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Abstract In this paper, we study problems arising in applications of the cross aggregation method to

tandem queueing systems with production blocking, and propose two types of applications with different
state descriptions.

The cross aggregation method provides a nested family of approximations of stationary state probabili-
ties of the model by imposing several different levels of assumptions on independence among nodes. Namely,
in Level 1 we derive an approximate model by looking at one node at a time, in Level 2 by looking at two
adjacent node at a time. in Level 3 by looking at three adjacent nodes at a time, and so on.

The method, however, cannot be applied in a naive form to tandem queueing systems with production
blocking since the state space of the system is not a product space of individual state spaces of nodes. We
propose two ways of state description to derive a Markov chain. Using one of them, the method can bhe
applied in Levels 2, 3 and higher, but not in Level 1. Using the other, the method can be applied in any
levels of approximation after modifying the Markov chain to have a product state space, but transition rates
of the modified chain become complicated.

A comprehensive nuierical test shows that in most cases the method provides very good approximations
in Level 3 and sufficiently accurate approximations even in Level 2 for practical purposes.

1. Introduction

Tandem queueing models with blocking are often used to study telecommunication sys-
tems, production systems and other stochastic systems consisting of a series of sgbsystems.
The concept of these tandem queueing models is not sophisticated but analysis of th.em
is rather difficult. It is practically impossible to analyze them with traditional a,nalyt.xcal
methods since dependencies among nodes are not easy to deal with, and it is also limited
to analyze by direct calculation of stationary state probabilities since the number of states
needed for describing a model increases explosively as the size of the model grows larger.
To overcome this difficulty, various approximation methods have been proposed to approx-
imately evaluate performance measures of such models {1-5,7-11,13,14,16,18]. The cross
aggregation method to be discussed here is one of them.

The cross aggregation method was first proposed in [16] to a.pproximate.ly analyze tafxdem
queueing models with communication blocking. It provides a nested family of fmpproxxmate
models to get different levels of approximations of stationary state probabllltl.es of nodes.
Namely, it derives Level-1 approximate model by looking at one nf)de at a time, Leve'l-2
approximate model by looking at two nodes at a time, Level-3 approximate model by looking
at three nodes at a time, and so on. It was applied in [17}] to acyclic queueing networks
with communication blocking. Brandwajn and Jow proposed an approximation method for
tandem queueing models with production blocking in [3]. Their model is eqpivalent to our
Level-2 approximate model. Numerical tests have shown that the computational burfien of
the cross aggregation method increases almost in linear order of the number of nodes in any
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level of approximation.

For models with communication blocking, the stochastic behavior of a system is rep-
resented by a Markov chain on a product space of individual state spaces of nodes, and
this makes us possible to apply the cross aggregation method in a simple way. However,
for models with production blocking, the state space does not become a product space of
individual state spaces of nodes. The purpose of this paper is to study the applicability of
the cross aggregation method to tandem queueing systems with production blocking and to
check the accuracy of the approximations through a comprehensive numerical test.

Our results are as follows. We deal with two state descriptions. One is a generalization of
the state description used in {3, 13}, for which Brandwajn and Jow [3] showed the feasibility
of the cross aggregation method in Level 2. Here we show the method can be applied in
Levels 2, 3 and higher for the state description but not in Level 1. The second one is a
new state description in which a blocking customer is counted in the number of customers
in the next node. For this state description, we can modify the Markov chain so that it
is ergodic on the whole product space of individual state spaces of nodes, and then apply
the cross aggregation method in any level of approximation. The numbers of states in
the approximate models for this state description are less than those for the first, but the
transition rate matrices are more complex. A numerical test shows that in most cases the
method provides very good approximate values in Level 3, and even in Level 2 it provides
sufficiently accurate ones for practical purposes. The computational burden is roughly in
linear order of the number of nodes in any level of approximation.

Our paper is organized as follows.

In the next section, we introduce a simple tandem queueing model having a Poisson
input, multiple exponential servers and a finite buffer at each node. A production type
blocking rule is adopted. We use this model through the paper to discuss problems arising
in applications of the cross aggregation method. However, the results of this paper can be
applied to more general tandem queueing models with phase-type servers and a phase-type
input.

For reader’s convenience, in Section 3, we summarize fundamental concepts of the cross
aggregation method. Precise description of approximation schemes for Levels 1, 2 and 3 are
given in Appendix A.

In Section 4, we introduce two State descriptions A and B for the system. For both state
descriptions we show that the state space is not a product space of individual state spaces
of nodes. For State description A, however, by scrutinizing the structure of the state space
of the Markov chain, we show how Level-2 and higher approximations can be applied but
not Level-1. With State description B, we propose modifying the Markov chain so that the
state space becomes a product space of individual state spaces of nodes. Then it becomes
possible to apply the cross aggregation method in any levels of approximations in a naive
way, though the transition rate matrix becomes complicated.

In Section 5, we present numerical results of a test for 50 cases.

2. Tandem Queueing System with Production Blocking

We consider a K-node tandem queueing system as shown in Fig. 1. Node k,k =
1,2,..., K, consists of s, servers and a finite buffer of size b,. Customers arrive at the
system through a Poisson process with rate A, and are served at Node k subjecting to an
exponential distribution with rate g;. When the buffer of Node 1 is full, arriving customers
are lost.

Blocking may occur due to finite buffers. When the service of a customer at Node k
completes, he proceeds to Node k + 1 if the buffer of Node k -+ 1 is not full, and the server
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Figure 1: The tandem queueing system with production blocking
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who has just completed the service is released for next service. Contrary, if the buffer of
Node & + 1 is full at that time, the customer blocks the server until a vacancy appears in
the buffer of Node k£ + 1. When a service completes at Node 4 + 1 and a vacancy appears
in the buffer of the node, a blocking customer at Node k, if there is any, proceeds to Node
k + 1 and releases (deblocks) the blocked server for new service. This rule is referred as
production blocking.

A conspicuous feature of the tandem queueing system with production blocking is a
simultaneous deblocking, in which several customers move simultaneously in consecutive
nodes. For instance, if a server at Node k is blocked and the buffer in Node k is full, a
server at Node k — 1 may be also blocked when he completes a service. Then upon a service
completion at Node k + 1, the blocked servers are deblocked consecutively, i.e. the blocking
customer at Node & advances to Node k + 1, as well as the one at Node k£ — 1 advances to
Node k. Such a simultaneous deblocking does not occur in a system with communication
blocking, and the existence of simultaneous deblockings makes the analysis of the system
with production blocking more difficult.

To analyze such a system, it is convenient to describe the stochastic behavior of the sys-
tem with a time-continuous vector-valued Markov chain (X,(t), X2(t),..., X k(t)), where
X i(t) represents the state of Node k at time t. In Section 4, we introduce two kinds of
state descriptions of nodes and have two Markov chains to describe the stochastic behavior
of the system.

3. Approximation by the Cross Aggregation Method

In this section, for reader’s convenience, we briefly surnmarize variables and assumptions
treated in the cross aggregation method.

Let Sy = {0,1,..., Ny — 1} be the set of local states of Node k, where Ny is the number
of local states of the node. We consider a time-continuous Markov chain (X1(t), X2(t),...,
X k(t)) on the product state space Sia,.xk = S1 X S2 X -+ X Sk, and at this moment
we assume the chain is ergodic and in steady-state. We denote by z(ni,n2,...,nk) the
stationary probability of the chain in state (ni,ns,...,nk), and by (X1, X2,...,Xk) a
random vector subjecting to the stationary distribution.

