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Abstract The purpose of this paper is to construct effE'ctive algorithms for solving nonlinear least squares 
problems. These methods are based on the idea of structured quasi-Newton methods, which use the structure 
of the Hessian matrix of the objective function. In order to obt.ain a descent search direction of the objective 
function, we have proposed to approximate the Hessian matrix by tlw factorized [ol"ln and the BFG5-Iike 
update and DEP-Iike update have been obtained. Independelltiy of us, Sheng Songbai and Zou Zhihon;~ (SZ) 
have been studying factorized versions of structured l/uasi-N ewton nwthods. In this paper, we construct an 
update by a slight different way from their formulation. in which tilt' 5Z update is contained. Further, we 
apply sizing techniques to the 5Z method and propose new sizing factors. Finally, computational experiments 
are shown in order to compare our factorized versions with the 5Z method and investigate the effect of sizing 
techniques. 

1. Introduction 

This paper is concerned with numerical methods for finding a point x· which minimizes 
a sum of squares of nonlinear functions 

(1.1) 
1 m 

f(x) = - L {rj(X))2, m > n, 
2 j=l 

where rj : Rn --+ R is twice continuously differentiable for j = 1, ... , m. This type of 
minimization problems typically occurs in curve fitting. 

For general unconstrained minimization problems where the Hessian matrix of second 
derivatives can be calculated, Newton's method can be used. The method constructs a 
sequence of vectors {xd such that 

(1.2) 

where CXk is a scalar steplength and dk , the direction of search, satisfies the Newton equation 

(1.3) 

For a sum of squares of nonlinear functions, the gradient vector and Hessian matrix ha,ve 
the special forms, which are given by 

(1.4) 

and 

(1.5) 
m 

'\J2f(x) = J(X)T J(x) + I: 1';(x)'\J2rAx), 
j=l 
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288 H. Yabe & T. Takahashi 

respectively, where 

and J(x) is the m x n Jacobian matrix of 7'(x) whose i-th row is 'V7'i(XV, and the symbol 
"T" denotes the transpose of a vector or a matrix. 

Since the cost of providing the complete Hessian matrix is often expensive, methods 
have been derived which use only the first derivative information. For example, the Gauss­
Newton method and the Levenberg-Marquardt method exploit the special structure of the 
Hessian matrix and gradient vector. Since these methods neglect the second part of the 
Hessian matrix of f, they can be expected to perform well when the residuals at x' are 
small or each 7'i is close to linear. We call these cases the small residual problems. However, 
when the residuals at x' are very large and the functions are rather nonlinear, these methods 
may perform poorly. We call these cases the large residual problems. 

Recently, quasi-Newton approximations to only the second part of the Hessian matrix 
have been developed [5]. We call these strategies the structured quasi-Newton methods. 
Among these methods, typical methods are the line search descent method and the trust 
region method. The former has been studied by AI-Baali and Fletcher [1), Bartholomew­
Biggs [2], Fletcher and Xu [7]. The latter has been studied by Dennis, Gay and Welsch [6]. 
In this paper, we only consider the former. In which case, it is desirable to maintain the 
positive definiteness of the coefficient matrix of the Newton equation, which enables us to 
obtain descent search directions. Within this framework, factorized versions of structured 
quasi- Newton methods have been studied independently by Sheng Songbai and Zou Zhihong 
[9], and Yabe and Takahashi [10]' 

It seems that Sheng Songbai and Zou Zhihong introduced their updating formula without 
investigating the existence of such a formula in detail. In this paper, we examine closely 
its existence and construct an updating formula which contains their update, though we 
use the same least change secant update as Sheng Songbai et al., and we apply sizing 
techniques to their method. In Section 2 and Section 3, we review the structured quasi­
Newton methods and our factorized versions, respectively. In Section 4, we construct an 
update which contains the Sheng Songbai and Zou Zhihong (SZ) update. In Section 5, 
we apply sizing techniques to the SZ update and propose new sizing factors. Further, a 
factorized algorithm is given in Section 6. Finally, computational experiments are shown 
in order to compare our methods with the SZ method and investigate the effect of sizing 
techniques. 

Throughout this paper, 11-11 denotes the 2-norm for vectors or matrices. IIQIIF denotes 
the Frobenius norm of a matrix Q and is defined by 

IIQIIF = JTrace(QQT). 

