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A.bstract In this paper, we study problem~ arising in applications of the cross aggregation method to 
tandem queueing systems with production blocking, and propose two types of applications with different 
state descnptions. 

. The cross aggregation method provides a nested family of approxilllatiolls of sta.tiollary state probabili-
ties of the model by imposing several different levels of assumptions on independence alTlong nodes. Namely, 
111 Level 1 we denve. an approximate model by looking at one node at a. lime, in Level 2 by looking at two 
adjacent node at a tllne in Level 3 by looking at three adj~.cent nodes at a time, and so Ott. 

The I~ethod, howe\er, cannot be applied in a naive form to tandem llueueing systems with production 
blocklllg Slllce the state space of the system is not a product space of individual state spaces of nodes. \Ve 
propose. two ways of state description to derive a Markov chain. Using one of them, the method can be 
apphed.1ll Levels 2,.3 and higher, but not in Level 1. Using the other, the method can be applied in any 
levels of apprOXimatIOn after modifying the Markov chain to have a product state space, but transitioll rates 
of the modified chain become complicated. 

. A comprehensiv.e numerical test shows that ill most cas",s the llll'tllOt! provides very good approxilllatiolls 
III Level 3 and suffiCiently accurate approximat.ions even ill Level :1 for practical purposes. 

1. Introduction 
Tandem queueing models with blocking are often used to study telecommunication sys­

tems, production systems and other stochastic systems consisting of a series of subsystems. 
The concept of these tandem queueing models is not sophisticated but analysis of them 
is rather difficult. It is practically impossible to analyze them with traditional analyt.ical 
methods since dependencies among nodes are not easy to deal with, and it is also limited 
to analyze by direct. calculation of stationary state probabilities since the number of states 
needed for describing a model increases explosively as the size of the model grows larger. 
To overcome this difficulty, various approximation methods have been proposed to approx­
imately evaluate performance measures of such models [1-5,7-11,13,14,16,181. The cross 
aggregation method to be discussed here is one of them. 

The cross aggregation method was first proposed in [16] to approximately analyze tandem 
queueing models with communication blocking. It provides a nested family of approximate 
models to get different levels of approximations of stationary state probabilities of nodes. 
Namely, it derives Level-l approximate model by looking at one node at a time, Level-2 
approximate model by looking at two nodes at a time, Level-3 approximate model by looking 
at three nodes at Cl. time, and so on. It was applied in [17] to acyclic queueing networks 
with communication blocking. Brandwajn and Jow proposed an approximation method for 
tandem queueing models with production blocking in (3]. Their model is equivalent to our 
Level-2 approximate model. Numerical tests have shown that the computational burden of 
the cross aggregation method increases almost in linear order of the number of nodes in any 
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level of approximation. 
For models with communication blocking, the stochastic behavior of a system is rep­

resented by a Markov chain on a product space of individual state spaces of nodes, and 
this makes us possible to apply the cross aggregation method in a simple way. However, 
for models with production blocking, the state space does not become a product space of 
individual state spaces of nodes. The purpose of this paper is to study the applicability of 
the cross aggregation method to tandem queueing systems with production blocking and to 
check the accuracy of the approximations through a comprehensive numerical test. 

Our results are as follows. We deal with two state descriptions. One is a generalization of 
the state description used in [3, 13], for which Brandwajn and Jow [3] showed the feasibility 
of the cross aggregation method in Level 2. Here we show the method can be applied in 
Levels 2, 3 and higher for the state description but not in L~vel 1. The second one is a 
new state description in which a blocking customer is counted in the number of customers 
in the next node. For this state description, we can modify the Markov chain so that it 
is ergodic on the whole product space of individual state spaces of nodes, and then apply 
the cross aggregation method in any level of approximation. The numbers of states in 
the approximate models for this state description are less than those for the first, but the 
transition rate matrices are more complex. A numerical test shows that in most cases the 
method provides very good approximate values in Level 3, and even in Level 2 it provides 
sufficiently accurate ones for practical purposes. The computational burden is roughly in 
linear order of the number of nodes in any level of approximation. 

Our paper is organized as follows. 
In the next section, we introduce a simple tandem queueing model having a Poisson 

input, multiple exponential servers and a finite buffer at each node. A production type 
blocking rule is adopted. We use this model through the paper to discuss problems arising 
in applications of the cross aggregation method. However, the results of this paper can be 
applied to more general tandem queueing models with phase-type servers and a phase-type 
input. 

For reader's convenience, in Section 3, we summarize fundamental concepts of the cross 
aggregation method. Precise description of approximation schemes for Levels 1, 2 and 3 are 
given in Appendix A. 

In Section 4, we introduce two State descriptions A and B for the system. For both state 
descriptions we show that the state space is not a product space of individual state spaces 
of nodes. For State description A, however, by scrutinizing the structure of the state space 
of the Markov chain, we show how Level-2 and higher approximations can be applied but 
not Level-I. With State description B, we propose modifying the Markov chain so that the 
state space becomes a product space of individual state spaces of nodes. Then it becomes 
possible to apply the cross aggregation method in any levels of approximations in a naive 
way, though the transition rate matrix becomes complicated. 

In Section 5, we present numerical results of a test for 50 cases. 

2. Tandem Queueing System with Production Blocking 
We consider a K-node tandem queueing system as shown in Fig. 1. Node k, k = 

1,2, ... , K, consists of Sk servers and a finite buffer of size bk • Customers arrive at the 
system through a Poisson process with rate .A, and are served at Node k subjecting to an 
exponential distribution with rate Ilk. When the buffer of Node 1 is full, arriving customers 
are lost. 

Blocking may occur due to finite buffers. When the service of a customer at Node k 
completes, he proceeds to Node k + 1 if the buffer of Node k + 1 is not full, and the server 
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Figure 1: The tandem queueing system with production blocking 

who has just completed the service is released for next service. Contrary, if the buffer of 
Node k + 1 is full at. that time, the customer blocks the server until a vacancy appears in 
the buffer of Node k + 1. When a service completes at Node k + 1 and a vacancy appears 
in the buffer of the node, a blocking customer at Node k, if there is any, proceeds to Node 
k + 1 and releases (deblocks) the blocked server for new service. This rule is referred. as 
production blocking. 

A conspicuous feature of the tandem queueing system with production blocking is a 
simultaneous deblocking, in which several customers move simultaneously in consecutive 
nodes. For instance, if a server at Node k is blocked a'ld the buffer in Node k is full, a 
server at Node k -1 may be also blocked when he completes a service. Then upon a service 
completion at Node k + 1, the blocked servers are deblocked consecutively, i.e. the blocking 
customer at Node k advances to Node k + 1, as well as the one at Node k - 1 advances to 
Node k. Such a simultaneous deblocking does not occur in a system with communication 
blocking, and the existence of simultaneous deblockings makes the analysis of the system 
with production blocking more difficult. 

To analyze such CL system, it is convenient to describe the stochastic behavior of the sys­
tem with a time-continuous vector-valued Markov chain (Xl (t), X 2(t), ... , X K(t)), where 
Xk(t) represents the state of Node k at time t. In Section 4, we introduce two kinds of 
state descriptions of nodes and have two Markov chains to describe the stochastic behavior 
of the system. 

3. Approximation by the Cross Aggregation Method 
In this section, for reader's convenience, we briefly summarize variables and assumptions 

treated in the cross a.ggregation method. 
Let 5k = {O, 1, ... , Nk - I} be the set of local states of Node k, where Nk is the number 

of local states of the node. We consider a time-continuous Markov chain (X 1(t), X 2(t), ... , 
X K(t)) on the product state space 51.2 ..... K = SI X 52 X ••• X 5K, and at this moment 
we assume the chain is ergodic and in steady-state. We denote by x( nI, n2, ... ,nK) the 
stationary probability of the chain in state (nI, Tl2, ••• , nK), and by (XI, X 2,· •• , X K) a 
random vector subjecting to the stationary distribution. 