Level-1 Approximation. In Level 1, we look at one node at a time (Fig. 2a), and
take marginal probabilities
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zi(ng) = Pr{ X = ny} =EZx(nl,ng,...,nk,...,nK), ny=0,1,..., Ny -1,
J#k 1y

of Node k (k = 1,2,..., K) as variables to be treated.

Using the aggregation technique for Markov chains [6,12,15], for each fixed k, we derive
a system of linear equations for zi(ny), nx = 0,1,...,Ni — 1 (see Appendix A). The
coeficients in the equations are given by weighted sums of transition rates with weights

(1) zl.?,...,k,...,Klk(mla May...,Mk,y...,MK l mk) = x(mla My ooy Mgy va)/zk(mk)-

Hence to evaluate the weights we have to approximate z(ni,ng,...,n,...,nk)’s from
marginal probabilities z,(n:)’s. Here we simply assume that the nodes are statistically
independent as

Assumption 1:
(2) m(nlynQa""nK) =ka(nk)‘
k

Using this assumption we get a system of N, linear equations for z¢(ny), nx =0,1,...,
Ni — 1, containing other z;(n;)’s in the coefficients. If we derive such a system of equa-
tions for each k, k = 1,2,..., K, totally we have X | N, equations for ¥X | N, variables
zi(nk), ne =0,1,...,Ny =1, k=1,2,..., K. Solving this combined system of equations
numerically, we get Level-1 approximate values of z;(n;)’s. Level-1 approximate values for
other performance measures are calculated from these approximate values of zx(n;)’s.

It is important to point out that though the coeflicients of the linear equations are given
in terms of conditional probabilities z; 2, . xk(n1,...,7k | nk) (see (15) in Appendix A),
we need not calculate all of them and hence not all of the conditional probabilities because
most of the coefficients are 0’s or constants (see Appendix A). Therefore the calculating
effort for the approximation is much less than that for the exact solution. This notice is
also valid for Levels-2 and -3 approximations stated below.

Level-2 Approximation. In Level 2, we look at two adjacent nodes at a time (Fig. 2b)
and take

T (ney nig1) = Pr{Xy =ng, Xigy = nppr}
= Z Ez(nl,nz,...,nk,nk.,.l,...,nK),
J#kk+1 1

ng =0,1,...,Nk—— 1, Mgyl =0,1,...,Nk+1 — 1,
k=1,2,...,K -1,
as variables. The number of variables here is YR ;! Ny x Niy1. Using the aggregation

technique and Assumption 2 below, we can derive a system of TK=! Nx x Niy; equations
for these variables as in Level 1.

Assumption 2:

(3) :c(nl,ng, ceey nK) = .’Bl'g(nl, ng)z3|2(n3 I ng) .o :tK[K._.l(nK | nK_l),
where
Tik-1(nk | ne-1) = Pr{Xi =np | Xso1 = ne-a}
= xk—l,k(nk-l,nk)/Zxk-l,k(nk-l,mk)-
my
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Figure 2c: Level-3 approximation

By solving the system of equations numerically, we obtain a set of approximate values of
Tk k+1(Nk, Nk41)’s. Level-2 approximate values for other performance measures are calculated
from these Level-2 approximate values of zj g41(ng, ng+1)’s.

Level-1 variables z;(n;)’s are marginals of Level-2 variables zy x41(ng, nx41)’s. In this
sense, Level-2 approximation is finer than Level-1 approximation. So it is reasonable to
expect that Level-2 approximate values of performance measures are closer to the exact
values than Level-1 approximate values. Furthermore, if approximate values of the two
levels are close enough for most of the principal performance measures, we may expect
that they are close to the exact values, too, at least in a practical sense. Then Level-2
approximation is enough for our mode! analysis. On the contrary, if approximate values
of the two levels are not close enough for some principal performance measures, then we
suspect that at least Level-1 approximate values are not close to the exact values, and we
should proceed to Level-3 approximation.

Level-3 and Higher Approximations. In Level 3, we look at three adjacent nodes
at a time (Fig. 2¢) and take

Trk+1h+2(Nks Mep1, Nkp2) = Pr{Xy = ng, Xiq1 = niqr, Xipo = ngya}

Yo D #(n1yna, ey REy Rkg1s Rkg2y -+ -, ),
itkkTLk+2 7y

nk=0,1,...,Nk—1, nk+1‘—"0,1,...,Nk+1—1,
nk+2=0,1,...,Nk+2—1, k=1,2,...,1{—2,
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as variables. The number of variables here is S % Ni X Ni41 X Niy2. Using the aggregation
technique and Assumption 3 below, we can derive a system of equations for these variables
as previously.

Assumption &

(4) z(nl,n%""nK)
= 331,2,3("1,”2, n3)a:4|2'3(n4 | le,na) cee 331!([}(-2,1(-1(7”( | nK-l,nK.-z),

where
zk\k-—'z.k—l(nk | nk_2y728-1)
= Pr{Xi=rn| Xik_2=ns_2, Xs_1 = ns-1}

zk_z,k-l,k(nk—z, Nk-1, nk)/ E xk—z,k-x,k(nk—z, Nk-1, mk)-
mi

By solving the system of Zf;f Ni X Niy1 X Niyp equations numerically, we obtain
Level-3 approximate values of Zgk4+1,k+2(nk, Nkt1, Tk42)’s. Level-3 approximate values for
other performance measures are calculated from them.

If approximate values of Levels 2 and 3 are close enough, we may expect they are close
to the exact values, too. If they are not close enough, we should proceed higher levels of
approximations. In this way, we can evaluate the errors in approximate values to some
extent in the process of the cross aggregation approximation. As will be shown in Section
5, the approximate values of Levels 2 and 3 are accurate enough for most examples tested.
So the authors think that the cross aggregation by Level 3 is enough in most practical
situations.

In the case we need higher level approximations, we look at ¢ (3 < ¢ < K) successive
nodes at a time in Level i. Variables and assumptions are selected similarly as those in
Levels 1, 2 and 3.

4. State Description and Modification of the Markov Chain

It is easily seen from assumptions in the preceding section that the cross aggregation
method is applied in a natural way if the state space of the underlying vector-valued Markov
chain is a product space of individual state spaces of nodes. However, the Markov chain
derived in the analysis of a tandem queueing system with production blocking does not
have this desirable property. In this section, we introduce two kinds of state descriptions of
such a system, and discuss fitness of the structure of the state space to the approximation
assumptions of the cross aggregation method.

4.1 State Descriptions

There are several possible ways of state descriptions for a tandem queueing system with
production blocking. Here we discuss two of them. The first is a generalization of the one
used in {3, 13, 14] and others, and the second is a new one in which a blocking customer is
counted in the number of customers in the next node.

State description A. Let o, be the number of customers in Node &k and B, the
number of servers blocked at Node k. Then the state of the system can be represented by a

row vector (o1, B1; 02, B2; . . .} 0k, Bk) with Bk = 0. If we denote by Si the set of all possible
states of Node k, then
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5 = [ {onB) lon =01, o +bi, Be=0,1,....00 e 2 B}, k#K,
{(ck,0) | ok =0,1,...,8x + bk}, k=K.

Remind that si is the number of servers and by is the size of the buffer at Node %.

State description B. Let o and §i be as above and
Tk =0'k"",3k+,3k—1, k=1,2,...,K,

with By = 0. Then the state of the system can be expressed by a row vector (1,72, ...,7k).
In this case, we regard 7; as the state of Node k, though it may depend on the original state
of downstream nodes. Then the set Si of possible states of Node k is given by

Sk={Tlek=0,1,...,sk_1 +S);+bk}, k=1,2,...,1{

with 89 = 0.

