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Abstract We investigate a transient diffusion approximation by diffusion process with elementary return 
boundary for the number of customers in the M /G/m system. We forlllulate and solvt' the forward diffusion 
equation with variable coefficient. whose solution is a transit'lIt. approximation to queut' size distribution. 
Numerical examples show that these diffusion approxil1lation results are quite accuratp for all traffic cases. It 
is shown that st.at.ionary approximat.ion by Ki1l1ura is obt.ained fro 11 I 0111" tr;lIISiellt. diffusioll approximat.ion. 

1. Introduction 

The purpose of this paper is to provide a transient diffusion approximation of the 

number of customers for .M/C/m queueing system. The advantage of diffusion approx­

imation over other technique is that explicit though approximate solutions with a high 

degree of accuracy are obtainable for relatively complex situation where the only possi­

ble alternative lies in numerical methods or simulation experiments. Considerable works 

on an approximation method using a diffusion model have been done in the stationary 

state (Chiamsiri and Leonard [6], Gavel' ([11],[12]), Halachmi and Franta 114], Heyman 

[16], Iglehart [17], Kimura ([20],[21]), Kobayashi [22], et al.). However, there are many 

practical situations where we need to know the transient behavior of queueing system. 

It is often important to know how long it takes an ergodic queueing system to reach 

steady-state and the rate of convergence in which the system approaches to steady-state. 

Such an application appears in the problem of deciding when transient phenomena ends, 

and how many data points are discarded in the course of using a computer simulation 

to estimate the steady-state characteristics of a queueing system. A brief survey of pos­

sible applications is given in Duda [9]. But time-dependent theory of queueing system 

is much more difficult mathematically than the steady-state theory. Even for M/M/1 

system the transient exact solution is given in terms of infinite sum of Bessel function and 

is far from the practical use. The problem of the diffusion approximation i.s reduced to 

that of solving ordinary differential equations for stationary behavior and that of solving 

partial differential equations for transient behavior. In the single server case, the transient 

approximation was investigated by diffusion process with reflected boundary (Kobayashi 

[23], Abate and Whitt ([1],[2],[3])) and with elementary return boundary (Duda ([8],[9])). 

It is known that a diffusion process with elementary return boundary gives more accurate 

approximation for light traffic conditions in which the system are more frequently empty 
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(Gelenbe [12]). The multiserver case is treated in this paper. In detail, we investigate 

a transient approximation by diffusion process with elementary return boundary for the 

number of customers in the M/G/m system. For a multi-server queueing system we need 

to solve a partial differential equation with state variable coefficients. In section 2, we first 

present forward diffusion equation on the real positive line for a diffusion process (strictly 

speaking, elementary return process) which approximates the number of customers in the 

system and then derive the explicite solution of the forward diffusion equation. In section 

3 we obtain the stationary solution from the transient solution by letting t -+ 00 and 

show that the result coincides with Kimura's result [21J. Numerical examples are then 

presented in order to evaluate the accuracy in section 4. 

2. Transient diffusion approximation for M/G/m system 
For the M/G/m queueing system, we assume the followings. Suppose that customers 

arrive at the queueilOg system at the instants tt, t 2, ... , where interarrival times tk+l -

tk(k = 0,1,2,··· ,to = 0) are independent identically distributed random variables with 

exponentinal distribution with parameter A. Assume that there are m identical servers 

acting in parallel. It is assumed that the service ti.mes have general distribution with mean 

i and variance ab 2, which are independent of the interarrival times and the number of 

customers in the system. To approximate the number of customers in M/G/m system, 

we take an elementary return process {X(t), t 2 O} with state space [0,00) and with the 

elementary return boundary at x = O. The elementary return process can be explained as 

follows. When the trajectory of X(t) reaches the boundary, it remains there for a random 

interval of time called a holding time. After the sojourn at the boundary the trajectory 

jumps into the interior of the region and starts from scratch. In the queueing context the 

holding time at x = 0 represents the time interval during which the system is empty. Since 

arrival process is Poisson, the holding time has exponential distribution with parameter 

A. The elementary return process was fully investigated by Feller [10J. 

Let the elementary return process {X(t),t 2 O} with state space [0,00) and X(O) =: xo 
be an approximation of the number of customers in the M / G / m system. Then the proeess 

X ( t) is specified by the diffusion parameters aCr) and b( x) called infinitesimal variance 

and infinitesimal mean and defined by 

(2.1) a(x) = lim Var(X(t+Dot)-X(t)IX(t)=x) 
At--+O Dot 

(2.2) b(x) = lim E(X(t + Dot) - X(t) I X(t) = x) 
At--+O I~t 

Define the probability density function f(x, t I xo) of X(t) given X(O) = xo by 

(2.3) f(x, t I xo)dx = Pr(x ::; X(t) < x + dx I X(O) = xo) 
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Since X(t) approximates the number of customers in the system at time t, we assume 

the initial value X(O) = :1:0 is nonnegative integer throughout this paper. Since the the 

holding time at origin has exponential distribution with mean ~, f(x, t I xo) satisfies 
the following partial differential equation, so called a forward equation (or Ii'okker-Planck 

equation) (Feller [IOD 

(2.4) 
of 1 02 0 
~ = -!Ol 2 {a(x )f(x, t I xo)} - ~{b(x)f(x, t I xo)} + AP(t)6(x -- 1) 
vt 2 vx vx 

and 

(2.5) 
dP(t) . 
-d- = -AP(t) + hm Cx d 

t xlO ' 

where 

1 0 
Cx,d = 2" ox {a(x)f(x, t I xo)} - b(x)f(x, t I xo), 

and P( t) denotes the probabilities that the process X (t) is at origin at time t and 6( . ) 

is the Dirac's delta function. In addition to the above partial differential equations on 

f(x, t I xo), we must specify the boundary condition at x = 0 and the initial condition at 

t = O. Since the boundary at x = 0 behaves as absorbing boundary during their holding 

time we set 

(2.7) 

for all t > O. We set - . 
(2.8) 

and 

(2.9) 

limf(x,tlxo) = 0 
xlO 

f(x,O I xo) = 6(x - xo) 

P(O) = { ~ if xo > 0 

if xo = O. 