Level-l Approximation. In Level!, we look at one node at a time (Fig. 2a), and 
take marginal probabilities 
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Xk(nk) = Pr{Xk = n,.} = L:L:x(nl,n2, ... ,nk," .,nK)' nk = O,l, ... ,Nk -1, 
#k nj 

of Node k (k = 1,2, ... , K) as variables to be treated. 
Using the aggregation techn~que for Markov chains [6,12,15], for each fixed k, we derive 

a system of linear equations for xk(n,.), nk = 0,1, ... , Nk - 1 (see Appendix A). The 
coefficients in the equations are given by weighted sums of transition rates with weights 

Hence to evaluate the weights we have to approximate x(nll n2,"" n,., ... , nK )'s from 
marginal probabilities x,.(n,.)'s. Here we simply assume that the nodes are statistically 
independent as 

Assumption 1: 
(2) x(nb n2,"" nK) = IT xk(nk). 

k 

Using this assumption we get a system of Nk linear equations for x,.(n,.), n,. = 0,1, ... , 
Nk - 1, containing other xj(nj)'s in the coefficients. If we derive such a system of equa­
tions for each k, k = 1,2, ... , K, totally we have Ef=l N,. equations for Ef=l N,. variables 
xk(nk), nk = 0,1, ... , Nk - 1, k = 1,2, ... , K. Solving this combined system of equations 
numerically, we get Level-1 approximate values of xk(n,.)'s. Level-1 approximate values for 
other performance measures are calculated from these approximate values of xk(nk)'s. 

It is important to point out that though the coefficients of the linear equations are given 
in terms of conditional probabilities Xl,2, ... ,Klk(nl,'" , nK I nk) (see (15) in Appendix A), 
we need not calculate all of them and hence not all of the conditional probabilities because 
most of the coefficients are O's or constants (see Appendix A). Therefore the calculating 
effort for the approximation is much less than that for the exact solution. This notice is 
also valid for Levels-2 and -3 approximations stated below. 

Level-2 Approximation. In Level 2, we look at two adjacent nodes at a time (Fig. 2b) 
and take 

Xk,k+I(nk, nk+I) = Pr{X k = nk, X k+I = nk+tl 

= L: L: x(nb n2,"" nk, nk+b"" nK), 
j#,k+l nj 

nk = 0,1, ... , Nk - 1, nk+I = 0,1, ... , Nk+I - 1, 

k = 1,2, ... ,I< -1, 

as variables. The number of variables here is Ef=-l N,. x N"+I' Using the aggregation 
technique and Assumption 2 below, we can derive a system of Ef=11 N,. x N"+I equations 
for these variables as in Level 1. 

Assumption 2: 

where 

Xklk_l(nk Ink-I) = Pr{X k = nk I X k-I = nk-d 

= X,._I,,.(nk_b nk)/ L: Xk_I,,.(nk_b mk)' 
mk 
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Figure 2a: Level-l approximation 

Figure 2b: Level-2 approximation 

Figure 2c: Level-3 approximation 

By solving the system of equations numerically, we obtain a set of approximate values of 
xk.k+l(nk, nk+t}'s. Level-2 approximate values for other performance measures are calculated 
from these Level-2 a,pproximate values of xk.k+1(nk, nk+l)'s. 

Level-1 variables xk(nk)'s are marginals of Level-2 variables xk.k+l(nk, nk+t}'s. In this 
sense, Level-2 approximation is finer than Level··1 approximation. So it is reasonable to 
expect that Level-2 approximate values of performance measures are closer to the exact 
values than Level-1 approximate values. Furthermore, if approximate values of the two 
levels are close enough for most of the principal performance measures, we may expect 
that they are close to the exact values, too, at least in a practical sense. Then Level-2 
approximation is enough for our model analysis. On the contrary, if approximate values 
of the two levels are not close enough for some principal performance measures, then we 
suspect that at least Level-1 approximate values are not close to the exact values, and we 
should proceed to Level-3 approximation. 

Level-3 and Higher Approximations. In Level 3, we look at three adjacent nodes 
at a time (Fig. 2c) a.nd take 

j:;Ck.k+1.k+2 nj 

nk = 0,1, ... , Nk - 1, nk+I = 0,1, ... , Nk+I - 1, 

nk+2 = 0,1, ... , Nk+2 - 1, k = 1,2, ... , f{ - 2, 
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as variables. The number of variables here is I:~=12 Nk X N k+1 X Nk+2. Using the aggregation 
technique and Assumption 3 below, we can derive a system of equations for these variables 
as previously. 

Assumption 3: 

(4) x(nl,n2, ... ,nK) 

= X1,2,3(nb n2, n3)x412,3(n4 I n2, n3)'" xKIK-2,K-1(nK I nK-b nK._2), 

where 
Xklk-2,k-1(nk I nk-2, nk-d 

Pr{X k = nk I X k- 2 = nk-2,Xk-l = nk-d 

Xk-2,k-1,k(nk-2, nk-b nk)/ E Xk-2,k-l,k(nk-2, nk-1' mk)' 
mk 

By solving the system of I:~=12 Nk X Nk+1 x N k+2 equations numerically, we obtain 
Level-3 approximate values of Xk,k+1,k+2(nk, nk+b nk+2)'s. Level-3 approximate values for 
other performance measures are calculated from them. 

If approximate values of Levels 2 and 3 are close enough, we may expect they are close 
to the exact values, too. If they are not close enough, we should proceed higher levels of 
approximations. In this way, we can evaluate the errors in approximate values to some 
extent in the process of the cross aggregation approximation. As will be shown in Section 
5, the approximate values of Levels 2 and 3 are accurate enough for most examples tested. 
So the authors think that the cross aggregation by Level 3 is enough in most practical 
situations. 

In the case we need higher level approximations, we look at i (3 < i < K) successive 
nodes at a time in Level i. Variables and assumptions are selected similarly as those in 
Levels 1, 2 and 3. 

4. State Description and Modification of the Markov Chain 
It is easily seen from assumptions in the preceding section that the cross aggregation 

method is applied in a natural way if the state space of the underlying vector-valued Markov 
chain is a product space of individual state spaces of nodes. However, the Markov chain 
derived in the analysis of a tandem queueing system with production blocking does not 
have this desirable property. In this section, we introduce two kinds of state descriptions of 
such a system, and discuss fitness of the structure of the state space to the approximation 
assumptions of the cross aggregation method. 

4.1 State Descriptions 
There are several possible ways of state descriptions for a tandem queueing system with 

production blocking. Here we discuss two of them. The first is a generalization of the one 
used in [3, 13, 14) and others, and the second is a new one in which a blocking customer is 
counted in the number of customers in the next node. 

State description A. Let ak be the number of customers in Node k and (310 the 
number of servers blocked at Node k. Then the state of the system can be represented by a 
row vector (ab (31; a2, (32;"'; aK, (3K) with (3K = O. If we denote by Sk the set of all possible 
states of Node k, then 
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Remind that Sk is the number of servers and bk is the size of the buffer at Node k. 

State description B. Let <1k and f3k be as above and 

1'k = <1k - f3k + f3k-l, k: = 1,2, ... , K, 

with f30 = 0. Then the state of the system can be expressed by a row vector (1'1,1'2, ... , 1'K)' 
In this case, we regard 1'k as the state of Node k, though it may depend on the original state 
of downstream nodes. Then the set Sk of possible states of Node k is given by 

Sk = {1'k I 1'k = O,l, ... ,Sk_l +Sl: + bk}, k = 1,2, ... ,K 

with So = 0. 
State description A is natural and easy to imagine the situation of the system. However, 

under a simultaneous deblocking, more than two consecutive nodes may change their states. 
For example, consider a 4-node system with Sk = bk = 2 for k = 1,2,3,4. Suppose the num­
bers of customers at consecutive 4 nodes are 3,4,4 and 3 respectively, and a server at Node 
1 and a server at Node 2 are blocked. Then this state is represented as (3,1;4,1;4,0;3,0). 
If one of the customers in node 3 completes its service, then the blocked servers at Nodes 2 
and 1 are deblocked consecutively, and the state changes to (2,0; 4,0; 4,0; 4,0). Thus 3 out 
of 4 nodes change their states. 

On the other hand, in State description B, state changes occur at most two nodes 
simultaneously. For example, in the above situation, the state changes from (2,4,5,3) to 
(2,4,4,4). 