State description A is natural and easy to imagine the situation of the system. However,
under a simultaneous deblocking, more than two consecutive nodes may change their states.
For example, consider a 4-node system with s = b = 2 for k = 1,2,3,4. Suppose the num-
bers of customers at consecutive 4 nodes are 3,4,4 and 3 respectively, and a server at Node
1 and a server at Node 2 are blocked. Then this state is represented as (3,1;4,1;4,0;3,0).
If one of the customers in node 3 completes its service, then the blocked servers at Nodes 2
and 1 are deblocked consecutively, and the state changes to (2,0;4,0;4,0;4,0). Thus 3 out
of 4 nodes change their states.

On the other hand, in State description B, state changes occur at most two nodes
simultaneously. For example, in the above situation, the state changes from (2,4,5,3) to

(2,4,4,4).

4.2 Shape of the State Space

Here we investigate the shape of the state space for both State descriptions A and B.
We denote by 5'1,2',_‘,1( the proper state space of the system, i.e. the set of all possible states
of the system. Then in both State descriptions A and B, 5’1,2,.,_,1( is clearly a subset of the
product space Sy 2.k = S1 X Sz X --- X Sk of state spaces of individual nodes, and indeed
it is a proper subset.

To see this, let’s consider a case where K =3 and sy =1, b = 1 for £ =1,2,3. Figs.
3a and 3b show the shape of 5'1'2,"_';( in State descriptions A and B, respectively. The shape
of S,.. x for State description A is complicated, but that for State description B is rather
simple. The latter is a polyhedron formed from a rectangular parallelepiped by cutting
along two edges and a corner with three planes.

If we define a Markov chain (X(t), X 3(t),..., X k(1)) on the product space S;,,. x to
describe the behavior of the system, then the chain never visit states outside of 5'1‘2'_,_,1(, and
the corresponding stationary state probabilities are equal to zero. In Assumptions 1, 2 and
3, we impose positive approximate values on all stationary probabilities z{ny,n,,...,ng)
for (ny,ny,...,nk) € S12,. k- In order for the cross aggregation approximation to work
well, the approximate value should be at least positive if (ny,ns,...,nK) € 5‘1,2,",,;(, and
zero if not. In the next subsection, we discuss whether this property is satisfied or not.

4.3 Applicability of the Cross Aggregation Method

First, we shall introduce some notations. For j < k, let Sj,j+1,_,.,k be the set of possible
combinations of states of consecutive k — j + 1 nodes j,5 + 1,...,k in the system, and
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(01, 41) T:/
a: State description A b: State description B

Figure 3: State space of a 3-node model with sy = by =1for k=1,2,3

Sjj+1,..k De the product space §; x Sj41 X +-- X .S:k Clearly .‘;'j'j+1~,,_,'k C Sji+1,..x- When
J =k, we put S; = S;. We define a set operation X between two S’s by

"S"‘.,...,j,...,k ;< g""‘lk!"‘lt = {(ni, ceey nj’ seeykyeen 7nt) l
(Riye vy Mgy ey k) € Sigiks (Mgseeesiyeenyne) € Sk}

fotiSjSkS_Z,and‘

Sik X S kXSG
= {(ni,...,nx;nj,...00) | (niy...,nk) € 5'.-,,,_,k, (rjy...,ne) € 5",,.,'(},

fori<k<j<é 3
If we denote by x;,.k(ni,...,nt) the indicator function of the set ;. x on the product

space S;,.. k, then S;. . ;.k X Sj. k.. is interpreted as a set having an indicator function
Xiyoorroodk My oo o3 Ry oo oy M) X XGrnkyot(PGy + « -y ks« .., g) OD the product space Si,.._j,..,...-

Note that in Level-3 approximation 23 X Sz34 X +++ X Sg_ak-1x is the set of
(n1,...,nK)’s on which the approximate value of z(n,,...,nk) in (4) is positive. Namely

§1.2,3 X g2,3,4 X eee X S’K—2,K—1,K =
{(n1,...,nx) | z(n1,...,nk) > 0 under Assumption 3}.

Similarly

Si2 % Sa3 % -+ X Sgork =
{(n1,...,nk) | z(n1,...,nx) > 0 under Assumption 2},
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and
Sy %8 % - x 8k = {(ny,..-,nk) | z(n,...,nk) >0 under Assumption 1}.

Proposition 1. In State description A
(i) S12,..kk+1 is a proper subset of G2k X §k+1 fork=1,2,...,K-1.

(i1) 5’1_”_,,-,,“,1- X S’,-__"'J,mk coincides with Sl gforl<i<j<k.

..........

Proof: A state (o¢, Bt; 0e1, Begrs - - -3 00, Be), £ < £, belongs to Sz,z+1,...,¢' if and only if

(a) (oh, Br) € S, or equivalently 0 < B, < sj, and By < o4 < si + ba,
forh=¢¢+1,...,%, and
(b) Brh=0 if opp1 < Sher+ by,

for h=2¢,£41,...,£ — 1. Condition (b) reflects the fact that Node A is not blocked unless
the buffer at Node h + 1 is full.

To prove (i) we note that

Stykksr = {(01, B+ -3 ks Br; Oy B ) | (@) for = 1,... k,k+1,
and (b) for h =1,2,...,k}

and that

8120k % Skp1 = {(01,, B, - - Tk, Bii Okt Brr) |
(@) for h=1,...,k k+1,
and (b) for h =1,2,...,k—1}.

Since condition (b) for h = k is added in the condition of Sl 2,..k+1 to that of 5'1,2,,_,,;: % St
state (0,0;...;0,0;1,1;0,0) is in Sy, x X S41 but not in 5'12 k-
To see (n) we note that

Stoivipenk = (01, 815500, Bi5 -« 565, B33+« 50k, Br) |
(ay for h=1,...,4,...,7,...,k,
and (b) for A=1,...,¢,...,7,...,k—1},

and

= {(0’1, .Bl’ Utaﬂn <3 0j, ﬂj;"';ak) ﬂk) l
()forh—l,...,i,...,j, (b) for A =1,.. Hi-1
(a) for h=1,...,3,...,k, and (b) forh_z,..., Jyeee bk =1}

It is clear that, if 1 < ¢ < j < k, the condition in the right hand side reduces to
(afor h=1,...,4,...,7,...,k, and (b) for h=1,...,4,...,5,...,k— 1.

Hence S, ik = St X Siyoniponks D
Corollary: In State description A
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(5) Sy x8 % o X8k =S12..k # Sia..K
(6) S12% S % - X Skak = Sig.k
) S123 % S50 % -+ X SK—2.K—1,K = Si2.K
This corollary is easily proved from Proposition 1 using mathematical induction.
Assumption 1 in Section 3 provides a positive approximate value of z(ny, ..., nk) for any
(n1,...,ng) in Sy, . k. However, z(ny,...,nk) = 0 outside of Sy, k. Hence, in Level 1
z(ny,...,nk) = 0 is approximated with a positive value for (ny,...,nx)in S12,.. .k —S12,..x

This indicates that Level-1 approzimation of the cross aggregation approzimation will not
work well with State description A. .

In approximations of Levels 2 and 3, the approximate values for z(ny,...,nk) by As-
sumptions 2 and 3 are positive if and only if (ny,...,nk) € Si2,. k. Hence approximations
of Levels 2 and 3 might work well. Brandwajn and Jow proposed this Level-2 approximation
in [3] and reported it would provide good approximations. We will show the results of our
test of these approximations of Levels 2 and 3 for two tandem queueing systems in Section
5.