We use the diffusion parameters proposed by Kimura [21J as follows; 

(2.10a) 

(2.10b) 

a(x) = A + min(fxl,m)JL3ab2 

b(x) = A - min(fxl,m)JL 
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where r x 1 is the smallest integer not smaller than x. The main problems of diffusion 

approximation are to choose appropriate diffusion parameters and boundary conditions 

and then to solve the partial differential equation (2.4). 

Now we present the solution of partial differential equation (2.4) which is a transient 

approximation ofthe number of customers in the M/G/m system. The transient solutions 
derived in this section have the forms of Laplace transform and the corresponding time­

dependent functions can be obtained numerically. 

Let ak = a(k), bk = b(k), k = 1,2,··· ,m and .fk(x,tlxo) be the restriction of f(x,tlxo) 
to k - 1 < x ::; k, t ~ 0, k = 1,2,··· ,m - 1 and fm(x, tlxo) the restriction of f(x, tlxo) 
to m-I < x < 00 .. t ~ 0. Then the equation (2.4) becomes for k - 1 < x < k, t > 0, 

k = 1,2,··· ,m - 1, 

(2.11) 

and for m-I < x < 00, t > 0, 

(2.12) 

It should be noted that there exists a continuous solution of the equation (2.4) even if a( x) 
and b( x) are piecewise continuous functions with .a finite number of discontinuities (Mandl 

[25]). Hence we impose the following smooth conditions (see Kimura [21] for stationary 

case) 

(2.13) hm fk( x, tlxo) = h-l (k - 1, tlxo) k = 2,3, ... ,m. 
x!k-l 

For the convenience of solving partial differential equation, let gk(tlxo) = h(k, tIJ7o), 
k = 1,2,··· ,m - 1, and h(k - 1, tlxo) = limx!k.-l h(x, tlxo) k = 1,2,··· ,m. 

The problem of solving the differential equation (2.4) is reduced to the following initial 

boundary value problems, for k - 1 < x < k, t > O,k = 1,2,·· . ,m - 1 

(2.14) 

(2.15a) 

(2.15b) 

(2.15c) 

h(k - 1, tlxo) = gk_l(tlxo), 

fk(k, tlxo) = gk(tlxo), 

fk(X,Olxo) = 6(x -- xo), 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



310 B.D. Choi & Y. W. Shin 

and for m-I < x < 00, t > 0, 

(2.16) 

(2.17a) 

(2.17b) 

fm(m -l,tlxo) = gm-l(tlxo), 

fm(x, 0lxo) = c5(x - xo). 

From the conditions (2.7), we have that go(tlxo) = 0 for all t 2:: O. In tIns paper the 

Laplace transform of a given function f( t) is defined by 

f*(s) = 100 e-stf(t)dt. 

Proposition 1. Let {X(t), t 2:: O} be a elementary return process formulated in this 

section approximating the number of customers in the M / G / m system. The Laplace 

transform f*(x,slxo) of the density function f(x,tlxo) of X(t) given X(O) = Xo is given 

as follows: For k - 1 < x :S k, k = 1,2"" ,m - 1 

(2.18) f *( I ).- (h( k))sinhAk(x-k+1) *( I ) k X, S Xo ·-exp - x - . gk S Xo 
ak smhAk 

( 
bk ( k )) sinh A k ( k - x) * (I ) + exp - x - + 1 . hAg k -1 s X 0 
ak sIn k 

and, for m-I < x < 00, 

(2.19) 

- sinhAm(x - xo)U(x - xo)} l(xo 2:: m), 

and gk(slxo) are given by 
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(2.20) g;(s) =: ~l (A + s)P*(s) - ~l l(xo := 0), 

(2.21 ) 

(2.22) 

k = 3,4, ... , m - 1, 

(2.23) 

where 1( D) is the indicator of D and U( x) = 1( x ~ 0) and 

(2.24) k=1,2,···,m, 

(2.25) k = 1,2,··· , m - 1, 

(2.26) 

k = 2,3, ... , m - 1, 

(2.27) C 
bm-l am-1Am - 1 cosh A m - 1 bm am Am m=:---+ +-+--2 2 sinhAm _ 1 2 2· 

Proof. For the derivation of (2.18) and (2.19), see Appendix. Next we will determine 
gk(slxo) in the expression (2.18) and (2.19) in the terms of known parameters. We take 
the Laplace transform of equation (2.4) with respect to t variable, and then integrate with 
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respect to x variable. Then we have 

(2.28) 

where 

1 8 
-~{a(x)f*(x, sJxo)} - b(x)f*(x, sJxo) 
2 ux 

=[Cx,sf*]x!O +- s l x 
f*(y, sJxo)dy - U(x - xo) - '\P*(s)U(x -1), 

Cx sf'" = ~: {a(x)f*(x,sJxo)} - b(x)f*(x,sJxo). , 2 ux 

Simple calculation from (2.28) gives 

(2.29) 

(2.30) 

[Cx,sf;]x!l = [Cx,sf{]xjl - ,\P*(s) - 1(xo = 1), 

[Cx,sfk]x!k-l = [Cx,s!k-l]xTk-l - 1(xo = k - 1), 

where k = 3,4"" , m. Taking the Laplace transform of equation (2.5) yields 

(2.31) [Cx,s!;]x!O = (s +- ,\)P*(s) - P(O). 

From (2.18), (2.19), (2.29), (2.30) and (2.31), we can obtain gk's in terms of P* as follows. 