2. Structured Quasi-Newton Methods for Nonlinear Least Squares Problems 

Since the nonlinear least squares algorithms usually calculate the J acobian matrix J (x) 
analytically or numerically, the portion J( x)T J( x) of 'V 2 f( x) is always readily available, so 
we only have to approximate the second part of 'V 2 f(x). Therefore, for the nonlinear least 
squares problem, it has been considered that the search direction dk can be computed by 
solving 

(2.1) (J[ Jk + Ak)d = -J[ 7'k, 
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where rk = r{xk), Jk = J{Xk)' and the matrix Ak is the k-th approximation to the second 
part of the Hessian matrix of f. The matrix Ak is updated such that the new matrix Ak+l 
satisfies the secant condition 

(2.2) 

or 
(2.3) 
where 
(2.4) 

By using sizing techniques, Bartholomew-Biggs [2], and Dennis, Gay and Welsch (DGW) 
[6] proposed the robust algorithms for both cases of large and small residual problems. Their 
updates are as follows: 
(i) the Biggs update 

(2.5) 

(2.6) 

(ii) the DGW update 

(2 7) A - f3 A -f- (Vk - f3k Aksk)yl + Yk(Vk - PkAkSkf _ SI(vk - f3k AkSk) T 
. k+l - k k T (T)2 YkYk , 

SkYk SkYk 

(2.8) 

where f3k is a sizing factor. 

3. Factorized Versions of Structured Quasi-Newton Methods 
For general quasi-Newton methods, the hereditary positive definiteness property is de­

sirable because a descent search direction for the objective function is obtained. On the 
other hand, for structured quasi-Newton methods, it is not clear how to construct updating 
formulae for Ak such that the matrix JI Jk + AI; is positive definite. To overcome this 
difficulty, several strategies have been proposed, for example, the modified Cholesky decom­
position of the matrix JI Jk + Ak , the Levenberg-Marquardt modification (the trust region 
strategy) [6] and the hybrid method [1], [7]. 

In [10], we proposed a direct approach which maintains positive definiteness of the 
coefficient matrix in (2.1). We compute the search direction dk by solving the linear system 
of equations 
(3.1) (Jk + Lk)T(Jk + Lk)d = -J[ rk, 

where the matrix Lk is an m x n correction ma,trix to the lacobian matrix such that 
L[ Jk + J[ Lk + L[ Lk is the k-th approximation to the second part of the Hessian matrix 
of f. Since the coeflicient matrix is expressed by the factorized form, the search direction 
may be expected to be a descent direction for f. Successful updates for Lk would lead to 
simplified line search algorithms in contrast to the more complex trust region algorithl11i'. 
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290 H. Yabe & T. Takahashi 

The secant condition for Lk+l is as follows: 

(3.2) 

where 
(3.3) 

or 
(3.4) 

and the vectors Vk, Sk and Yk are given in (2.3) and (2.4), respectively. It is easily shown 
that, for nonzero Sk and ;Ok, the matrix equation (3.2) is consistent if and only if there hold 

(3.5) 

(3.6) 

hT Lk+l = (Zk - Jl+ 1h)T, 

Lk+1Sk = h - Jk+lSk 

for some m-dimensional vector h. In order to find Lk+l which satisfies the matrix equations 
(3.5) and (3.6), we use the following lemma [3]. 

Lemma 1. The matrix equations 

CX=D, XE=G 

have a common solution X if and only if each equation separately has a solution and 

CG=DE, 

where C, D, E and G are given matrices and X is an unknown matrix. 

By using the above, the matrix equations (3.5) and (3.6) have a common solution Lk+l 
if and only if each equation separately has a solution and hT h = sk Zk. Yabe and Takahashi 
[10] proposed two types of updates by using the least change secant update technique in the 
sense of Dennis and Schnabel [4], under the assumption of Sk Zk > O. 

Finding the Lk+1 which minimizes IILk+! - LkllF subject to the condition (3.5) and 
solving for h so that the other condition (3.6) can hold lead to the BFGS-like update: 

(3.7) 

where 

On the other hand, for given nonsingular matrices WL and WR, finding the Lk+l which 
minimizes IIWL {Lk+1 - Lk)WRIIF subject to the condition (3.6) and solving for h so that 
the other condition (3.5) can hold lead to the DFP-like update: 

(3.8) 

The local and q-superlinear convergence of these methods are proven in [11]. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Structured Quasi-Newton Methods 291 

4. An Update Which Contains the SZ Update 
Independently of us, Sheng Songbai and Zou Zhihong [9] have been studying factorized 

versions of structured quasi-Newton methods. They proposed the approximation of r( x ) 
around Xk as follows: 
(4.1) m(xk + d) = rk + (Jk + Lk)d. 