For State description B, as easily guessed from Fig. 3b

(8) 5 5'(5' >~(;<.§ =Slg 9'9 S'12, LK

(9) 2% Spa X oo X Skoik # Signks

(10) S, 23 X 5234 X +ee X SK—2,K—-1,K # 51,2,...,1(-

To see this, we note that state (g, Tx41,...,7,) belongs to S'k,k+1,...,l for]1 <k<I¢{< Kif
and only if

it o+ < Sicr+si+ b+ 485+ b;

for all 7,j such that £ < ¢ < j < ¢, with sp = 0. The left-hand side gives the sum of
numbers of customers from Node ¢ to Node j, and the right-hand side is its upper bound.
Then we can easﬂy check that (0,...,0,sx. 2+ Sk-1+ br_1,8K-1 + Sk + bK) belongs to
Sy %8, % -+ X 8k but not to Sl 2, K+ Hence Sl 2,...K 1s a proper subset of S x5 % - xSk.
Equations (9) and (10) are checked in the similar manner.

Therefore the cross aggregation method will not work well with State description B.
However the shape of the state space for State description B is rather simple as shown in
Fig. 3b. So if we can modify the Markov chain so that it is ergodic on the whole product
space S12,.k, then the cross aggregation method will work for this modified Markov chain
since the above equations hold with equalities for S’s instead of §'s. In the next subsection,
we discuss the underlying idea of the modification.

4.4 Modification of Markov Chain for State Description B

For brevity, let us consider a simple 2-node system with s; = s, = b, = b, = 2. In
this system, S; = {0,1,2,3,4}, S; = {0,1,---,6} and Slz = {(rym) | m € Si,m2 €
Sy, and 7 + 72 < 8}. State (4,5) € S12 = .5'1 X S, is not in Sl 2, because 73 = 5 means
that Node 2 is full and one server at Node 1 is blocked. In such a case, the blocked server
is treated as a buffer of Node 2, and 7; can be 3 at most. Besides state (4,5), states (3,6)
and (4,6) are also not in 5, ,.

Table 1 lists the conditional probabilities zip(7y | 72) = Pr{X, =7 | X, =7n}. In
order for Assumption 1 to provide good approximate values, it is desirable that the rows of
Table 1 are close with each other. So we shall modify the Markov chain so that rows 5 and
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Table 1: M/M/2/4—=M/2/4 : A =4, p1 =2, p2 =2

PI‘{X} =T l Xg = Tz}
T1=0 T1=1 T1=2 T1=3 T1=4
0709 1473 1576 1917  .4324
0829 .1754 .1962 2641 .2814
0980 .2120 .2447 .2547 .1905
J135 2456 .2561  .2261  .1588
1228 2526 2654 .2394  .1197
1130 2311 .3298  .3261 —
.1303  .2510 .6187 — —

DG W~ o3

6 become closer to other rows.
We see that z12(2 | 6) is relatively large in column 7, = 2 and so is 12(3 | 5) in column
71 = 3. Hence it is natural to modify the Markov chain so that the stationary probability
z(2, 6) is shared with states (2,6), (3,6) and (4,6) in the modified chain and «(3, 5) is shared
with states (3,5) and (4,5). A concrete algorithm to achieve such a modification for more
general systems is presented in Appendix B. Adopting this algorithm to our 2-node system,
the following 7 transitions are added as shown in Fig. 4b in Appendix B:
from (2,6) to (3,6) with rate A
from (3,6) to (4,6) with rate A
from (3,5) to (4,5) with rate A
from (4,5) to (3,6) with rate y;
from (3,6) to (5,2) with rate 2u,
from (4,6) to (5,2) with rate 2u,
frorn (4,5) to (3,4) with rate 2u,.
Then, z12(2 | 6) = .6187 is split into z12(2 | 6) = .2358, x1)2(3 | 6) = .1914 and z1p(4 | 6) =
1914, and z;2(3 | 5) = .3261 is split into z12(3 | 5) = .1957 and z)2(4 | 5) = .1304.
By this modification, the Markov chain becomes ergodic on the product space Sy . For
a more general K-node system, we can modify the Markov chain in a similar manner. Then
the state space becomes the product space of state spaces of individual nodes, and the cross
aggregation method can be applied in a naive form in any level of approximation.
In the next section, we will numerically test these approximations for two tandem queue-
ing systems with production blocking.

5. Numerical Results

The approximate procedures proposed in the preceding sections are tested for more than
50 cases. In this section, we show some results among them and discuss accuracy of the
cross aggregation method.

Tables 3 through 8 are numerical results for a 4-node model with s = by = 2 for
k =1,2,3,4. The approximate values are compared with exact values. In the tables, row
“Exact” indicates exact values, and rows “Level 1B”, “Level 2B” and “Level 3B” indicate
approximate values in Levels 1, 2 and 3 with State Description B, respectively. Similarly,
rows “Level 2A” and “Level 3A” indicate approximate values in Levels 2 and 3 with State

Description A. Column “Max” indicates the maximum of relative errors in percentage in
Pr{X, =ni}sovern, =0,1,...,Nr — 1, k=1,2,3,4 in each level.
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Table 9 shows results of a 5-node model with s, = by = 1 for k = 1,2,3,4,5 with a set
of parameters used in [10] and [3].

With State description B, we can start approximations from Level 1. With State de-
scription A, we cannot apply the cross aggregation method in Level 1, but programming
is easier than with State description B, because the transition rate matrix of the modified
Markov chain is rather complex (see Appendix C).

The number of variables treated is different between State Descriptions A and B even
in the same level. It is listed in Table 2.

Table 2: Number of variables in the approximate models

The 4-node model The 5-node model
Original MC | 1367 531
Level 1B 26 5+74+7+7) 19 (=3+4+4+4+H4)

(= (
Level 2B | 133 (=35+49+49) | 60 (=12+16+16+16)
Level 2A | 194 (=81+81432)| 68 (=19+19+19+11)
Level 3B | 588 (=245+343) | 176 (=48+64+64)
Level 3A | 740 (=5314209) |183 (=71+71+41)

As stated in Section 3, most entries of the aggregated rate matrix are equal to 0 and some
others are constants. For example, in Level-2B of the 4-node model, there are 492 = 2401
entries in @Q;3;. Among them, 2206 entries are 0’s and 24 entries are non-zero constants.
Only 171 entries must be calculated in each iteration. In Level-2A approximation of the
4-node model, among 81 = 6561 entries of Q,3, 6220 of them are 0’s, 42 of them are
constants, and we have only 299 entries to be calculated in each iteration.

Roughly speaking, the computing time to get approximate values is almost proportional
to the number of variables treated, though it varies with system parameters. For instance,
the computing time for Level 3A is generally longer than for Level 3B. This indicates that,
if N is constant, the computational burden for any level of approximation is expected to
be in linear order of K as K increases.

The results of Tables 3 through 9, and other numerical results we got, show that Level-1B
approximation is rather rough because sometimes relative errors exceed 20%. As we have
expected, Level-2B approximation is better. The relative errors in average number of cus-
tomers do not exceed 5% in most cases though some relative errors in marginal probabilities
exceed 20%. Level-2A approximation is even better. The relative errors in marginal prob-
abilities and average number of customers do not exceed 10% and 5% respectively except
only a few cases.

As for Level-3A and Level-3B, in most cases, the relative errors are below 2% and 3%
respectively in both marginal probabilities and average number of customers. But in a few
exceptional cases, relative errors become rather large. The case shown in Table 7 is one of
such cases. The relative errors of Level-3 approximate values of Pr{X; = 0}, ¥=1,2,3 and
4, exceed 10%. In this case, with probability 0.6130, servers at Nodes 1, 2 and 3 are blocked
simultaneously. In consequence, the stochastic behavior of Node 1 is largely affected by that
of Node 4, and this violates our Assumption 3.