4.2 Shape of the State Space 
Here we investigate the shape of the state space for both State descriptions A and B. 

We denote by SI.2 ..... K the proper state space of the system, i.e. the set of all possible states 
of the system. Then in both State descriptions A and B, SI.2 ..... K is clearly a subset of the 
product space SI.2 .... ,K = SI X S2 X •.• X SK of state spaces of individual nodes, and indeed 
it is a proper subset. 

To see this, let's consider a case where K = 3 and Sk = 1, bk = 1 for k = 1,2,3. Figs. 
3a and 3b show the shape of SI,2 •...• K in State descriptions A and B, respectively. The sha.pe 
of SI.2 ..... K for State description A is complicated, but that for State description B is rather 
simple. The latter is a polyhedron formed from a rectangular parallelepiped by cutting 
along two edges and a corner with three planes. 

If we define a Markov chain (XI (t), X 2(t), ... , X K(t)) on the product space SI.2 ..... K to 
describe the behavior of the system, then the chain never visit states outside of SI.2 ..... K, and 
the corresponding stationary state probabilities are equal to zero. In Assumptions 1,2 and 
3, we impose positive approximate values on all stationary probabilities x(nb n2,"" nK) 
for (nl,n2, ... ,nK) E SI.2 ..... K. In order for the cross aggregation approximation to work 
well, the approximate value should be at least positive if (nl ,.n2, ... , nK) E SI,2 .... ,K, and 
zero if not. In the next subsection, we discuss whether this property is satisfied or not. 

4.3 Applicability of the Cross Aggregation Method 
First, we shall introduce some notations. For j ::::; k, let Si.i+l .... ,k be the set of possible 

combinations of states of consecutive k - j + 1 nodes j,j + 1, ... , k in the system, and 
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a: State description A b: State description B 

Figure 3: State space of a 3-node model with Sk = bk = 1 for k = 1,2,3 

Si.i+1 ..... k be the product space Si X Si+1 X ••• X Sk. Clearly 8i•i +1 •...• k C Si.i+1 ..... k. When 
j = k, we put 8i = Si' We define a set operation X between two 8's by 

8i ..... i ..... k X 8i ..... k ..... l = {(ni, ... , nj, ... , nk,···, nl) I 
(ni, ... , nit . .. , nk) E 8i ..... i ..... k, (nj, ... , nk, • .. , nt) E 8i ..... k ..... t}, 

for i :5 j :5 k :5 e, and" 

8i •...• k X 8i ..... l = 8i •...• k X 8i ..... l 

= {(ni, ... , nkj nit .. · nt) I (ni'"'' nk) E 8i •...• k, (nit .. ·, nt) E 8i ..... tl, 

for i :::; k < j :::; .e. 
lf we denote by Xi ..... k(ni, ... , nk) the indicator function of the set 8i •...• k on the product 

space Si ..... k, then 8 i ..... i ..... k X 8i ..... k ..... t is interpreted as a set having an indicator function 
Xi ..... i ..... k(ni, ... , nj, ... , nk) x Xi ..... k .... ,t{nj, ... , nk, ... , nt) on the product space Si .... j •...• k .... ,l. 

Note that in Level-3 approximation 81•2•3 X 82•3 •4 X ... X 8 K- 2.K-1.K is the set of 
(nit ... , nK )'s on which the approximate value of :z:(n1" .. , nK) in (4) is positive. Namely 

81•2•3 X 82•3 •4 X ... X 8K-2.K-1.K = 
((n1, ... ,nK) I x(n1, ... ,nK) > 0 under Assumption 3}. 

Similarly 

81•2 X 82•3 X X 8K-l.K = 
((nlt ... ,nK) I x(nlt ... ,nK) > 0 under Assumption 2}, 
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and 

Proposition 1. In State description A 

(i) S\.2 •...• k.k+1 is a proper subset of 81•2 •...• k x 8k+1 for k = 1,2, ... , I< - 1. 

(ii) SI •...• i •...• i x Si ..... i •.... k coincides with SI •...• i •...• i ..... k for 1 < i ~ j < k. 

337 

Proof; A state (O"l, f31; O"l+1, f31+1;"'; O"l', f3t')' l < l', belongs to 81•1+1 •...• 1' if and only if 

(a) (O"h,fJh) E Sh, or equivalently 0 ~ fJh ~ Sh and fJh ~ O"h ~ Sh + bh, 

for h = l,l + 1, .. . ,l', and 

(b) f3h = 0 if O"h+1 < Sh+1 + bh+1, 

for h = l,l + 1, ... ,f' - 1. Condition (b) reflects the fact that Node h is not blocked unless 
the buffer at Node h + 1 is full. 

To prove (i) we note that 

81 •...• 10.10+1 = {(O"t, 131;"'; 0"10, 1310; 0"10+1, f3k+d I (a) for h = 1, ... , k, k + 1, 
and (b) for h = l,2, ... ,k} 

and that 

SI.2 •...• 1o X S1o+1 = {(O"I.,fJl.;·.·jO"1o,fJ1ojO"1o+llfJ1o+1) I 
(a) for h = l, ... ,k,k+ 1, 
and (b) for h = 1,2, . .. ,k -I}. 

Since condition (b) for h = k is added in the condition of SI.2 •...• k+1 to that of 81•2 ..... 10 x Sk+l, 

state (0,0; ... ;0,0;1,1;0,0) is in 81•2 •...• 10 X 810+1 but not in 81•2 •...• 10+1. 
To see (ii), we note that 

81 •...• i •...• i •...• 1o = {(O"ll 131;"'; O"i, (3i; ... ; O"i, f3i;" .; 0"10, (310) I 
(a) for h = l, ... ,i, ... ,j, ... ,k, 

and (b) for h = l, ... ,i, ... ,j, ... ,k-1}, 

and 

Sl, .. "i, ... ,i X Si" ... ,j, ... ,k 

= {(O"bf3JI; ••• ;O"i,(3i;···;O"j,(3i;···;O"1o,f3k) I 
(a) for h = 1, ... , i, ... ,j, (b) for h = 1, ... , i, ... ,j - 1, 

(a) for h = i, ... ,j, ... , k, and (b) for h = i, ... ,j, ... , k - I}. 

It is clear that, if 1 < i ~ j < k, the condition in t.he right hand side reduces to 

(a) for h = 1, ... , i, ... ,j, ... , k, and (b) for h = 1, ... , i, ... ,j, ... , k - 1. 

Hence SI •...• i •...• ; •...• 1o = SI ..... i •...• ; x Si •...• i •...• 1o. 0 

Corollary; In State description A 
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(5) 

(6) 

(7) 
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5'1 X 52 X ... X 5 K = Sl.2 ..... K i- 5 1•2 ..... K, 

51•2 X 52,3 X ... X 5K-1.K = 5 1•2 ..... K, 

51•2•3 X 52•3•4 X .,. X 5K-2.K-1.K = 5 1•2 ..... K. 

This corollary is easily proved from Proposition 1 using mathematical induction. 
Assumption 1 in Section 3 provides a positive approximate value of x( nI, ... , nK) for any 

(nJ, ... ,nK) in Sl.2, .... K. However, x(n1, ... ,nK) = ° outside of 5 1•2 , .... K. Hence, in Level 1 
x(nt, ... , nK) = ° is approximated with a positive value for (n1,"" nK) in Sl.2 ..... K-51•2 ..... K . 
This indicates that Level-l approximation of the cross aggregation approximation will not 
work well with State description A. 

In approximations of Levels 2 and 3, the approximate values for x(n1,"" nK) by As­
sumptions 2 and 3 are positive if and only if (nI, ... ; nK) E 5 1•2 ..... K. Hence approximations 
of Levels 2 and 3 might work well. Brandwajn and Jow proposed this Level-2 approximation 
in [3] and reported it would provide good approximations. We will show the results of our 
test of these approximations of Levels 2 and 3 for two tandem queueing systems in Section 
5. 