If Lk = 0, then the above is reduced to the Gauss-Newton model. Here the model function 
to be minimized is (1/2)llm(xk + d)W, and the search direction dk is obtained by solving 
the normal equation 
(4.2) (Jk + Lkf(Jk + Lk)d = -(Jk + Lkf rk· 

Since this does not correspond to the Newton equation (1.3), they imposed the condition 
Lr rk = 0 on a matrix L k , in addition to the secant condition (3.2). So the conditions which 
the matrix Lk+I should satisfy are as follows: 

( 4.3) 

and 
( 4.4) 

where 
(4.5) 

Similar to the discussion in the previous section, the matrix equation (4.3) is equivalent to 
the matrix equations 

(4.6) 

(4.7) 

hT Lk+I (Zk -- J[+lhf, 

Lk+lSk = h - Jk+lSk 

for some m-dimensional vector h. Here the purpose is to find a rectangular matrix L k+I 

which satisfies the equations (4.4), (4.6) and (4./'). It seems that Sheng Songbai and Zou 
Zhihong introduced their updating formula without investigating the existence of such a 
matrix in detail. So, though we use the same least change secant update, we examine closely 
the existence of Lk+I and construct an updating formula which contains their update. 

Assume that rk+I and Sk are not zero vectors. It follows from Lemma 1 that the matrix 
equations (4.4), (4.6) and (4.7) have a common solution Lk +I if and only if 

(4.8) 

are satisfied. Thus, under the assumption (4.8), we only find a rectangular matrix Lk+I 
which satisfies (4.4), (4.6) and (4.7). Now we drop the suffix k and replace the suffix (k + 1 ) 
by '+' for simplicity of notation. For a matrix M, let R(M) denote a space spanned by 
column vectors of M. Then we can consider the following two cases: 

4.1. Case I 
When h is contained in R{r +), h is represented by 

h - IT r+ 
- ±v s' Z ilr +11" 

If Z - JJ h =1= 0, then the matrix equations (4.4) and (4.6) are inconsistent. Otherwise, since 
(4.6) is equivalent to (4.4), the conditions are reduced to the expressions 
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By Lemma 1, a necessa!}: and sufficient condition that the above has a common solution 
is that there holds ±v' S1~ IIr + 11 = r!J+s. However, since it does not seem meaningful 
to construct a matrix L+ under this condition, we only consider the case where h is not 
contained in R( r +), which is discussed in the following subsection. 

4.2. Case 11 
When h is not contained in R( r +), we can consider a least change secant update following 

to Sheng Songbai and ZOll Zhihong. For any unknown m-dimensional vector h such that 
hT h = sT z and r!h = r!J+s, minimizing the Frobenius norm IlL! - LTIIF with respect to 
L+, subject to LIr + = 0 in (4.4) and LIh = z - J; h in (4.6), we have a unique solution 

where 

(4.9) 
T 

M = J+ + P Land P - I _ r + r + - T 
r +r+ 

By substituting the above into the other condition (4.7), we have 

(4.1O) 

Then we can further consider two cases: 

4.2.1. Case 11-1 
When Ms is not contained in R(r +), 1 - (z - MT h? s/IIPhW =I 0 should be satisfied. 

In fact, for an m-dimensional vector h such that (z - MT h? s = IIPhW, the left-hand side 
of (4.10) becomes zero; 011 the other hand, the linear independence of Ms and r+ implies 
Ms - (rIh/llr+W)r+ =I 0, which is a contradiction. Consequently, it follows from (4.10) 
that h can be represented by the form 

Substituting the above into the expression (4.10), we have 

( 
sT z - TJS T MT M s - T2ST J; r +) 

1- TlIIPMsll2 (TIMs + T2 r+) 

_ M __ (sT Z - TIST MT M s - T2ST J! r +KrJsT J! r + + T2111'+1I2) 
- s Tf1lPMs11211r+1I2 r+. 

By arranging the coefficients of the vectors Ms and r +, and using the linear independence 
of Ms and r+, 

(4.11) 

( 4.12) 

Then we have 

ST Z - TlST MT M s - T2ST J! r + 

TIIIPMsl12 
(sT Z - TJST MT M s - T2ST J; r +) rIJ+s 

TIIIP M sl1211r +112 

= T1 - 1, 
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Substituting the above into the expression (4.11) a,nd setting T = Tl, we have the quadra.tic 
equation of T 

which yields 

(4.13) 

Since it follows from (4.8) that 

the expression (4.13) can be solved with respect to T, which leads to 

(4.14) 
rr J+ s 

h = TMs + (1- T) Ilr+112 r+. 

Then we have 

(4.15) 

where T and h are given in (4.13) and (4.14), respectively, which corresponds to the SZ 
update. Note that Sheng Songbai et al. assumed the positiveness of sT z - (rrJ+s)2/1Ir+W, 
but the necessary and sufficient condition (4.8) certainly guarantees it. When the condition 
(4.4) cannot be imposed, the above is reduced to the BFGS-like update (3.7). 