In our cross aggregation method, we intuitively expect the following two properties:

1) The higher the level of approximation, the more accurate the approximate values are,
since higher approximate models are finer than lower ones.
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Table 3: M/M/2/4—M/2/4—-M/2/4—-M/2/4 : A=6, p1 =3, 2 =3, u3 =3, pg =3
Pr(X;=4) Average number of customers
Nodel Node2 Node3 Noded4 | Nodel Node2 Noded Node4
Exact .2932 3844 3272 22300 | 2.5524 25977 2.3915  2.0230
Level 1B .2640 3432 2935 218171 24238 2.4599 2.2756 1.9583
Level 2B .2828 3799 3297 2310 | 2.5314 2.5863 2.3882  2.0207
Level 2A .2990 .3850 .3242 2266 | 2.5632 2.5800 2.3681 2.0022
Level 3B .2916 3813 .3265 2315 | 2.5526 2.2937 2.3894  2.0298
Level 3A 2937 .3842 3272 2299 | 2.5533 2.5963 2.3902 2.0215
Error in % Max
Level 1B -9.96 -10.72 -10.31 -5.16 -5.04 -5.31 -4.85 -3.20 | 20.04
Level 2B -3.55 -1.15 0.76 0.43 -0.82 -0.44 -0.14 -0.11 ] 3.55
Level 2A 1.99 0.17 -0.94 -1.48 0.42 -0.34 -0.98 -1.03 1 4.21
Level 3B -0.53 -0.79 -0.23 0.68 0.01 -0.15 -0.09 0.33 1.60
Level 3A 0.18 -0.04 -0.00 -0.02 0.03 -0.06 -0.05 -0.07 | 0.33
Table 4: M/M/2/4—-M/2/4-M/2/4-M/2/4 : A=1, =3, p2=3, u3 =3, pg =3
Pr(X;=4) Average number of customers
Nodel Node2 Node3 Node4 | Nodel Node2 Node3d Node4
Exact .0011 .0012 .0013 .0013 | 0.3420 0.3422 0.3423 0.3421
Level 1B .0011 0013 .0013 0013 | 0.3420 0.3424 0.3424 0.3422
Level 2B .0011 .0012 .0013 0013 | 0.3420 0.3423 0.3424 0.3422
Level 2A .0011 0012 .0013 0013 | 0.3420 0.3423 0.3424 0.3422
Level 3B .0011 0012 .0013 0013 | 0.3420 0.3422 0.3423 0.3421
Level 3A .0011 .0012 .0013 .0013 | 0.3420 0.3422 0.3423 0.3421
Error in % Max
Level 1B -0.01 5.16 3.04 2.29 0.01 0.05 0.04 0.03 | 5.16
Level 2B 0.00 0.04 1.74 1.94 0.00 0.00 0.02 0.02 ] 1.94
Level 2A 0.00 0.07 1.83 2.01 0.00 0.00 0.02 0.02 | 2.01
Level 3B 0.00 -0.00 0.02 0.51 0.00 0.00 0.00 0.00 § 0.51
Level 3A 0.00 0.00 0.02 0.52 0.00 0.00 0.00 0.00 | 0.52
Table 5: M/M/2/4-M/2/4—M/2/4—-M/2/4 : A=2, g1 =1, pa=3, g3 =1, pg4=3
Pr(X; =4) Average number of customers
Nodel Node2 Node3 Node4 | Nodel Node2 Node3 Node4
Eaxct 2345 .0814 3344 0056 | 2.2834 1.0572 2.3457 0.5404
Level 1B .2220 .0238 3341 .0068 | 2.2255 0.8999 2.3779 0.5510
Level 2B 2395 .0928 .3602 0059 | 2.3148 1.1318 2.4004 0.5448
Level 2A .2352 .0877 .3501 .0059 | 2.2871 1.0994 2.3701 0.5408
Level 3B .2349 .0793 3334 0056 | 2.2856 1.0514 2.3431 0.5402
Level 3A 2345 .0814 .3344 0057 | 2.2834 1.0572 2.3457 0.5405
Error in % Max
Level 1B -5.34  -70.76 -0.10 21.96 -2.53  -14.88 -0.10 21.96 | 70.76
Level 2B 2.11 13.97 7.72 5.68 1.37 7.05 2.32 0.81 | 14.67
Level 2A 0.27 7.70 4.70 4.73 0.16 3.98 1.04 0.08 | 8.18
Level 3B 0.15 -2.58 -0.31 0.51 0.10 -0.56 -0.11 -0.03 | 2.58
Level 3A 0.00 0.01 -0.00 0.83 0.00 -0.00 0.00 0.03 | 0.83

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



342

Table 6: M/M/2/4—M/2/4—M/2/4—M/2/4 :

Y. Song & Y. Takahashi

A=27 ,U.l=3, #2'_'11 ﬂ3=3, “4=3

Pr(X; =4) Average number of customers

Nodel Node2 Node3 Node4 | Nodel Node2 Node3d Node4

Exact 1315 5343 .0093 0093 | 1.5680 2.9451 0.6267 0.6237

Level 1B .0752 .6045 0127 0127 | 1.5193 3.1858 0.6692 0.6644

Level 2B 1314 .5340 .0092 0100 | 1.5676 2.9447 0.6270 0.6253

Level 2A 1317 5342 .0094 .0100 | 1.5688 2.9446 0.6272 0.6253

Level 3B 1315 5342 .0093 .0093 | 1.5680 2.9451 0.6266 0.6236

Level 3A 1315 5343 .0093 0094 | 15680 2.9452 0.6267 0.6238
Error in % Max
Level 1B -42.77 13.15 37.04 35.84 -3.10 8.17 6.79 6.53 | 46.25
Level 2B -0.05 -0.05 -0.83 6.85 -0.02 -0.02 0.05 0251 6.85
Level 2A 0.14 -0.00 1.16 7.42 0.05 -0:02 0.09 0.25 7.42
Level 3B 0.00 -0.01 0.00 -0.43 0.00 -0.00 -0.01 -0.01 | 043
Level 3A 0.00 0.00 0.21 0.27 0.00 0.00 0.01 0.01 0.27

Table 7: M/M/2/4—-M/2/4—-M/2/4—-M/2/4 :

A=2) u1=37 /‘2:27 ”3=1a .u'4=-5

Pr(X; = 4) Average number of customers

Nodel Node2 Node3d Node4 | Nodel Node2 Noded Noded

Exact .5080 .9686 9812 8461 | 3.1627 3.9493 3.9763  3.7452

Level 1B 6115 .9686 9677 .8458 | 3.2951 3.9591 3.9584  3.7445

Level 2B .5265 .9679 .9834 .8463 | 3.1263 3.9563 3.9797  3.7456

Level 2A .5080 9550 9742 8458 | 3.1198 3.9257 3.9662  3.7447

Level 3B .5033 9713 .9839 .8462 | 3.1031 3.9558 3.9798 3.7454

Level 3A .5080 9634 .9808 8461 | 3.1431 3.9404 3.9757 3.7452
Error in % Max
Level 1B 20.39 0.00 -1.38 -0.04 4.19 0.25 -0.45 -0.02 | 96.22
Level 2B 3.64 -0.07 0.22 0.02 -1.15 0.18 0.09 0.01 | 72.13
Level 2A 0.00 -1.40 -0.72 -0.04 -1.35 -0.60 -0.26 -0.01 | 75.92
Level 3B -0.92 0.27 0.28 0.01 -1.88 0.16 0.09 0.00 | 26.72
Level 3A 0.00 -0.54 -0.04 -0.00 -0.62 -0.23 -0.02 -0.00 | 19.71

Table 8: M/M/2/4—M/2/4-M/2/4-M/2/4 : XA=2, p1 =5, pa=1, p3 =2, uyg =3
Pr(X;=4) Average number of customers