Let us show how to find only gi and g2' First, we calculate Cx,s!i from (2.18). The left 

hand side of (2.31) is equal to B1gi(sJXo). Thus (2.20) can be obtained from (2.31). By 

calculating Cx,s!; from (2.18), we obtain that the right hand side of (2.29) is equal to 

and the left hand side of (2.29) is 

Thus (2.21) is obtained from (2.29). By the same method (2.22) obtained from (2.30). 

o 
We need to express P*(s) in terms of known parameters. The equations (2.20) - (2.23) 

tell us that gt" k = 1,2" ... ,m - 1 can be represented in terms of only P*. Hence the !ts 
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and f:" in (2.18) and (2.19) can be represented in terms of only P*. Using the conservation 

of probability 

(2.32) pet) + 100 f(x, ti.ro)dx = 1 

which is equivalent to 

(2.33) P*(s) + [00 j*(x,sixo)dx =~, Res> 0, io s 

P * (s) can be represented in terms of known parametes. 

3. Stationary diffusion approximation for M/C/m system 

In this section we obtain the stationary approximation by letting t -t 00 in the tran­

sient approximation for the M/C/m system. Let fk(X) = limt-+oofk(x,tixo), 9k = 
limt-+oo 9k(tixo), k= 1,2,,,, ,m - 1, fm(x) = limt-+oo fm(x, tixo) and P = limt-+oo pet). 
To obtain the limiting probability, we use the final value theorem for Laplace transform; 

lim f(t) = lim sj*(s). 
f-CX) 8--+0 

Proposition 2. Let {X(t), t ;::: O} be a elementary return process defined in section 2 

approximating the number of customers in M / C / m system. Under the condition bm < 0, 

that is, p = m~ < 1, stationsry function f(x) is l~iven as follows: for 0 < x ~ 1, 

(3.1 ) () >"P 2!~x ) 
f1 x = ~(c 0, - 1 , 

for k - 1 < x ~ k, h = 2,3"" ,m - 1, 

(3.2) 
'P k 2b· 
A ~ (IT::..::..L) 2!.L(X-k) h(x):=T(C o

, -1) cOj C Ok ,k=2,3,"',m-1, 
1 j=2 

for m - 1 < x < 00, 

(3.3) 
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When bk "# 0, k = 1,2, ... , m-I, 

(3.4) 

When there exists some i with bi = 0 (if it exists it is unique), 

(3.5) p= 

where 

k 2b. 

qk = q1 . IT e ~, k = 2,3, ... , m - 1. 
j=2 

Proof. Since lim Ak(s) == Ibkl, we have from (2.25) that 
8-+0 ak 

bk limBk(s)= b ,k=1,2, .. ·,m-1. 
8 ...... 0 2~ 

e "k - 1 

Thus we have from (2.20) that 

(3.6) 
>. 22..L 

91 = lim S9;(S) = -b (e "1 -1)P. 
8-+0 1 

Note from (2.26) that, for k = 1,2"" m-I, 

2!.L 1 e 4k 

lim ekeS) = bk- 1 -':""b --- + bk b • 
8 -+0 2 -.!.=.!. 2 ~ 

e 4k_1 - 1 e 4k - 1 
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Thus we have from (2.21) and the above results that 

(3.7) 

where (3.6) has been used m the last equality. We have from (2.22) that, for /..: 

2,3,··· ,m-I, 

(3.8) 

S· 2~ '3 8) . h k 3' 2~ B' d t' b . mce 92 = e 42 91, (. WIt = gives 93 = e 43 92. Y m uc IOn we 0 tam 

(3.9) 

Now we find the equilibrium condition. We have from (2.19) that 

(3.10) f ( ) - (~!z'--~)(x--m+I) m X - 9m-Ie m m , x2m-1. 

315 

Suppose bm 2 0, that is, p = )../mf-l 2 1. Then frn(x) = 9m-I (> 0) for all x 2 m -1 and 

hence J:-l fm(x)d:r = 00. Thus the conservation of probability 

(3.11) 

holds if and only if bm < 0, which is the equilibrium condition. Now assume bm < 0, that 

is, p = )../m/-! < 1. (3.10) becomes 

(3.12) f ( ) - 2~(x-m+l) m X - 9m-le m , x> m-I 
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Thus (3.3) is obtained from (3.6), (3.9) and (3.12). For k = 1, letting t -+ 00 in (2.18), 

we have 

(3.13) 

Substituting (3.6) into (3.13) yields (3.1). To derive fk(X),k = 2,3,··· ,m -1, we need to 

calculate the followings; for k = 2,3,· .. ,m - 1, 

1. (sinhAk(X - k + 1) *() ~ sinhAk(x - k) * ()) 
lm . hA sgk s - e Ok • hA sgk_l S 

&--+0 sIn k SIn k 

~(x-k+I) -~(x-k+l) ~(x-k) -~(x-k) 
e Ok - e ok e ok - e ok ~ 

~ _~ gk - ~ _~ e ok gk-I 
eOj·-e ok eOk-e ok 

~(x-k) 
=eo k gk, 

where (3.9) has been used in the second equality. Now we use the above result when we 

let t approach 00 in (2.18). Thus we have 

(3.14) () 
2~(x-k) fk X = e Ok gk 

Thus (3.2)is obtained from (3.6), (3.9) and (3.14). The value of P is determined by the 
condition (3.11) as follows. Let us assume bk # 0, k = 1,2,··· ,m - 1. The ease of bk = 0 

for some k = 1,2, ... ,m -- 1 will be treated later. Simple calculation gives 

m-Ilk 100 
1 ==P + L h(x)dx + fm(x)dx 

1 k-l m-I 

and hence we have (3.4). When there exists an i such that b; = 0, then f;(x) is constant 

q; . P for i-I < x ~ i and clearly fL I fie x )dx = qi . P, by letting bi -+ 0 in the right 
hand side of (3.11), (3.5) is obtained. 0 

Remark The proposition 2 coincides with the Kimura's result [21, p309]. 
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4. Numerical results 

In order to examine the accuracy of the diffusion approximation, we shall numerically 

compare the approximate results with the simulation results. The discretization of eon­

tinuous density function f(x, tlxo) can be done in several different ways (Chiamsiri and 

Leonard [6], Gelenbe [12], Halachmi and Franta [14], Kobayashi [22]). We adopt the 
following one; for n = 1, 2, . .. , 

( 4.1) Pn(t) = fen, tlxo). 