For State description B, as easily guessed from Fig. 3b 

(8) 
(9) 

(10) 

5'1 X 52 X ... X 5K = Sl.2 ..... K i- 5 1•2 ..... K, 

51•2 X 52•3 X ... X 5 K - 1•K i- 5 1•2 ..... K, 

51•2•3 X 52•3 •4 X .,. X 5K-2.K-1.K i- 5 1•2 ..... K. 

To see this, we note that state (Tk, Tk+l, ... , Tt) belongs to Sk.k+1 ..... t for 1 ~ k ~ l ~ J( if 
and only if 

Ti + ... + Tj ~ Si_1 + Si + bi + ... + s j + bj 

for all i, j such that k ~ i ~ j ~ e, with So = 0. The left-hand side gives the sum of 
numbers of customers from Node i to Node j, and the right-hand side is its upper bound. 
Then we can easily check that (0, ... ,0,SK_2 + SK_1 + bK-1,8K_1 + SK + bK ) belongs to 
SI X S2 X .. ' X SK but not to SI.2 ..... K. Hence SI.2 ..... K is a proper ,subset of 51 X S2 X ... X SK' 
Equations (9) and (10) are checked in the similar manner. 

Therefore the cross aggregation method will not work well with State description B. 
However the shape of the state space for State description B is rather simple as shown in 
Fig. 3b. So if we can modify the Markov chain so that it is ergodic on the whole product 
space SI.2 ..... K, then the cross aggregation method will work for this modified Markov chain 
since the above equations hold with equalities for S's instead of S's. In the next subsection, 
we discuss the underlying idea of the modification. 

4.4 Modification of Markov Chain for State Description B 
For brevity, let us consider a simple 2-node system with 81 = 82 = b1 := ~ = 2. In 

this system, SI = {0,1,2,3,4}, S2 = {0,1, .. ·,6} and 51.2 = {(T1,T2) I T1 E Sl,T2 E 
S2, and Tl + T2 ~ 8}. State (4,5) E Sl.2 = SI X S2 is not in 51.2, because T2 = 5 means 
that Node 2 is full and one server at Node 1 is blocked. In such a case, the blocked server 
is treated as a buffer of Node 2, and T1 can be 3 at most. Besides state (4,5), states (3,6) 
and (4,6) are also not in 51.2, 

Table 1 lists the conditional probabilities xl12(T1 I T2) = Pr{X1 = T1 I X 2 = T2}' In 
order for Assumption 1 to provide good approximate values, it is desirable that the rows of 
Table 1 are close with each other. So we shall modify the Markov chain so that rows 5 and 
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Table 1: M/M/2/4-tM/2/4 >. = 4, JlI = 2, Jl2 = 2 

Pr{XI = T} I X 2 = T2} 

T2 Tl = 0 Tl = 1 Tl = 2 Tl = 3 Tl = 4 
0 .0709 .1473 .1576 .1917 .4324 
1 .0829 .1754 .1962 .2641 .2814 
2 .0980 .2120 .2447 .2547 .1905 
3 .1135 .2456 .2561 .2261 .1588 
4 .1228 .2526 .2654 .2394 .1197 
5 .1130 .2311 .3298 .3261 -

6 .1303 .2510 .6187 - -

6 become closer to other rows. 
We see that x112(2 I 6) is relatively large in column TI = 2 and so is x112(3 I 5) in column 

T} = 3. Hence it is natural to modify the Markov chain so that the stationary probability 
x(2,6) is shared with states (2,6), (3,6) and (4,6) in the modified chain and x(3, 5) is shared 
with states (3,5) and (4,5). A concrete algorithm to achieve such a modification for more 
general systems is presented in Appendix B. Adopting this algorithm to our 2-node system, 
the following 7 transitions are added as shown in Fig. 4b in Appendix B: 

from (2,6) to (3,6) with rate >. 
from (3,6) to (4,6) with rate >. 
from (3,5) to (4,5) with rate >. 
from (4,5) to (3,6) with rate PI 
from (3,6) to (5,2) with rate 2Jl2 
from (4,6) to (5,2) with rate 2Jl2 
from (4,5) to (3,4) with rate 2P2' 

Then, xlI2(216) = .1>187 is split into xI12(216) = .2358, x112(3 16) = .1914 and xI12(416) = 
.1914, and x112(3 15) = .3261 is split into xI12(315) = .1957 and x112(4 15) = .1304. 

By this modification, the Markov chain becomes ergodic on the product space S},2' For 
a more general K-node system, we can modify the Markov chain in a similar manner. Then 
the state space becomes the product space of state spaces of individual nodes, and the cross 
aggregation method can be applied in a naive form in any level of approximation. 

In the next section, we will numerically test these approximations for two tandem queue­
ing systems with production blocking. 

5. Numerical Results 
The approximatt: procedures proposed in the preceding sections are tested for more than 

50 cases. In this section, we show some results among them and discuss accuracy of the 
cross aggregation method. 

Tables 3 through 8 are numerical results for a 4-node model with SI. = bk = 2 for 
k = 1,2,3,4. The approximate values are compared with exact values. In the tables, row 
"Exact" indicates exact values, and rows "LevellB", "Level 2B" and "Level 3B" indicate 
approximate values in Levels 1, 2 and 3 with State Description B, respectively. Similarly, 
rows "Level 2A" and "Level 3A" indicate approximate values in Levels 2 and 3 with State 
Description A. Column "Max" indicates the maximum of relative errors in percentage in 
Pr{X I. = nk}'s over nk = 0,1, ... , NI. - 1, k = 1,2,3,4 in each level. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



3.40 Y. Song & Y. Takahashi 

Table 9 shows results of a 5-node model with Sk = bk = 1 for k = 1,2,3,4,5 with a set 
of parameters used in [10] and [3]. 

With State description B, we can start approximations from Level 1. With State de­
scription A, we cannot apply the cross aggregation method in Level 1, but programming 
is easier than with State description B, because the transition rate matrix of the modified 
Markov chain is rather complex (see Appendix C). 

The number of variables treated is different between State Descriptions A and B even 
in the same level. It is listed in Table 2. 

Table 2: Number of variables in the approximate models 

The 4-node model The 5-node model 

Original MC 1367 531 

Level1B 26 (=5+7+7+7) 19 ( =3+4+4+4+4) 
Level2B 133 (=35+49+49) 60 (=12+16+16+16) 
Level2A 194 (=81+81+32) 68 (=19+19+19+11) 
Level3B 588 (=245+343) 176 ( =48+64+64) 
Level3A 740 (=531+209) 183 (=71+71+41) 

As stated in Section 3, most entries of the aggregated rate matrix are equal to 0 and some 
others are constants. For example, in Level-2B of the 4-node model, there are 492 = 2401 
entries in Q2,3' Among them, 2206 entries are O's and 24 entries are non-zero constants. 
Only 171 entries must be calculated in each iteration. In Level-2A approximation of the 
4-node model, among 81 2 = 6561 entries of Q2,3' 6220 of them are O's, 42 of them are 
constants, and we have only 299 entries to be calculated in each iteration. 

Roughly speaking, the computing time to get approximate values is almost proportional 
to the number of variables treated, though it varies with system parameters. For instance, 
the computing time for Level 3A is generally longer than for Level 3B. This indicates that, 
if Nk is constant, the computational burden for any level of approximation is expected to 
be in linear order of J( as J( increases. 

The results of Tables 3 through 9, and other numerical results we got, show that Level-1B 
approximation is rather rough because sometimes relative errors exceed 20%. As we have 
expected,' Level-2B approximation is better. The relative errors in average number of cus­
tomers do not exceed 5% in most cases though some relative errors in marginal probabilities 
exceed 20%. Level-2A approximation is even better. The relative errors in marginal prob­
abilities and average number of customers do not exceed 10% and 5% respectively except 
only a few cases. 

As for Level-3A and Level-3B, in most cases, the relative errors are below 2% and 3% 
respectively in both marginal probabilities and average number of customers. But in a few 
exceptional cases, relative errors become rather large. The case shown in Table 7 is one of 
such cases. The relative errors of Level-3 approximate values of Pr{ X k = O}., k=1,2,3 and 
4, exceed 10%. In this case, with probability 0.6130, servers at Nodes 1, 2 and 3 are blocked 
simultaneously. In consequence, the stochastic behavior of Node 1 is largely affected by that 
of Node 4, and this violates our Assumption 3. 