Nodel Node2 Noded Node4 [ Nodel Node2 Node3 Node4

Exact .5281 .0521 .0039 0008 | 3.2299 1.1268 0.4951 0.3215

Level 1B .5179 0584 .0048 .0010 | 3.2020 1.1329 0.4945 0.2301

Level 2B .5281 .0521 0041 .0009 { 3.2299 1.1269 0.4957 0.3219

Level 2A .5281 0521 .0041 0009 | 3.2299 1.1270 0.4957 0.3219

Level 3B .5281 .0521 .0039 .0008 | 3.2299 1.1268 0.4951 0.3215

Level 3A .5281 .0521 .0039 0008 | 3.2299 1.1268 0.4951 0.3215
Error in % Max
Level 1B -1.94 12.91 22.91 24.82 -0.86 0.54 -0.11 -0.41 | 27.82
Level 2B -0.00 0.04 5.11 14.25 -0.00 0.01 0.12 0.14 | 14.25
Level 2A 0.00 0.10 6.01 14.87 0.00 0.02 0.14 0.14 | 14.87
Level 3B -0.00 -0.00 0.00 1.34 -0.00 0.00 0.00 0.01 | 1.34
Level 3A -0.00 -0.00 0.01 1.51 0.00 0.00 0.00 0.01 | 151
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2) If differences between corresponding approximate values of two consecutive levels are

small enough, the values are also close to the exact ones.

Our numerical results seem to support these properties. The authors think that these
properties hold in most cases of tandem queueing systems with production blocking, though
they have never been proved. Based on these properties we can perform our approximation

process roughly estimating the magnitude of errors.

Table 9: M/M/1/2—M/1/2—M/1/2—M/1/2—M/1/2
A=3, ;=2 p2=3, p3=4, py=3, s =2

PI'{X,' = 2}
Node 1 Node 2 Node 3 Node 4 Node 5
EXACT 5190 .3246 .3261 .4652 4673
Level 1B 5142 .2701 .2360 .4080 4670
Level 2B .5289 .3270 .3305 .4708 4709
Level 2A 5231 .3276 .3245 .4555 .4604
Level 3B .5286 .3250 .3309 4753 4710
Level 3A .5194 .3238 .3265 .4680 .4681
Error in %
Level 1B -0.92 -16.80 -27.64 -12.30 -0.06
Level 2B 1.90 0.72 1.35 1.20 0.77
Level 2A 0.78 0.91 -0.50 -2.09 -1.48
Level 3B 1.85 0.12 1.46 2.15 0.80
Level 3A 0.08 -0.26 0.11 0.60 0.18
Average number of customers
Node 1 Node 2 Node 3 Node 4 Node 5
EXACT 1.3593 0.9415 0.9298 1.1790 1.1872
Level 1B 1.3376 0.8256 0.7720 1.1170 1.1917
Level 2B 1.3699 0.9427 0.9225 1.1879 1.1936
Level 2A 1.3642 0.9450 0.9144 1.1598 1.1757
Level 3B 1.3704 0.9413 0.9298 1.1937 1.1938
Level 3A 1.3593 0.9410 0.9217 1.1828 1.1890
Error in % Max
Level 1B -1.59 -12.31 -16.08 -5.26 0.25 27.64
Level 2B 0.78 0.13 0.29 0.75 0.41 2.85
Level 2A 0.36 0.37 -0.59 -1.63 -1.10 3.31
Level 3B 0.82 -0.03 1.09 1.25 0.42 2.51
Level 3A 0.01 -0.06 0.21 0.33 0.02 0.70
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Appendices

A. Formulas and Algorithm .
Here we derive a system of equations to be solved in each of Levels 1, 2 and 3 in the
cross aggregation method.

A.1 Level-1 Approximation

Let g(my,...,mk;n1,...,nk) be the transition rate of the Markov chain {(X(?),...,
X k(t))} from (my,...,mg) to (ny,...,nk), and Q = {g(my,...,mk;m,. .. ,nk )} be the
transition rate matrix. The stationary probabilities z(m;,..., mx) satisfy the equilibrium

equations
(11) E z(m,...,mk) ¢(mi,...,mk;ny,...,nk) =0,
(ml,...,mx)
(n1y...,nK) € S12,...K;
and
(12) S z(my,...,mg)=1

(m1yeemK)

As stated in Section 3, we look at one node at a time in Level 1, and take zx(ni)’s as
variables. For each fixed k, k¥ = 1,2,..., K, to derive equations for zx(ns), ne = 0,1,...,
Ny — 1, we take summations ¥, . .m) in (11) and (12) in two steps as T ik Zom;)-
Then we have

(13) Zrk(mk)qk(mk, ng)=0, ng=0,1,...,Ny—1
my
and
(14) Zxk(mk) = la
my
where
(15) Qk(mk,nk) = Z 231,2....,K|k(m1, ey MEK I mk)
itk my
X E Zq(ml,...,mk;nl,...,n;(),
i#k ng
and
(16) Tya,. k(M ..., my | mg) = x(my,. .. ,mg)/ze(ms).

In terminology of the aggregation theory, n, is called an aggregate state if we regard it
as a set of states (ny,ng,...,nk) with ny in the k-th place in common, and z,(n;) is called
an aggregate variable. Equations (13) and (14) are called aggregate equations.

Note that gi(mg,ni) in (15) is a weighted sum of transition rates q(my,...,mg;ni) =
Yigk Ln;q(m1,...,mkin,...,nk) from state (my,...,mk) to aggregate state ny with
weights =2 kk(ma,...,mg | my). The weight x5 . gjx(m1,...,mk | mi) can be inter-
preted as conditional probability Pr{X=m;, X, =mq,..., Xg =mg | X\ = mi}.

From (13) and (14) we can see that zx(ns)’s, nx = 1,2,..., Ni, satisfy the equilibrium
equations for a Markov chain with aggregate transition rate matriz Q, = {qi(mx,nx)}. So
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if we know the values of weights x5 xjk(mu1,...,mk | mi), then we can get the values of

zr(ni)’s by solving equations (13) and (14) in a usual way done in Markov chain analyses.
Unfortunately, however, we do not know the values of 15, kx(m1,...,mK | mk)’s, s0

we have to approximate them. Using Assumption 1 in Section 3, we may approximate as

(17 Ty, kk(ma,...,mg | my) = H z;(m;).
J#k

Then Equations (13) and (14) with (15) and (16) constitute a set of nonlinear equations for
variables z¢(ni), nk =0,1,..., Ny — 1, k=1,2,..., K.
The following algorithm solves the set of equations numerically.

ALGORITHM

1. Initialization

Set an appropriate initial value of z,(ny) for each k and ny.

2. Loop 1

(a) Loop 2
A) Set k=1
B) Loop 3
i. Use the latest values of x;(n;)’s (j # k) to calculate the aggregate transition
rate matrix Q) from (15) and (16).
ii. Solve (13) for zx(nk), nk = 0,1,..., Ny — 1, with a usual numerical method
for a system of linear equations such as the Gauss-Seidel’s method.
ili. Normalize them using (14).

Loop 3 is over.
C) If k = K then Loop 2 is over, else increase k by 1, go to B).

(b) Compare values at the latest two iterations. If a certain convergence criterion is
satisfied, Loop 1 is over. Otherwise go to (a).

3. Calculation of performance measures

From the approximate values of z4(ng),ni = 0,1,..., N1, k = 1,2,..., K, calculate
approximate performance measures of the original model such as the loss probability
and the mean numbers of customers, etc.

The convergence of the algorithm has never been proved because of nonlinearity of the
aggregate equations. But in all the cases the authors tested, the algorithm does converge.