Table 1 (light traffic case p = 0.3), Table 2 (moderate traffic case p = 0.5) and Table 

3 (heavy traffic case p = 0.7 ) present the comparison of the transient diffusion ap­

proximation results with the simulation results for the M/M/3 queueing system. We 

do the same comparisonfor M/H2 /3 bqueueing systemin the case of p = 0.3, 0.5, 0.'7 in 
the Tables 4 - 6. The hyperexponential density function used in Tables 4 - 6is given by 

b(x) = 0.3Jlle-I'P; -+- 0.7Jl2e-1'2X, where Jll = 5.0 and Jl2 = p~~7!J.3 for each traffic inten­

sity p. In the tables dif f denotes the diffusion approximation results with discretization 

methods (4.1) and sim denotes the simulation results. In case t = 00 we compare the 

diffusion results with the exact solution. We adopt the Stehfest's method [27] to obtain 

the numerical inversion of Laplace transform. The approximate numerical inversion let) 
of 1*( s) at time t is given by 

where the coefficient 

. Min(i,Jt) kJt (2k)' 
v:. -- (-l)Jt+· " . 

• -- _~ (~ - k)!k!(k - l)!(i - k)!(2k - i)! 
k-[ 2 1 

depends only on the constant N. In Tables, Pn(t)'s are calculated with double precision 

arithmetic and N =: 10. Simulation results in the tables are obtained with thirty thousand 

times run. The confidence intervals are calculated with the batch means method (Bratley 

et a1. [4]) assuming; the confidence level 95 %, which are based on the t-statistic applied 

to the thirty batches of size one thousand. Tables show that the accuracy of diffusion 

approximation method is high for all traffic cases. It can be seen by comparing the 

transient probability Pk( t) with the stationary probability Pk( 00) in the tables that it 

takes a short period of time to reach the steady-state for the light traffic cases and it 

takes rather long period of time to reach the steady-state for the heavy traffic cases as we 

expected. 
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TABLE 1 
Comparison of the diffusion results with simulation for M/M /3 Queue 

(xo = 3, A = 3.0, p = 0.3) 

method poet) PI(t) P2(t) P3(t) P4(t) P5(t) P6 (t) 
diff 0.0032 0.1791 0.4176 0.3005 0.1160 0.0211 0.0018 
Slm 0.0160 0.1395 0.3685 0.3679 0.0945 0.0122 0.0014 
C.l. 0.0015 0.0066 0.0071 0.0071 0.0055 0.0016 0.0006 
diff 0.1276 0.3559 0.2905 0.1455 0.0659 0.0247 0.0074 
Slm 0.1407 0.3270 0.2971 0.1502 0.0605 0.0192 0.0044 
C.l. 0.0048 0.0079 0.0076 0.0055 0.0049 0.0021 0.0008 
cliff 0.2494 0.3654 0.2310 0.1011 0.0441 0.0182 0.0067 
Slm 0.2485 0.3610 0.2332 0.0983 0.0389 0.0139 0.0043 
C.l. 0.0066 0.0072 0.0056 0.0045 0.0037 0.0024 0.0012 
diff 0.3194 0.3632 0.2017 0.0808 0.0333 0.0136 0.0054 
Slm 0.3180 0.3647 0.2011 0.0728 0.0277 0.0101 0.0037 
C.l. 0.0082 0.0062 0.0070 0.0036 0.0018 0.0019 0.0013 
diff 0.3689 0.3618 0.1825 0.0674 0.0257 0.0100 0.0039 
Slm 0.3688 0.3650 0.1763 0.0575 0.0216 0.0070 0.0025 
C.l. 0.0074 0.0076 0.0052 0.0049 0.0022 0.0013 0.0006 
diff 0.4034 0.3627 0.1699 0.0579 0.0167 0.0067 0.0023 
Slm 0.4030 0.3631 0.1628 0.0494 0.0147 0.0049 0.0014 
C.l. 0.0070 0.0088 0.0059 0.0033 0.0022 0.0012 0.0006 
diff 0.4033 0.3628 0.1699 0.0579 0.0197 0.0067 0.0023 
Slm 0.4049 0.3612 0.1635 0.0505 0.0142 0.0039 0.0013 
C.l. 0.0082 0.0071 0.0062 0.0035 0.0020 0.0011 0.0005 
diff 0.4040 0.3631 0.1701 0.0579 0.0197 0.0067 0.0023 
Slm 0.4041 0.3642 0.1633 0.0472 0.0147 0.0048 0.0012 
C.l. 0.0077 0.0072 0.0055 0.0041 0.0020 0.0011 0.0005 
diff 0.4034 0.3628 0.1699 0.0579 0.0197 0.0067 0.0023 
Slln 0.4026 0.3606 0.1647 0.0488 0.0157 0.0053 0.0017 
C.l. 0.0080 0.0089 0.0046 0.0035 0.0022 0.0011 0.0006 
diff 0.4037 0.3628 0.1699 0.0579 0.0197 0.0067 0.0023 
Slm 0.4092 0.3600 0.1621 0.0471 0.0156 0.0040 0.0012 
C.l. 0.0079 0.0081 0.0048 0.0031 0.0015 0.0007 0.0006 
cliff 0.4034 0.3628 0.1699 0.0579 0.0197 0.0067 0.0023 

exact 0.4035 0.3631 0.1634 0.0490 0.0147 0.0044 0.0013 

P7 (t) 
0.0001 
0.0001 
0.0002 
0.0017 
0.0007 
0.0004 
0.0022 
0.0015 
0.0006 
0.0020 
0.0015 
0.0006 
0.0015 
0.0005 
0.0004 
0.0008 
0.0004 
0.0003 
0.0008 
0.0004 
0.0003 
0.0008 
0.0003 
0.0003 
0.0008 
0.0004 
0.0004 
0.0008 
0.0006 
0.0004 
0.0008 
0.0004 
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TABLE 2 
Comparison of the diffusion results with simulation for M/M /3 Queue 