In our cross aggregation method, we intuitively expect the following two properties: 

1) The higher the level of approximation, the more accurate the approximate values are, 
since higher approximate models are finer than lower ones. 
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Table 3: M/M/2/4-+M/2/4-+M/2/4-+M/2/4 : A = 6, J.Ll = 3, J.L2 = 3, J.L3 = 3, J.L4 = 3 

Pr(Xi = 4) A verage number of customers 
Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4 

Exact .2932 .3844 .3272 .2300 2.5524 2.5977 2.3915 2.0230 
LevellB .2640 .3432 .2935 .2181 ~!.4238 2.4599 2.2756 1.9583 
Level2B .2828 .3799 .3297 .2310 ~!.5314 2.5863 2.3882 2.0207 
Level2A .2990 .3850 .3242 .2266 2.5632 2.5890 2.3681 2.0022 
Level3B .2916 .3813 .3265 .2315 :t5526 2.2937 2.3894 2.0298 
Leve13A .2937 .3842 .3272 .2299 :!.5533 2.5963 2.3902 2.0215 

Error in % Max 
Level1B -9.96 -10.72 -10.31 -5.16 -5.04 -5.31 -4.85 -3.20 20.04 
Leve12B -3.55 -1.15 0.76 0.43 -0.82 -0.44 -0.14 -0.11 3.S5 
Leve12A 1.99 0.17 -0.94 -1.48 0.42 -0.34 -0.98 -1.03 4.:n 
Level3B -0.53 -0.79 -0.23 0.68 0.01 -0.15 -0.09 0.33 1.130 
Level3A 0.18 -0.04 -0.00 -0.02 0.03 -0.06 -0.05 -0.07 0.:33 

Table 4: M/M/2/4-+M/2/4-+M/2/4-+M/2/4 A = 1, J.Ll = 3, J.L2 = 3, J.L3 = 3, J.L4 = 3 

Pr(Xj = 4) A verage number of customers 
Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4 

Exact .0011 .0012 .0013 .0013 0.3420 0.3422 0.3423 0.3421 
Level 1B .0011 .0013 .0013 .0013 0.3420 0.3424 0.3424 0.3422 
Level2B .0011 .0012 .0013 .0013 0.3420 0.3423 0.3424 0.3422 
Level2A .0011 .0012 .0013 .0013 0.3420 0.3423 0.3424 0.3422 
Level3B .0011 .0012 .0013 .0013 0.3420 0.3422 0.3423 0.3421 
Level3A .0011 .0012 .0013 .0013 0.3420 0.3422 0.3423 0.3421 

Error in % Max 
Level1B -0.01 5.16 3.04 2.29 0.01 0.05 0.04 0.03 5.16 
Level2B 0.00 0.04 1.74 1.94 0.00 0.00 0.02 0.02 UI4 
Level2A 0.00 0.07 1.83 2.01 0.00 0.00 0.02 0.02 2.01 
Level3B 0.00 -0.00 0.02 0.51 0.00 0.00 0.00 0.00 0}i1 
Level3A 0.00 0.00 0.02 0.52 0.00 0.00 0.00 0.00 0.52 

Table 5: M/M/2/4-+M/2/4-+M/2/4-+M/2/4 ,\ = 2, J.Ll = 1, J.L2 = 3, J.L3 = 1, J.L4 = 3 

Pr(X; = 4) Average number of customers 
Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4 

Eaxct .2345 .0814 .3344 .0056 2.2834 1.0572 2.3457 0.5404 
Level1B .2220 .0238 .3341 .0068 '2.2255 0.8999 2.3779 0.5510 
Level2B .2395 .0928 .3602 .0059 '2.3148 1.1318 2.4004 0.5448 
Level2A .2352 .0877 .3501 .0059 '2.2871 1.0994 2.3701 0.5408 
Level3B .2349 .0793 .3334 .0056 2.2856 1.0514 2.3431 0.5402 
Level3A .2345 .0814 .3344 .0057 2.2834 1.0572 2.3457 0.5405 

Error in % Max 
Level1B -5.34 -70.76 -0.10 21.96 -2.53 -14.88 -0.10 21.96 70.76 
Level2B 2.11 13.97 7.72 5.68 1.37 7.05 2.32 0.81 14.67 
Level2A 0.27 7.70 4.70 4.73 0.16 3.98 1.04 0.08 8.18 
Level3B 0.15 -2.58 -0.31 0.51 0.10 -0.56 -0.11 -0.03 2.58 
Leve13A 0.00 0.01 -0.00 0.83 0.00 -0.00 0.00 0.03 0.83 
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Table 6: M/M/2/4-+M/2/4-+M/2/4-+M/2/4 : .x = 2, ILl = 3, IL2 = 1, IL3 = 3, IL4 = 3 

Pr(X; = 4) Average number of customers 
Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4 

Exact .1315 .5343 .0093 .0093 1.5680 2.9451 0.6267 0.6237 
Level1B .0752 .6045 .0127 .0127 1.5193 3.1858 0.6692 0.6644 
Leve12B .1314 .5340 .0092 .0100 1.5676 2.9447 0.6270 0.6253 
Leve12A .1317 .5:342 .0094 .0100 1.5688 2.9446 0.6272 0.6253 
Leve13B .1315 .5:142 .0093 .0093 1.5680 2.9451 0.6266 0.6236 
Level3A .1315 .5:143 .0093 .0094 1.5680 2.9452 0.6267 0.6238 

Error in % Max 
Level1B -42.77 13.15 37.04 35.84 -3.10 8.17 6.79 6.53 46.25 
Level2B -0.05 -0.05 -0.83 6.85 -0.02 -0.02 0.05 0.25 6.85 
Level2A 0.14 -0.00 1.16 7.42 0.05 -0.02 0.09 0.25 7.42 
Level3B 0.00 -0.01 0.00 -0.43 0.00 -0.00 -0.01 -0.01 0.43 
Level3A 0.00 0.00 0.21 0.27 0.00 0.00 0.01 0.01 0.27 

Table 7: M/M/2/4-+M/2/4-+M/2/4-+M/2/4 .x = 2, ILl = 3, IL2 = 2, IL3 = 1, IL4 = .5 

Pr(X; = 4) Average number of customers 
Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4 

Exact .5080 .9686 .9812 .8461 3.1627 3.9493 3.9763 :l.7452 
Level 1B .6115 .9686 .9677 .8458 3.2951 3.9591 3.9584 a.7445 
Level2B .5265 .9679 .9834 .8463 3.1263 3.9563 3.9797 :l.7456 
Level2A .5080 .9550 .9742 .8458 3.1198 3.9257 3.9662 :J.7447 
Level3B .5033 .9713 .9839 .8462 3.1031 3.9558 3.9798 :l.7454 
Level3A .5080 .9(j34 .9808 .8461 3.1431 3.9404 3.9757 3.7452 

Error in % Max 
Level1B 20.39 0.00 -1.38 -0.04 4.19 0.25 -0.45 -0.02 96.22 
Level2B 3.64 -0.07 0.22 0.02 -1.15 0.18 0.09 0.01 72.13 
Level2A 0.00 -1.40 -0.72 -0.04 -1.35 -0.60 -0.26 -0.01 75.92 
Level3B -0.92 0.27 0.28 0.01 -1.88 0.16 0.09 0.00 26.72 
Level3A 0.00 -0.54 -0.04 -0.00 -0.62 -0.23 -0.02 -0.00 19.71 

Table 8: M/M/2/4-+M/2/4-+M/2/4-+M/2/4 .x = 2, ILl = .5, IL2 = 1, IL3 = 2, IL4 = 3 

Pr(X;=4) Average number of customers 
Node 1 Node 2 Node 3 Node 4 Node 1 .Node 2 Node 3 Node 4 

Exact .5281 .0521 .0039 .0008 3.2299 1.1268 0.4951 0.3215 
Level1B .5179 .0584 .0048 .0010 3.2020 1.1329 0.4945 0.2301 
Level2B .5281 .0521 .0041 .0009 3.2299 1.1269 0.4957 0.3219 
Level2A .5281 .0521 .0041 .0009 3.2299 1.1270 0.4957 0.3219 
Level3B .5281 .0521 .0039 .0008 3.2299 1.1268 0.4951 0.3215 
Level3A .5281 .0521 .0039 .0008 3.2299 1.1268 0.4951 0.3215 

Error in % Max 
Level1B -1.94 12.91 22.91 24.82 -0.86 0.54 -0.11 -0.41 27.82 
Level2B -0.00 0.04 5.11 14.25 -0.00 0.01 0.12 0.14 14.25 
Level2A 0.00 0.10 6.01 14.87 0.00 0.02 0.14 0.14 14.87 
Level3B -0.00 -0.00 0.00 1.34 -0.00 0.00 0.00 0.01 1.34 
Level3A -0.00 -0.00 0.01 1.51 0.00 0.00 0.00 0.01 1.51 
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2) If differences between corresponding approximate values of two consecutive levels are 
small enough, the values are also close to the exact ones. 

