scheduling with Limited Temporary
Storage, Journal of the Association for Computing Machinery. Vol. 27, No. 3 (1930),
533-549.
W. Szwarc: Mathematical Aspects of the 3 x n Job-Shop Sequencing Problem, Naval
Research Logistics Quarterly, Vol. 21 (1974), 145-153.
L.V. Wassenhove: A Planning Framework for a Class of FMS. Operations Research
Proceedings of the 17-th Annual Meetings for Deutsche Gesellshaft fir Operations Re-
search, 524-532, Springer-Verlag, Berlin, Heidelberg, 1988.

Hiroshi Kise

Dept. of Mechanical and System Engineering
Kyoto Institute of Techinology

Matsugasaki, Sakyouku

Kyoto, 606, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