(xo = 3, A = 3.0, p = 0.5) 

method poet) Pl(t) P2(t) P3 (t) P4 (t) P5(t) P6(t) 
diff 0.0002 0.0668 0.3691 0.4052 0.1647 0.0223 0.0010 
sim 0.0050 0.0641 0.2923 0.4877 0.1311 0.0180 0.0017 
C.l. 0.0011 0.0032 0.0068 0.0071 0.0062 0.0024 0.0006 
diff 0.0359 0.2303 0.3244 0.2326 0.1297 0.0250 0.0146 
sim 0.0477 0.1950 0.3220 0.2497 0.1262 0.0449 0.0114 
C.l. 0.0032 0.0051 0.0063 0.0067 0.0040 0.0031 0.0015 
diff 0.0926 0.2722 0.2872 0.1830 0.1051 0.0512 0.0204 
Slm 0.0967 0.2506 0.2924 0.1851 0.1042 0.0470 0.0174 
C.l. 0.0043 0.0071 0.0074 0.0055 0.0034 0.0031 0.0019 
diff 0.1348 0.2879 0.2666 0.1592 0.0909 0.0473 0.0217 
Slm 0.1362 0.2807 0.2653 0.1565 0.0886 0.0430 0.0190 
C.l. 0.0060 0.0056 0.0067 0.0058 0.0035 0.0032 0.0023 
diff 0.1772 0.2999 0.2514 0.1415 0.0789 0.0422 0.0212 
sim 0.1666 0.3018 0.2470 0.1377 0.0760 0.0399 0.0167 
C.l. 0.0049 0.0054 0.0063 0.0058 0.0034 0.0031 0.0019 
diff 0.~n43 0.3172 0.2391 0.1233 0.0637 0.0330 0.0171 
Slm 0.~W95 0.3108 0.2390 0.1185 0.0612 0.0310 0.0150 
C.l. 0.0067 0.0079 0.0068 0.0056 0.0034 0.0031 0.0019 
diff 0.~n56 0.3182 0.2392 0.1228 0.0631 0.0324 0.0166 
sim 0.2115 0.3140 0.2400 0.1164 0.0577 0.0290 0.0155 
C.l. 0.0066 0.0091 0.0069 0.0058 0.0041 0.0027 0.0022 
diff 0.2160 0.3185 0.2394 0.1229 0.0631 0.0324 0.0166 
Slm 0.~n09 0.3134 0.2380 0.1167 0.0592 0.0297 0.0163 
C.l. 0.0060 0.0085 0.0086 0.0060 0.0035 0.0021 0.0019 
diff 0.2157 0.3183 0.2392 0.1228 0.0631 0.0324 0.0166 
Slm 0.2074 0.3152 0.2382 0.1162 0.0605 0.0311 0.0160 
C.l. 0.0047 0.0061 0.0069 0.0045 0.0037 0.0030 0.0022 
diff 0.2159 0.3183 0.2392 0.1228 0.0631 0.0324 0.0166 
Slm 0.2140 0.3162 0.2348 0.1166 0.0591 0.0294 0.0152 
C.l. 0.0059 0.0094 0.0072 0.0045 0.0040 0.0023 0.0019 
diff 0.2157 0.3183 0.2392 0.1228 0.0630 0.0324 0.0166 

exact 0.2105 0.3158 0.2368 0.1184 0.0592 0.0296 0.0148 
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P7(t) 
0.0000 
0.0003 
0.0002 
0.0029 
0.0023 
0.0007 
0.0066 
0.0050 
0.0012 
0.0087 
0.0074 
0.0016 
0.0097 
0.0090 
0.0013 
0.0088 
0.0070 
0.0013 
0.0086 
0.0068 
0.0014 
0.0085 
0.0078 
0.0015 
0.0085 
0.0078 
0.0014 
0.0085 
0.0079 
0.0015 
0.0085 
0.0074 
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TABLE 3 

Comparison of the diffusion results with simulation for M/M /3 Queue 

(xo = 3, ,\ = 3.0, p = 0.7) 