Our numerical results seem to support these properties. The authors think that these 
properties hold in most cases of tandem queueing systems with production blocking, though 
they have never been proved. Based on these properties we can perform our approximation 
process roughly estimating the magnitude of errors. 

EXACT 

Level1B 
Level2B 
Level2A 
Level3B 
Level 3A 

Error in % 
Level1B 
Level2B 
Level2A 
Level3B 
Level3A 

EXACT 

Level1B 
Level2B 
Level2A 
Level3B 
Level3A 

Error in % 
Level1B 
Level2B 
Level 2A 
Level3B 
Level3A 

Table 9: M/M/l/2-+M/l/2-+M/l/2-+M/l/2-+M/l/2 

)\ = 3, 1-'1 = 2, 1-'2 = 3, 1-'3 = 4, 1-'4 = 3, 1-'5 = 2 

Pr{X; = 2} 
Node 1 Node 2 Node 3 Node 4 

.5190 .3246 .3261 .4652 

.5142 .2701 .2360 .4080 

.5289 .3270 .3305 .4708 

.5231 .3276 .3245 .4555 

.5286 .3250 .3309 .4753 

.5194 .3238 .3265 .4680 

-0.92 -16.80 -27.64 -12.30 
1.90 0.72 1.35 1.20 
0.78 0.91 -0.50 -2.09 
1.85 0.12 1.46 2.15 
0.08 -0.26 0.11 0.60 

A verage number of customers 
Node 1 Node 2 Node 3 Node 4 

1.3593 0.9415 0.9298 1.1790 

1.3376 0.8256 0.7720 1.1170 
1.3699 0.9427 0.9225 1.1879 
1.3642 0.9450 0.9144 1.1598 
1.3704 0.9413 0.9298 1.1937 
1.3593 0.9410 0.9217 1.1828 

-1.59 -12.31 -16.08 -5.26 
0.78 0.13 0.29 0.75 
0.36 0.37 -0.59 -1.63 
0.82 -0.03 1.09 1.25 
0.01 -0.06 0.21 0.33 

Node 5 

.4673 

.4670 

.4709 

.4604 

.4710 

.4681 

-0.06 
0.77 

-1.48 
0.80 
0.18 

Node 5 

1.1872 

1.1917 
1.1936 
1.1757 
1.1938 
1.1890 

Max 
0.25 27.64 
0.41 2.85 

-1.10 3.31 
0.42 2.51 
0.02 0.70 
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Appendices 

A. Formulas and Algorithm 
Here we derive a system of equations to be solved in each of Levels 1, 2 and 3 in the 

cross aggregation method. 

A.I Level-I Approximation 
Let q(mt, ... , mKj nt, ... , nK) be the transition rate of the Markov chain {(X l(t), ... , 

X K(t))} from (ml," ., mK) to (nl"'" nK), and Q = {q(ml,"" mK; nl,"" nK)} be the 
transition rate matrix. The stationary probabilities x(mll ... , mK) satisfy the equilibrium 
equations 

(11) l: x(ml, ... ,mK) q(mt, ... ,mKjnll ... ,nK) = 0, 

and 

(12) L x(mt, ... ,mK) = 1. 
(ml, .. ·,mK) 

As stated in Section 3, we look at one node at a time in Level 1, and take xk(nk)'s as 
variables. For each fixed k, k = 1,2, ... ,](, to derive equations for Xk( nk), nk = 0,1, ... , 
Nk - 1, we take summations E(ml, ... ,mK) in (11) and (12) in two steps as Emk(E#k Em). 
Then we have 

(13) 

and 

(14) 

where 

(15) 

and 

(16) 

l:Xk(mk)qk(mk,nk) = 0, nk = O,I, ... ,Nk-l 
mk 

qk(mk,nk) = L L XI,2, ... ,Klk(ml, ... ,mK I mk) 
i"lk m, 

xl: Lq(ml, ... ,mKjnt, ... ,nK), 
#k nj 

In terminology of the aggregation theory, nk is called an aggregate state if we regard it 
as a set of states (nI' n2, .. . , nK) with nk in the k-th place in common, and xk(nk) is called 
an aggregate variable. Equations (13) and (14) are called aggregate equations. 

Note that qk(mk, nk) in (15) is a weighted sum of transition rates q(mt, ... , mKj nk) = 
Ej# Enj q(mt, ... , mKj nt, ... , nK) from state (ml, ... , mK) to aggregate state nk with 
weights Xl,2, ... ,Klk(mt, ... , mK I mk). The weight XI,2, ... ,Klk(mt, ... , mK I mk) can be inter-
preted as conditional probability Pr{X 1 = mt, X 2 = m2,···, X K = mK I XI: = mk}. 

From (13) and (14) we can see that xk(nk)'s, nk = 1,2, ... , Nk, satisfy the equilibrium 
equations for a Markov chain with aggregate transition rate matrix Qk = {qk(mk,nk)}. So 
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if we know the values of weights Xl,2, ... ,Klk(m., ... , mK I mk), tlien we can get the values of 
xk(nk)'s by solving equations (13) and (14) in a usual way done in Markov chain analyses. 

Unfortunately, however, we do not know the values of X},2, ... ,Klk(m}, ... , mK I mk)'s, so 
we have to approximate them. Using Assumption 1 in Section 3, we may approximate as 

(17) X},2, ... ,Klk(mll"" mK I m~) = IT xj(mj). 
j# 

Then Equations (13) and (14) with (15) and (16) constitute a set of nonlinear equations for 
variables xk(nk), nk = 0,1, ... , Nk - 1, k = 1,2, .... , K. 

The following algorithm solves the set of equations numerically. 

ALGORITHM 

1. Initialization 

Set an appropriate initial value of xk(nk) for each k and nk. 

2. Loop 1 

(a) Loop 2 
A) Set k == 1 
B) Loop 3: 

i. Use the latest values of xAnj)'s (j j/:. k) to calculate the aggregate transition 
rate matrix Qk from (15) and (16). 

ll. Solve (13) for xk(nk), nk = 0,1, ... , Nk - 1, with a usual numerical method 
for a system of linear equations such as the Gauss-Seidel's method. 

111. Normalize them using (14). 

Loop 3 is over. 

C) If k = K then Loop 2 is over, else increase k by 1, go to B). 

(b) Compare values at the latest two iterations. If a certain convergence criterion is 
satisfied, Loop 1 is over. Otherwise go to (a). 

3. Calculation of performance measures 

From the approximate values of xk(nk), nk = 0,1, ... , N k-1, k = 1,2, ... , K, calculate 
approximate performance measures of the original model such as the loss probability 
and the mean numbers of customers, etc. 

The convergence of the algorithm has never been proved because of nonlinearity of the 
aggregate equations. But in all the cases the authors tested, the algorithm does converge. 

In the first step of Loop 3, we do not need to calculate all of the entries qk(mk, nk) of Qk 
from the definition (ll5), because most of them are equal to 0 or constants. In Appendix C, 
we discuss which transition rates must be calculated using approximation assumptions, for 
the case of Level 2. The case of Level 1 can be easily derived from the discussion. 