In the first step of Loop 3, we do not need to calculate all of the entries gx(my, ny) of Q,
from the definition (15), because most of them are equal to 0 or constants. In Appendix C,
we discuss which transition rates must be calculated using approximation assumptions, for
the case of Level 2. The case of Level 1 can be easily derived from the discussion.

A.2 Level-2 Approximation
The aggregate equations corresponding to (13) and (14) are
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(18) S5 Thprr(mie, megr) Gk (e, Miga; nk k) = 0,
Mg Mig
ne=0,1,..., Ny = 15 ngyy = 0,1,...,Ney1 — 1,
and
(19) Z Z Tr k1 (Mk, Meg1) = 1,

My M4l

where k =1,2,...,K — 1.
In Level-2 approximation, we look at two adjacent nodes at a time and form an aggregate
Markov chain with transition rate matrix Q ;,; with entries

Gk k+1 (mk, Mkt1y Nk, nk+1)

(20) = Z Z$1,2,...,K|k,k+1(m1, cooymg | g, Meyr)
J#k k41 ™
X Z Zq(ml,...,mK;nl,...,nK),
itk R+l M
where
T12,. Klkk+1(M1y . oy | Mg, Miyy)
(21) =Pr{X,=m, Xy=my,..., Xk =mg | Xi = my, Xi41 = Mi41}

= z(my,...,mg)/Tk k+1(Mk, Mig1).

Assumption 2 makes us possible to approximate z, 3, . ki r+1(m1,...,mx | My, Mpy1)
from aggregate variables zx k41(nk, Nry1)-

A.3 Level-3 Approximation
In Level-3, we look at 3 adjacent nodes at a time, and form an aggregate Markov chain
with transition rate matrix Qy x 41442 With entries

Qk,k+1,k+2(mk, Mip1, Mky25 Nky Nk, nk+2)

(22) = Z Z xl,z,...,Klk,k+1(mla <oy MMK | Mgy Mit1, mk+2)
itk k+1,k+2 mj

X Z Zq(ml,-"ymK;nla-”anK)a

iRk k1 E+2 T

where

Ty, Kikk+1,k+2(M05 0 ooy MK | Ty My 1, Migy2)
(23) =Pr{X s =my,..., Xk =mg | Xi = my, Xip1 = Migy, Xigo = Mo}
= z(ma, ..., mK)/Teks1,k+2(Mks Mit1, Miy2).
With Assumption 3, we take the dependency among three adjacent nodes into account,
and assume that their stochastic behaviors are affected by other nodes only through a chain

of connecting nodes.
Using a similar scheme to Levels 1 and 2, we can get Level-3 approximation.
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B. Modification of Markov Chain for State Description B

B.1 Scheme of the Modification

Here we propose a scheme of modification of the Markov chain derived from Description
B to enlarge the state space from Si2,. x to Si2,..k =51 X S2 X -+ X Sk.

We classify states in Sy, . g into three categories, inner states, boundary states and
dummy states. We call state (11, 72,...,7x) in S12,. .k — 5'1'2,.__,;( as dummy state. For state
(t1, 725+ .., 7k) in S12,. K, we call it a boundary state if (11,72, ., Toe1, Tk + 1, Ty - -+, Tk)
is a dummy state for some k, (k=1,2,...,K), and we call it an inner state if not.

For illustration, we consider a 2-node model with s; = s; = b = b, = 2. In this case,
S ={0,1,2,3,4}, S ={0,1,...,6} and Si1p = {{r1,72) | 1 € S1, ™2 € 52, 1 + 72 < 8}
Here (3,8), (4,5) and (4,6) are dummy states, and (2,6), (3,5) and (4,4) are boundary states.

For each dummy state, later we choose a boundary state called the root of the dummy
state. The dummy state is called a descendant of the root. A boundary state (71, 72,...,7k)
and its descendants form a group G(m,13,...,7k). If state (71, 72,..., 7k) is an inner state
or a boundary state without any descendants, it forms a group G(ry,72,...,7x) by itself.
Then S,k is divided into groups of states, and G : (11, 72,...,7x) = G(11, T2, ..., TK) is
a bijection from S 5k to the set of all groups {G(7y,7,...,7k)}. Our goal is to derive an
ergodic Markov chain on S, x whose stationary probability of G(ry, 73,. .., 7k) coincides
with that of (1, 72,...,7k) in the original chain.

For the purpose, we modify the Markov chain by imposing dummy transitions from/into
dummy states. The rates of transitions imposed are, in principle, parallel to neighborhood.
However, we have to satisfy the following

Condition C: The rate of a transition from a dummy state in G(7{,73,...,7k)
to another group G(7/,75,...,7;) is set equal to that from (7], 74,...,7k) to
T, Ty s TK)-

Then clearly the modified Markov chain has the desired property.

In practice, we proceed the modification in two steps. In the first step, we modify the
original chain by assigning dummy transitions from/into dummy states in the following
manner.

For a boundary or dummy state (ry,7s,...,7x), we suppose a dummy arrival changes
the state of the chain from (71, 72,...,7x) to (11 +1,72,..., Tk ) with transition rate X if (r; +
1,72,...,7k) is a dummy state. Similarly we suppose a dummy service completion at Node

k (k < K) changes the state from (71, 72,...,7k) to (71, ., Tk—1, k=1, Teg1+ 1, Th2y - -+ TK)
with transition rate min{sg, 7x}pe if (71, ..., Tkor, T — 1, 71 + 1, 7oy, - -+, 7k) is @ dummy
state. A dummy service completion at Node K changes the state from {7, 7,...,7x) to

(r1,. .. Tk -1, Tk — 1) with transition rate min{sg, 7x }ux if (11, ..., 7K1, 7Tk — 1) is a dummy
state. For example, in the 2-node model, as shown in Fig. 4a, a dummy arrival changes
(2,6) to (3,6), and a dummy service completion at Node 1 changes (4,5) to (3,6).

The original chain (we will refer it as MC-B) is thus modified to an ergodic chain on
the state space Siz,..x (we will refer it as MC-B;). But the stationary state probabilities
of MC-B; may different from those of MC-B even for inner states. In the second step,
we further modify MC-B, so that Condition C is satisfied and hence the stationary state
probabilities coincide with those of MC-B.

First we must determine which dummy states belong to the group G(r, 72,...,7x) of a
boundary state (71,72,...,7k). Because MC-B, is ergodic, the state can be reached from
any boundary state sooner or later. We can prove that there is a unique boundary state from
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which the dummy state can be reached in less number of steps than any other boundary
states. We define this boundary state as the root of the dummy state, and refer the dummy
state as a descendent of the root boundary state. This root-descendent relation divides
S12,..x into groups {G(m, 72, ...,7k)}. In the 2-node model, (4,5) can be reached from
(3,5) in one step, and from other boundary states in more steps, so we decide (3,5) is the
root of (4,5) and let (4.5) belongs to G(3,5). Similarly, (2,6) is the root of (3,6) and (4,6),
and G(2,6) consists of these three states.

In Appendix B.2, we present an algorithm to find the root of a dummy state.

Next we modify MC-B, so that Condition C is satisfied. The basic idea is as follows.