method Po(t) Pl(t) P2(t) P3(t) P4(t) Ps(t) P6(t) 
diff 0.0000 0.0306 0.3094 0.4650 0.1951 0.0210 0.0005 
Slm 0.0019 0.0358 0.2328 0.5523 0.1526 0.0218 0.0025 
C.I. 0.0007 0.0033 0.0066 0.0073 0.0059 0.0021 0.0008 
diff 0.0143 0.1493 0.3028 0.2780 0.1777 0.0739 0.0196 
Slm 0.0195 0.1263 0.2930 0.2973 0.1760 0.0656 0.0175 
C.l. 0.0027 0.0057 0.0069 0.0049 0.0058 0.0038 0.0022 
diff 0.0433 0.1884 0.2758 0.2253 0.1534 0.0826 0.0342 
Slm 0.0452 0.1712 0.2768 0.2297 0.1519 0.0806 0.0313 
C.l. 0.0034 0.0073 0.0063 0.0066 0.0055 0.0039 0.0026 
diff 0.0672 0.2033 0.2593 0.2000 0.1385 0.0825 0.0412 
Slm 0.0652 0.1922 0.2595 0.2043 0.1375 0.0812 0.0371 
C.l. 0.0038 0.0071 0.0077 0.0051 0.0053 0.0049 0.0028 
diff 0.0894 0.2130 0.2458 0.1809 0.1256 0.0798 0.0454 
Slm 0.0810 0.2102 0.2448 0.1822 0.1251 0.0798 0.0424 
C.l. 0.0037 0.0059 0.0070 0.0040 0.0054 0.0050 0.0032 
diff 0.1104 0.2166 0.2260 0.1570 0.1079 0.0731 0.0486 
Slm 0.1026 0.2122 0.2229 0.1568 0.1073 0.0714 0.0486 
C.l. 0.0049 0.0064 0.0071 0.0074 0.0042 0.0044 0.0035 
diff 0.1075 0.2111 0.2205 0.1537 0.1065 0.0733 0.0500 
Slm 0.1018 0.2097 0.2171 0.1530 0.1034 0.0712 0.0478 
C.l. 0.0046 0.0066 0.0067 0.0049 0.0040 0.0043 0.0033 
diff 0.1057 0.2079 0.2176 0.1522 0.1061 0.0736 0.0508 
Slm 0.0987 0.2079 0.2121 0.1508 0.1049 0.0744 0.0479 
C.l. 0.0042 0.0075 0.0064 0.0061 0.0046 0.0041 0.0040 
diff 0.1040 0.2050 0.2150 0.1507 0.1055 0.0737 0.0513 
Slm 0.0956 0.2029 0.2127 0.1536 0.1001 0.0721 0.0522 
C.l. 0.0048 0.0056 0.0061 0.0061 0.0048 0.0048 0.0032 
diff 0.1028 0.2026 0.2126 0.1494 0.1049 0.0736 0.0517 
Slm 0.0920 0.2032 0.2161 0.1456 0.1027 0.0725 0.0497 
C.l. 0.0036 0.0064 0.0055 0.0050 0.0056 0.0045 0.0040 
cliff 0.1024 0.2021 0.2122 0.1491 0.1048 0.0736 0.0517 

exact 0.0957 0.2010 0.2110 0.1477 0.1034 0.0724 0.0507 

P7 (t) 
0.0000 
0.0003 
0.0003 
0.0034 
0.0042 
0.0011 
0.0109 
0.0101 
0.0014 
0.0171 
0.0152 
0.0020 
0.0229 
0.0197 
0.0017 
0.0316 
0.0324 
0.0021 
0.0337 
0.0333 
0.0027 
0.0349 
0.0328 
0.0030 
0.0356 
0.0349 
0.0027 
0.0363 
0.0348 
0.0027 
0.0363 
0.0355 
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TABLE ,1 

Comparison of the diffusion results with simulation for M / H 2 /3 Queue 

(xo = 0, A = 3.0, p = 0.3) 

method poet) Pt(t) P2(t) P3(t) P4(t) P5(t) P6(t) 
diff 0.7627 0.2416 0.0356 0.0033 0.0002 0.0000 0.0000 
Slm 0:7778 0.1958 0.0239 0.0022 0.0002 0.0000 0.0000 
C.l. 0.0043 0.0041 0.0025 0.0005 0.0002 0.0000 0.0000 
diff 0 .. 5596 0.3241 0.1090 0.0264 0.0055 0.0009 0.0001 
Slm 0 .. :')698 0.3171 0.0930 0.0172 0.0025 0.0004 0.0000 
C.l. 0.0048 0.0051 0.0036 0.0016 0.0005 0.0004 0.0001 
diff 0,4822 0.3429 0.1413 0.0428 0.0119 0.0030 0.0007 
Slm 0.4847 0.3500 0.1271 0.0300 0.0069 0.0009 0.0003 
C.l. 0.0061 0.0064 0.0048 0.0022 0.0009 0.0004 0.0002 
diff 0,4441 0.3640 0.1556 0.0516 0.0163 0.0049 0.0014 
Slm 0.4462 0.3565 0.1460 0.0395 0.0089 0.0022 0.0004 
C.l. 0.0064 0.0068 0.0043 0.0023 0.0012 0.0007 0.0003 
diff 0.4208 0.3482 0.1650 0.0580 0.0199 0.0066 0.0021 
Slm 004235 0.3618 0.1536 0.0444 0.0119 0.0039 0.0007 
C.l. 0.0066 0.0084 0.0030 0.0025 0.0011 0.0009 0.0003 
diff 004046 0.3471 0.1703 0.0625 0.0229 0.0084 0.0031 
Slm 004006 0.3649 0.1642 0.0479 0.0161 0.0043 0.0012 
C.l. 0.0073 0.0062 0.0033 0.0031 0.0016 0.0007 0.0004 
diff 004035 0.3459 0.1699 0.0623 0.0228 0.0084 0.0031 
Slm 004061 0.3647 0.1595 0.0481 0.0151 0.0044 0.0015 
C.I. 0.0059 0.0051 0.0043 0.0019 0.0018 0.0009 0.0005 
cliff 0.4064 0.3486 0.1710 0.0627 0.0230 0.0084 0.0031 
Slm 004047 0.3628 0.1623 0.0481 0.0157 0.0045 0.0010 
C.l. 0.0064 0.0065 0.0046 0.0026 0.0016 0.0007 0.0004 
cliff 0.4024 0.3450 0.1694 0.0621 0.0228 0.0084 0.0031 
Slm 0.4033 0.3646 0.1631 0.0488 0.0141 0.0045 0.0014 
C.l. 0.0082 0.0064 0.0049 0.0035 0.0013 0.0008 0.0004 
cliff 0.4057 0.3482 0.1708 0.0626 0.0230 0.0084 0.0031 
Slm 0.4045 0.3652 0.1610 0.0478 0.1151 0.0045 0.0014 
C.l. 0.0060 0.0050 0.0040 0.0024 0.0019 0.0006 0.0004 
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P7(t) 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0000 
0.0001 
0.0004 
0.0002 
0.0002 
0.0007 
0.0001 
0.0001 
0.0011 
0.0005 
0.0003 
0.0011 
0.0004 
0.0003 
0.0011 
0.0007 
0.0003 
0.0011 
0.0003 
0.0002 
0.0011 
0.0005 
0.0002 
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TABLE 5 
Comparison of the diffusion results with simulation for M / H 2/3 Queue 