A.2 Level-2 Approximation 
The aggregate equations corresponding to (13) and (14) are 
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(18) E E Xk,k+l(mk, mk+1) qk,k+l(mk, mk+l; nk, nk+l) = 0, 
rnk rnk+l 

nk=O,I, ... ,Nk-I; nk+l=O,I, ... ,Nk+l-I, 

and 

(19) E E Xk,k+l(mk, mk+l) = 1, 
rnk rnk+l 

where k = 1,2, ... , K - L 
In Level-2 approximation, we look at two adjacent nodes at a time and form an aggregate 

Markov chain with transition rate matrix Qk,k+l with entries 

(20) 

where 

Qk,k+l(mk, mk+l; nk, nk+l) 

= E E Xl,2, ... ,Klk,k+l(mll ... ,mK I mk,mk+1) 
#k,k+1 rnj 

x E Eq(mt, ... ,mK;nl, ... ,nK), 
i;tk,k+l ni 

X1,2, .... Klk,k+l(mll ... , mK I mk, mk+d 

(21) = Pr{X1 = mll X 2 = m2"",XK = mK I X k = mk,Xk+1 = mk+1} 

= x(m1"'" mK )/xk,k+l(mk, mk+t). 

Assumption 2 makes us possible to approximate X1,2, ... ,Klk,k+1 (m1, ... , mJ( I mk, mk+l) 
from aggregate variables Xk,k+1(nk, nk+1)' 

A.3 Level-3 Approximation 
In Level-3, we look at 3 adjacent nodes at a time, and form an aggregate Markov chain 

with transition rate matrix Qk,k+l,k+2 with entries 

(22) 

where 

Qk,k+l,k+2(mk, mk+ll mk+2j nk, nk+b nk+2) 

= E E Xl,2, ... ,Klk,k+l(mll ... ,mK I mk,mk+l,mk+2) 
j;tk,k+ 1,k+2 rnj 

x 
i;tk,k+l,k+2 ni 

X1,2, ... ,Klk,k+l,k+2(m1,"" mK I mk, mk+1, mk+2) 

(23) = Pr{X1 = m\,,,,,XK = mK I X k = m",Xk+l = mk+1,Xk+2 = mk+2} 

= x(mll"" mK )/Xk,k+l,k+2(mk, mk+1, mk+2)' 

With Assumption 3, we take the dependency among three adjacent nodes into account, 
and assume that their stochastic behaviors are affected by other nodes only through a chain 
of connecting nodes. 

Using a similar scheme to Levels 1 and 2, we can get Level-3 approximation. 
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B. Modification of Markov Chain for State Description B 

B.t Scheme of the Modification 
Here we propose a scheme of modification of the Markov chain derived from Description 

B to enlarge the state space from SI.2 •...• K to SI.2 ....• K = SI X S2 X ... X SK. 
We classify states in SI.2 ..... K into three categories, inner states, boundary states and 

dummy states. We call state (Tb T2, ... , TK) in SI.2 ..... K - SI.2 ..... K as dummy state. For state 
(Tb T2, ... , TK) in SI.2 ..... K, we call it a boundary state if (Tb T2,' .. , Tk_l, Tk + 1, Tk+1,' .. , TK) 
is a dummy state for some k, (k = 1,2, ... , K), and we call it an inner state if not. 

For illustration, we consider a 2-node model with SI = 82 = bl = b2 = 2. In this case, 
SI = {O,1,2,3,4}, S2 = {O,1, ... ,6} and SI.2 = {(TI,T2) I Tl E SI, T2 E S2, Tl +T2:S: 8}. 
Here (3,6), (4,5) and (4,6) are dummy states, and (2,6), (3,5) and (4,4) are boundary states. 

For each dummy state, later we choose a boundary state called the root of the dummy 
state. The dummy state is called a descendant of the root. A boundary state (Tb T2, ... , TK) 
and its descendants form a group G( Tl, T2, ... , TK)' If state (Tb T2, ... , TK) is an inner state 
or a boundary state without any descendants, it forms a group G( Tl, T2, ... , TK) by itself. 
Then SI.2 ..... K is divided into groups of states, and G: (Tb T2,' .. , TK) -+ G( Tb T2,' .. , TId is 
a bijection from SI.2 ..... K to the set of all groups {G( Tb T2, ... , TK)}' Our goal is to derive an 
ergodic Markov chain on SI.2 ..... K whose stationary probability of G( Tb T2,' .. , TK) coincides 
with that of (Tl, T2, ... , TK) in the original chain. 

For the purpose, we modify the Markov chain by imposing dummy transitions from/into 
dummy states. The rates of transitions imposed are, in principle, parallel to neighborhood. 
However, we have to satisfy the following 

Condition C: The rate of a transition from a dummy state in G( Tf, T~, . .. , TK) 
to another group G( Tf', T~', .. . , TK) is set equal to that from (Tf, T~, ... , TK) to 
( "" If) Tl , T2, ... , TK . 

Then clearly the modified Markov chain has the desired property. 
In practice, we proceed the modification in two steps. In the first step, we modify the 

original chain by assigning dummy transitions from/into dummy states in the following 
manner. 

For a boundary or dummy state (Tt, T2, .. . , TK), we suppose a dummy arrival changes 
the state of the chain from (Tl, T2, ... , TK) to (Tl + 1, T2, ... , TK) with transition rate .A if (Tl + 
1, T2, ... , TK) is a dummy state. Similarly we suppose a dummy service completion at Node 
k (k < K) changes the state from (Tl, T2, ... , TK) to (Tb" . , Tk-b Tk-1, Tk+1 + 1, Tk+2, ... , TK) 
with transition rate min{sk, TdJ.'k if (Tb"" Tk-b Tk - 1, Tk+l + 1, Tk+2,"" TK) is a dummy 
state. A dummy service completion at Node J{ changes the state from (Tl, T2, ... , TK) to 
(Tb"" TK-t, TK-l) with transition rate min{sK, TK }J.'K if (Tt, ... , TK_l, TK-l) is a dummy 
state. For example, in the 2-node model, as shown in Fig. 4a, a dummy arrival changes 
(2,6) to (3,6), and a. dummy service completion at Node 1 changes (4,5) to (3,6). 

The original ch2~in (we will refer it as MC-B) is thus modified to an ergodic chain on 
the state space SI.2, .... K (we will refer it as MC-Bd. But the stationary state probabilities 
of MC-Bl may different from those of MC-B even for inner states. In the second step, 
we further modify MC-Bl so that Condition C is satisfied and hence the stationary state 
probabilities coincide with those of MC-B. 

First we must determine which dummy states belong to the group G( Tb T2, ... , TK) of a 
boundary state (Tl,T2, ... ,TK). Because MC-Bl is ergodic, the state can be reached from 
any boundary state sooner or later. We can prove that there is a unique boundary state from 
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which the dummy state can be reached in less number of steps than any other boundary 
states. We define this boundary state as the root of the dummy state, and refer the dummy 
state as a descendent of the root boundary state. This root-descendent relation divides 
St.2 ..... K into groups {G(Tt,T2, ... ,TK)}. In the 2-node model, (4,5) can be reached from 
(3,5) in one step, and from other boundary states in more steps, so we decide (3,5) is the 
root of (4,5) and let (4.5) belongs to G(3,5). Similarly, (2,6) is the root of (3,6) and (4,6), 
and G(2,6) consists of these three states. 

In Appendix B.2, we present an algorithm to find the root of a dummy state. 
Next we modify MC-Bl so that Condition C is satisfied. The basic idea is as follows. 
i) Modification of the rates of dummy transitions. If a transition from a dummy state 

due to a dummy service completion at Node k, the transition rate must be set equal to that 
due to a service completion at Node k when MC-Bl is in the root of the dummy state. In 
the 2-node model, the transition rate from (4,5) to (3,6) should be changed to 1'1 because 
the transition rate from (3,5) to (2,6) in MC-Bl is 1'1. The transition rate from (3,6) to 
(3,5) remains 21'2 because the transition rate from (2,6) to (2,5) in MC-Bl is 21'2' Transition 
rates due to dummy arrivals need not to be modified. In the 2-node model, the transition 
rate from (3,6) to (4,6) is the case. 

ii) Modification of the destinations of dummy transitions. For some dummy transitions, 
we have to change their destinations. For a transition from a dummy state, if the destination 
of the corresponding parallel transition from the root is an inner state, then its destination 
should be changed to the same inner state. For example, in the 2-node model, MC-Bl in 
(3,5) transits to inner state (3,4) due to a service completion at Node 2, hence the destination 
of a parallel dummy transition from (4,5) to (4,4) should be changed to (3,4). Similarly, the 
destination of transitions from (3,6) to (3,5) and from (4,6) to (4,5) are changed to (2,5). 
See Fig. 4b for the modification. 