1) Modification of the rates of dummy transitions. If a transition from a dummy state
due to a dummy service completion at Node k, the transition rate must be set equal to that
due to a service completion at Node k when MC-B, is in the root of the durnmy state. In
the 2-node model, the transition rate from (4,5) to (3,6) should be changed to u; because
the transition rate from (3,5) to (2,6) in MC-B, is y,. The transition rate from (3,6) to
(3,5) remains 2u,; because the transition rate from (2,6) to (2,5) in MC-B; is 2u4;. Transition
rates due to dummy arrivals need not to be modified. In the 2-node model, the transition
rate from (3,6) to (4,6) is the case.

ii) Modification of the destinations of dummy transitions. For some dummy transitions,
we have to change their destinations. For a transition from a dummy state, if the destination
of the corresponding parallel transition from the root is an inner state, then its destination
should be changed to the same inner state. For example, in the 2-node model, MC- B, in
(3,5) transits to inner state (3,4) due to a service completion at Node 2, hence the destination
of a parallel dummy transition from (4,5) to (4,4) should be changed to (3,4). Similarly, the
destination of transitions from (3,6) to (3,5) and from (4,6) to (4,5) are changed to (2,5).
See Fig. 4b for the modification.

In this manner, MC- B, is modified to, say, MC- B,. Clearly MC-B; satisfies Condition C,
and the sum of the stationary probabilities of states in G(my,73,...,7x) in MC-B, coincides
with the stationary probabilities of (7, 7,...,7k) in MC-B.

B.2 Algorithm for the Roots of Dummy States
For 1 <i<j < K, state (11,7s,...,7k) is not a dummy state if and only if

(24) it -+ <Sia+si+bi+--+3;+b;
with so = 0. For notational simplicity, we use the following symbols:

. — EII:{=iTk, i=1,2,...,1{
“ ““{m i=K+1

(B) t,'J' = ibk + EJ: Sk.

k=i k=i-1
Then (24) can be written as
(25) Vi — Vit S t.'j.
Applying the following algorithm to any state (ry, 7y, ..., k), we know whether it is a
dummy state or not. And if it is a dummy state, we find its root.

ALGORITHM
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Figure 4b: MC-B, for the 2-node model
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1. Step 1

Calculate each y; for (11, 73,...,7k).

2. Step 2

(a) Let¢=1and j=1.
(b) If inequality (25) is satisfied then go to (d) else go to (c).
(c) Reduce v; until equality holds in inequality (25), then go to (d).
(d) If j < K, increase j by 1 and return to (b).
If j = K and i < K, increase i by 1, set j = 1, and return to (b).
If = K and 7 = K then go to step 3.

3. Step 3

1) If the original vector (7, 72, ..., Tk ) satisfies inequality (25) for all ¢ and j, it is not
a dummy state.

2) If (ry,72,...,7k) is a dummy state, calculate new n; from new {v;} using Equa-
tion (A). The acquired vector is the root of the dummy state.

C. Aggregate Transition Rates for State Description B

Here we show how to calculate the aggregate transition rate matrices using assump-
tions in the case of State description B, specifically for Level-2 approximation. For State
description A, readers may refer Appendix 2 in [3].

To avoid cumbersome discussion on the number of active servers in the system with
multi-server nodes, we first consider the case of single-server nodes. Even such a case the
transition rates become complex because dummy transitions at Node k' (k' > k) may change
state of Node k. To make discussion clearer, similar to states in Sy . x, we classify states
in Sk x41,..k into three categories: inner states, dummy states and boundary states. We call
state (T, Thy1y- -« » Tw) i Skg1,. 00—k k41, k0 a8 a dummy state. For state (75, Teq1,-. -, Tw)
in gk’k.’.]'_“'kl, we call it a boundary state if (7&, Tk41,. - -, Tj=1, T+ 1, Tj41, . . ., T£) is a dummy
state for some j, (j = k,k+1,...,k"), and we call it an inner state if not. Applying the algo-
rithm proposed in Appendix B to a vector (7x, Tkq1, - .., The) With 7 > 0, we can see whether
it is a dummy state or not. If it is a dummy state, we can also determine its destination
(Tks Tig10 - -» Tar) and the rate of transition which contributes to gi41(Tk, Tot1; T4, Thy1)-

The aggregate transition rate matrix Qy ;4 (k < K) for the single-server case is given
in the following 4 steps.

1) Service completions at Node k — 1 (1 < k < K) yield arrivals to node pair (k,k +1),
and they occur in the case that 7.1 > 0 and 7, < Ni — 1. Hence

G k1 (Toy Tep1; Tk + 1, Tkp1)
Nie1-1
= 3 et Pr{Xio1 = 71 | Xk = 7o, Xkg1 = Tor}
Tey=1
Ni_3—-1
~ Z Bi-1 Th-1lk(Te=1 | Tk),
Tr—y=1

T < N — 1, Tk+l=0)1,'-')Nk+1_11
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where
Thak(Timr | %) = Pr{Xi_1 =t | Xk = 7}
= Tparp(Teens )/ Y Tho1k(Thoq, Th)-
L

2) A service completion at Node k (k < K) transfers a customer from Node k to Node
k+1, and the rate associated with it does not depend on states of other nodes. Hence

Qi1 (T Thats T — L, Teg1 +1) = gy, 7% >0, Ty < Nen — 1.

3) Outputs from node pair (k,k+ 1) (k < K — 1) are due to service completions at Node
k+1. They occur in the case that 7441 > 0 and 7442 < Ni4z2—1. Their destinations are
rather complicated because some of them are from dummy states to inner states. So
we have to apply the algorithm proposed before to find out such destinations. Suppose
the destination is (7{, 7k41 — 1), then the corresponding aggregate transition rate is

@k k+1(Thy Tkt 15 Ty Thg1 — 1)

Niya-2

= > et Pr{X k42 = Tiga | Xi = 7%, Xiogr = T}
Tr42=0
Nipyz-2

Y ket Treaksr (Tesz | Trer)
Tr42=0
Nigo~2

= 3 i1 Trprks2(Terrs Tra2)/ D Thrrks2(Thens Tkea),
Tk42=0 Nky2

T =0,1,...,N, = 1, Tieg1 > 0.

4) We further need some revision because dummy transitions at Node k' (k' > K + 1)
may also change state of Node k. To a vector (7x, Tk41, ..., Te) With 7 > 0, applying
the algorithm proposed before, we know whether it is a dummy state or not. If it
is a dummy state, we can determine its destination (7{,7{,,...,7s) and the rate of
transition which contributes to i x41(7k, Tk41; 7%, Tiyq). The rate of the transition is

given by
Nk!+1—2
Yo e Pr{Xie = Thpnreo s X = 7o, Xpogr = 7ogr | X = 75, X1 = T}
Tkl+1=0
Nkl+l—2
~ Z Br Traaphs1(Terz | Toar) - “Zppp (T | 7o)
Tkl+‘=0

We sum up all rates of such transitions from (7, 7k41) to (¢, 7i4,). If (74, 704y) is
one of the vectors we used in 1), 2) or 3), the sum should be added to the transi-
tion rate we have gotten. Otherwise, the sum becomes the aggregate transition rate

@k k+1(Tky Tk413 Ths Thy1)- In both cases, the diagonal entry gi x41(7k, Th41; Thy Te41) must
be revised correspondingly, too.

For a system with multi-server nodes, the aggregate transition rate matrix becomes more
complicated, because we can not determine the number of active servers in Node k only from
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the states of Nodes k¥ and k + 1 in many cases,

In the case of 1) above, if 7, < by, we only need to insert a coefficient min{7x_1, 8x-1}
before p;_, in the second and third lines of the equation. If 7, > by and 744y < by, the
coeflicient becomes min{7x_1, sk—1, Nk —7x }. Otherwise, the coefficient is not a constant, and
it is given as a mixture of the number of active servers which depends on the states of Nodes
k+2,k+3,...,K, with the corresponding probability approximated from Assumption 2.

In the case of 2), if Tx41 < bey1, we only need to put a coefficient min{7x, si} before ux
in the equation. Otherwise, the coefficient is given by a mixture as above.

As for 3) and 4), the rate becomes more complex and has to be determined individually.
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