(xo = 0, A = 3.0, p = 0.5) 

method Po(t) PI(t) P2(t) P3(t) P4 (t) Ps(t) P6(t) 
diff 0.7537 0.2579 0.0405 0.0032 0.0001 0.0000 0.0000 
Slm 0.7691 0.2019 0.0263 0.0026 0.0002 0.0000 0.0000 
C.l. 0.0040 0.0039 0.0016 0.0006 0.0001 0.0000 0.0000 
cliff 0.5104 0.3350 0.1373 0.0390 0.0087 0.0015 0.0002 
Slm 0.5273 0.3321 0.1127 0.0233 0.0038 0.0007 0.0001 
C.l. 0.0052 0.0066 0.0043 0.0015 0.0006 0.0004 0.0001 
diff 0.3997 0.3408 0.1844 0.0711 0.0238 0.0069 0.0017 
Slm 0.4123 0.3590 0.1642 0.0486 0.0125 0.0029 0.0004 
C.l. 0.0052 0.0555 0.0045 0.0029 0.0010 0.0006 0.0003 
diff 0.3371 0.3315 0.2060 0.0917 0.0370 0.0134 0.0044 
Slm 0.3486 0.3625 0.1934 0.0662 0.0213 0.0061 0.0015 
C.l. 0.0046 0.0060 0.0041 0.0033 0.0016 0.0007 0.0004 
diff 0.2883 0.3192 0.2196 0.1089 0.0506 0.0219 0.0089 
Slm 0.2960 0.3511 0.2199 0.0847 0.0323 0.0106 0.0040 
C.l. 0.0055 0.0057 0.0049 0.0041 0.0019 0.0015 0.0005 
diff 0.2257 0.2867 0.2228 0.1266 0.0713 0.0397 0.0218 
Slm 0.2162 0.3218 0.2415 0.1102 0.0564 0.0269 0.01:39 
C.l. 0.0048 0.0059 0.0048 0.0043 0.0018 0.0017 0.0014 
diff 0.2199 0.2813 0.2205 0.1126 0.0726 0.0415 0.0236 
Slm 0.2166 0.3150 0.2357 0.1141 0.0577 0.0288 0.0145 
C.l. 0.0064 0.0056 0.0058 0.0041 0.0017 0.0022 0.0014 
diff 0.2205 0.2824 0.2213 0.1272 0.0731 0.0420 0.0241 
Slm 0.2109 0.3192 0.2292 0.1166 0.0593 0.0305 O.OlM 
C.l. 0.0048 0.0066 0.0048 0.0041 0.0024 0.0019 0.0014 
diff 0.2182 0.2797 0.2196 0.1264 0.0727 0.0418 0.0241 
Slm 0.2113 0.3142 0.2355 0.1127 0.0595 0.0305 0.0162 
C.l. 0.0035 0.0047 0.0038 0.0036 0.0032 0.0021 0.0022 
diff 0.2197 0.2817 0.2209 0.1270 0.0731 0.0420 0.0242 
Slm 0.2122 0.3122 0.2358 0.1143 0.0580 0.0307 0.0165 
C.I. 0.0046 0.0044 0.0050 0.0048 0.0032 0.0017 0.0014 

P7(t) 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0003 
0.0001 
0.0001 
0.0013 
0.0003 
0.0002 
0.0033 
0.0009 
0.0004 
0.0118 
0.0070 
0.0012 
0.0134 
0.0086 
0.0015 
0.0138 
0.0085 
0.0015 
0.0138 
0.0093 
0.0011 
0.0139 
0.0088 
0.0011 
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TABLE 6 

Comparison of the diffusion results with simulation for M/ H2 /3 Queue 

(xo = 0, ,\ = 3.0, p = 0.7) 