In this manner, MC-Bl is modified to, say, MC-B2. Clearly MC-B2 satisfies Condition C, 
and the sum of the stationary probabilities of states in G( Tl, T2, ... , TK) in MC-B2 coincides 
with the stationary probabilities of (Th T2,' .. , TK) in MC-B. 

B.2 Algorithm for the Roots of Dummy States 
For 1 ::; i ::; j ::; K, state (Tl, T2, ... , TK) is not a dummy state if and only if 

(24) Ti + ... + Tj ::; Si-l + Si + bi + ... + Sj + bj 

with So = O. For notational simplicity, we use the following symbols: 

(A) { 
Ef=iTk, i = 1,2, ... ,K 

Vi = 0, i = K + 1 

j j 

(B) tij = Ebk + E Sk· 

k=i k=i-t 

Then (24) can be written as 
(25) Vi - Vj+l ::; tij. 

A pplying the following algorithm to any state (Tt, T2, ... , TK), we know whether it is a 
dummy state or not. And if it is a dummy state, we find its root. 

ALGORITHM 
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Figure 4a: MC-El for the 2-node model 

Figure 4b: MC-E2 for the 2-node model 
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1. Step 1 

Calculate each Vi for (Tl' T2, ••• , TK ). 

2. Step 2 

(a) Let i = 1 and j = 1. 

(b) If inequality (25) is satisfied then go to (d) else go to (c). 

(c) Reduce Vi until equality holds in inequality (25), then go to (d). 

(d) If j < K, increase j by 1 and return to (b). 
If j = K and i < K, increase i by 1, set j = 1, and return to (b). 

If j = K and i = K then go to step 3. 

3. Step 3 

1) If the original vector (Tl' T2, ••• ,TK) satisfies inequality (25) for all i a.nd j, it is not 
a dummy state. 

2) If (Tl' T2, ••• ,TK) is a dummy state, calculate new nk from new {vd using Equa­
tion (A). The acquired vector is the root of the dummy state. 

C. Aggregate Transition Rates for State Description B 
Here we show how to calculate the aggregate transition rate matrices using assump­

tions in the case of State description B, specifically for Level-2 approximation. For State 
description A, readers may refer Appendix 2 in [3]. 

To avoid cumbersome discussion on the number of active servers in the system with 
multi-server nodes, we first consider the case of single-server nodes. Even such a case the 
transition rates become complex because dummy transitions at Node k' (k' > k) may change 
state of Node k. To make discussion clearer, similar to states in SI,2, ... ,K, we classify states 
in Sk.kH •...• kl into three categories: inner states, dummy states and boundary states. We call 
state (Tk' Tk+l, •• • ,Tkl) in Sk,Hl •...• kl-Sk.k+l •...• kl as a dummy state. For state (TI" THI!" ., Tk') 

in Sk.k+I •...• k', we call it a boundary state if (Tk' THl, •.• ,Tj_l, Tj + 1, THI, ... , TD is a dummy 
state for some j, (j = k, k + 1, ... , k'), and we call it an inner state if not. Applying the algo­
rithm proposed in Appendix B to a vector (Tk' Tk+1! ••• ,Tk') with Tk' > 0, we can see whether 
it is a dummy state or not. If it is a dummy state, we can also determine its destination 
(TL T~+I' ..• ,T~/) and the rate of transition which contributes to qk.k+I (Tk' Tk+I j TL T~+I)' 

The aggregate transition rate matrix Qk.kH (k < K) for the single-server case is given 
in the following 4 steps. 

1) Service completions at Node k -1 (1 < k < K) yield arrivals to node pair (k,k + 1), 
and they occur in the case that Tk-l > 0 and Tk < Nk - 1. Hence 

qk.k+l(Tk,TkHjTk + 1,Tk+l) 

Nk_l- 1 

= L JLk-l Pr{Xk_ 1 = Tk-l I Xk = Tk,Xk+l = THt} 
1"k_l=l 

Nk_l-l 

~ L JLk-l Xk-llk( Tk_l I Tk), 
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:Z:k-III.(Tk-l I Tk) = Pr{Xk- 1 = Tk-l I X k = Tk} 

= Xk_l,k(Tk __ h Tk)/ L Xk-l,k(TLl' Tk)' 

":'_1 
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2) A service completion at Node k (k < K) transfers a customer from Node k to Node 
k + 1, and the rate associated with it does not depend on states of other nodes. Hence 

qk,k+l(Tk, Tk+hTk -1,Tk+1 + 1) = Jlk, Tk > 0, Tk+1 < N k+1-1. 

3) Outputs from node pair (k, k+ 1) (k < K -1) are due to service completions at Node 
k+ L They occur in the case that Tk+1 > 0 and Tk+2 < Nk+2 -1. Their destinations a.re 
rather complicated because some of them are from dummy states to inner states. So 
we have to apply the algorithm proposed before to find out such destinations. Suppose 
the destination is (Tk, Tk+1 - 1), then the corresponding aggregate transition rate is 

N.+2-2 

L 
"'.+2=0 
N.+ 2-2 

E 
.... +2=0 
N.+2-2 

E 
".+2=0 

Tk = 0, 1, ... , Nk - 1, Tk+l > 0. 

4) We further need some revision because dummy transitions at Node k' (k' > K + 1) 
may also change state of Node k. To a vector (Tk' Tk+1, .•. , Tk') with Tk' > 0, applying 
the algorithm proposed before, we know whether it is a dummy state or not. If it 
is a dummy state, we can determine its destination (T~, T~+1' ... , T~') and the rate of 
transition which contributes to qk,k+1(Tk, Tk+1; T~, Tk+1)' The rate of the transition is 
given by 

N.'+1-2 

E Ilk' Pr{X k+2 = Tk+2,···, X k' = Tk', X k'+1 = Tk'+1 IX k = Tk, X k+l = Tk+tl 

N.'+1-2 

~ E Ilk' Xk+2Ik+1 (Tk+2 I Tk+d ... Xk'+1ld Tk'+l I Tk'). 
"'.'+1=0 

We sum up all rates of such transitions from (Tk' Tk+d to (Tk' T~+1)' If (T~, Tk+l) is 
one of the vectors we used in 1), 2) or 3), the sum should be added to the transi­
tion rate we ha.ve gotten. Otherwise, the sum becomes the aggregate transition rate 
qk,k+I(Tk, Tk+I; ,-:., Tk+I)' In both cases, the diagonal entry qk,k+I(Tk, Tk+I; Tk, Tk+d must 
be revised correspondingly, too. 

For a system with multi-server nodes, the aggregate transition rate matrix becomes more 
complicated, because we can not determine the number of active servers in Node k only from 
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the states of Nodes k and k + 1 in many cases. 
In the case of 1) above, if r" :5 b", we only need to insert a coefficient min{r"_l,s,,_d 

before 1'-"-1 in the second and third lines of the equation. If r" > b" and r"tl :5 b"+b the 
coefficient becomes min{ r".-1, S"_l, N,,-r,,}. Otherwise, the coefficient is not a constant, and 
it is given as a mixture of the number of active servers which depends on the st.ates of Nodes 
k + 2, k + 3, ... , K, with the corresponding probability approximated from Assumption 2. 

In the case of 2), if r"+1 :5 b"+1, we only need to put a coefficient min {rl" Sk} before I'-k 
in the equation. Otherwise, the coefficient is given by a mixture as above. 

As for 3) and 4), the rate becomes more complex and has to be determined individually. 
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