method poet) P1(t) P2(t) P3 (t) P4(t) P5(t) P6(t) 
diff 0.7499 0.2690 0.0416 0.0028 0.0001 0.0000 0.0000 
Slm 0.7654 0.2054 0.0262 0.0027 0.0002 0.0000 0.0000 
C.l. 0.()045 0.0044 0.0019 0.0007 0.0002 0.0000 0.0000 
diff 0.4878 0.3399 0.1515 0.0450 0.0099 0.0016 0.0002 
Slm 0.1)071 0.3421 0.1186 0.0257 0.0057 0.0008 0.0001 
C.l. 0.0047 0.0065 0.0039 0.0021 0.0013 0.0004 0.0001 
diff 0.:3616 0.3340 0.2046 0.0874 0.0311 0.0092 0.0022 
Slm 0.:3769 0.3677 0.1773 0.0579 0.0156 0.0036 0.0008 
C.l. 0.0056 0.0078 0.0048 0.0033 0.0014 0.0010 0.0003 
diff 0.2874 0.3130 0.2267 0.1154 0.0514 0.0200 0.0068 
Slm 0.2990 0.3632 0.2146 0.0818 0.0293 0.0090 0.0024 
C.l. 0.0040 0.0052 0.0049 0.0027 0.0016 0.0014 0.0007 
diff 0.2262 0.2862 0.2366 0.1384 0.0736 0.0356 0.0156 
Slm 0.2359 0.3370 0.2408 0.1118 0.0465 0.0182 0.0065 
C.l. 0.0055 0.0076 0.0054 0.0042 0.0028 0.0014 0.0011 
diff 0.1327 0.2103 0.2113 0.1525 0.1073 0.0735 0.0489 
Slm 0.1223 0.2496 0.2404 0.1508 0.0913 0.0610 0.0363 
C.l. 0.0030 0.0057 0.0042 0.0038 0.0037 0.0024 0.0018 
diff 0.1177 0.1908 0.1964 0.1459 0.1072 0.0778 0.0557 
Slm 0.1073 0.2261 0.2309 0.1383 0.0969 0.0664 0.0455 
C.l. 0.0035 0.0043 0.0034 0.0049 0.0031 0.0029 0.0024 
diff 0.1132 0.1847 0.1908 0.1428 0.1063 0.0786 0.0577 
Slm 0.1039 0.2160 0.2183 0.1440 0.0936 0.0662 0.0502 
C.l. 0.0034 0.0044 0.0038 0.0043 0.0025 0.0030 0.0020 
diff 0.1083 0.1777 0.1847 0.1390 0.1044 0.0781 0.0583 
Slm 0.0994 0.2060 0.2125 0.1374 0.0958 0.0730 0.0485 
C.l. 0.0033 0.0058 0.0048 0.0048 0.0038 0.0033 0.0027 
diff 0.1060 0.1743 0.1813 0.1368 0.1032 0.0778 0.0586 
Slm 0.10970 0.2034 0.2079 0.1336 0.0938 0.0687 0.0503 
C.l. 0.10027 0.0046 0.0039 0.0034 0.0036 0.0036 0.0031 
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P7 (t) 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0004 
0.0003 
0.0002 
0.0020 
0.0006 
0.0004 
0.0062 
0.0023 
0.0005 
0.0315 
0.0206 
0.0013 
0.0393 
0.0322 
0.0021 
0.0420 
0.0337 
0.0022 
0.0433 
0.0371 
0.0025 
0.0442 
0.0369 
0.0026 
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Appendix. Derivation of the transient solution of diffusion equation 
The problem can be formulated as follows. Find the solution of the equation 

(A.l) 

in region 11 < X < 12, 0 ~ t subject to the conditions 

(A.2) 

f(x,O) = 15(x - xo) 

f(ll, t) = gl(t) 

f(l2, t) = g2(t) for t > 0 

h(x, t) = )..p(t)15(x - c). 

Let y = x -/1 and F(y, t) = f(y + /1, t), 0 ~ Y ~ 12 -11 and t 2:: O. Then (A.l) and (A.2) 
become as follows. 

(A. 1)' 

(A.2)' 

of a 02 F of at = "2 oy2 - b ay + H(y, t) 0 < y < 12 - 11, t 2:: O. 

F(y, 0) = 15(y + /1 - xo) 

F(O, t) = gl(t) 

F(l2 -11, t) = g2(t) 

H(y, t) = )..p(t)15(y + /1 - c). 

A standard method of solving differential equations is to make a change of variable trans­

forms the given equation to an equation whose solution is known. By letting 

b b2 

W(y, t) = F(y, t) exp( --y + -t), 
a 2a 

(A.3) 
b b2 

H1(y, t) = H(y, t) exp( --y + -t), 
a 2a 

we have the canonical heat equation with nonhomogeneous boundary conditons 

(A.4) 
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and 

(A.5) 

Let W*(y, s), gi(s), g2(S) and H;(y, s) be the Laplace transforms with respect to t variable 

of W, gl, g2 and HI, respectively. Then the Laplace transform W*(y, s) of the solution 

W(y, t) of (A.4) under the condition (A.5) is given by (Carrier and Carl [5]) 

W*(y, s) 

b
2 I¥s + g;(s - -) cosh( -y) 

2a a 

We have from (A.3) and (A.6) that 

b b2 

F*(y, s) = exp( -y )W*(y, s + -) 
a 2a 

b sinhAy * 
=exp( -(y - (/2 - h))) . h 4(1 I )g2(S) 

a SIn. 2 - 1 

(A.7) 

( 
b )sinhA(y - (12 --11)) *( ) 

- exp -y . h A(l 1) gl S a SIn 2 - 1 

2 b ( sinhAy . 
+ aA exp(~(y - (xo - h))) sinhA(12 -It) smhA(l2 - xo) 
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2 b * ( sinh A( 12 - c) . 
+ aA exp(~(y - (c - h))).xp (s) sinhA(12 -1

1
) smhAy 

- sinhA(y - (c -It))U(y - (c -Id)) l'1 <c<12' 

where A = J2as + b2 / a. Hence the Laplace transform f*( x, s) of the solution f( x, t) of 

(A.1) is 

(A.8) 

* b. sinhA(x-ll) * b sinhA(12-x) * 
f (x,s)=exp(-(x-12)). hA(l 1 )g2(s)+exp(-(x- h )). hA(l 1 )gl(S) 

a sin 2 - 1 a sin 2 - 1 

2 h ( sinh A( x - 11) . 
+-Aexp(--(x-xo)) . hA(l 1 )smhA(12- xo) 

a a sin 2 - 1 

- sinh A(x - xo)U(x - xo)) 1'1 <xo<12 

2 b (sinhA(l2 - c) . 
+ -A exp( --(x - c)) . hA(l 1) smhA(x -It) 

a a sin 2- 1 

- sinhA(x - c)U(x - c) .xp*(s)lh<c<12. 

(2.18) is obtained by applying (A.8) to (2.14) with 11 = k-1 and 12 = k, (2.19) is obtained 

by first applying (A.8) to (2.16) with 11 = m-I, 12 = Nand gn(tlxo) = 0 and then letting 

N --t 00. 
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