4.2.2. Case 11-2 
When M s is contained in R( r +), Ms is formed by 

( 4.16) 

Thus, it follows from (4.10) that 

rTMs 
--+-­rJ-lIr+112· 

Ilr+W{IIPhI12 - (z - MTh)Ts}h = {rJIIPhI121Ir+112 - (z - MTh)Ts(rIh)}r+. 

Using IIPhl12 = sT Z - (rrh? Illr + 112 and (4.16), the expression (4.10) can be represented by 

( 4.17) 

It follows from (4.8) that h satisfies 

( 4.18) 

which makes the coefficients of both sides in (4.17) lead to zero. Then, noting that M;) is 
a particular solution of the equation (4.18) and that the condition hTh = sT z should be 
satisfied, we have a general solution of the equation (4.18) as follows 

~IIMsI12 
h = Ms + IIPul1 Pu, 

where P is an orthogonal projection matrix (4.9) onto the null space of r + and u is an 
m-dimensional arbitrary vector which is not contained in R(r +). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



294 H. Yabe & T. Takahashi 

4.2.3. Updating Formula 
Finally, summarizing (Case 11-1) and (Case 11-2), we obtain the following update: 

(4.19) Lk+1 
R L Pkhk(Zk - M'{hk? 

k k + IIPkhklF 

hk = 
rI+l Jk+1Sk PkWk 

Ih+1112 rk+l + Pk 11 Pk Wk 11 , 
T 

Pk 
1- rk+1 rk+l 

Ih+1112 ' 
Mk Jk+l + PkLk, 

pi T (rI+l Jk+1 Sk)2 
= Sk Zk - Ih+1112 , (4.20) 

where Wk = Mks k if Mksk is not contained in R(rk+l), i.e. IIPkMkSkll =I- 0, otherwise, Wk 
is chosen to be linearly independent of rk+l. 

Noting p~ = IIPkMkskll 2 rf in the expressions (4.13) and (4.20), it is clear that the update 
(4.19) with Wk = Mks k can be reduced to the SZ update (4.15). 

5. Sizing techniques of the updating matrix 
We know that, for zero residual problems, the matrices Ak and Lf Jk + J'{ Lk + L[ Lk 

should ideally converge to zero. If the matrices do not at least become small in those 
cases, then structured quasi-Newton methods cannot be hoped to compete with the Gauss­
Newton method. Since the quasi-Newton updates do not generate the zero matrix, some 
remedies must be employed. Among remedies, the sizing of the updating matrices which has 
been introduced by Bartholomew-Biggs [2] or Dennis et al. [6] seems most promising. The 
structured quasi-Newton methods with the sizing factors (2.6) and (2.8) may be reasonable 
in the sense that if the function rk+l becomes zero, then Vk = 0 and i3k = 0, so the new 
matrix A k+1 also becomes zero. This fact is derived by using the secant condition (2.3). 

An application of sizing techniques to factorized versions was proposed by Yabe and 
Takahashi [10]. They derived the following updates: 

(i) the sized BFGS-like update 

(5.1) 

(ii) the sized DFP-like update 

where Zk is given by (3.4), i3k is a suitable sizing factor and the matrix Bl is rewritten as 

Applying the same technique to the SZ update (4.15), we have 
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(iii) the sized SZ update 

(5.3) LHl f3 RL Pkhk(Zk-M'[hkl 
k k k + IIPkhkll 2 ' 

T ) 11 II-')t PkMksk 
= (rk+l Jk+l Sk ( rk.+l • rk+l + Pk IIPkMkskll' 

2 t T 
1- (lh+l11 ) rk+l rk+1' 
Jk+l + f3k PkLk, 

Pk JSkZk - (rk+lJk+1S~Y(lh+1112)t, 

where q t denotes the Moore- Penrose generalized inverse of q. 
Note that we can apply Biggs' sizing factor (2.6) to the factorized quasi-Newton updates. 

On the other hand, since the DGW sizing factor (2.8) contains the matrix Ak , we cannot 
employ it directly. However, for the factorized versions, a strategy similar to the DGW's 
one was considered in [11]. The factor f3k should be chosen such that the matrix 

has the same spectrum as that of the second part of the Hessian matrix in the direction of 
S k. So we have the following relation 

which yields the quadratic equation of f3k and we have the solution 

(5.4) f3~ = -(Lkskl Jk+1 Sk + sgn((Lkskl Jk+lSk)~, 
IILksk ll2 

where CPk = ((Lksk)T Jk+1Sk)2 ± IILkskW(sk Vk) and the symbol sgn(() denotes the sign of 
(. 

In [11], we proposed the sizing factor defined by 

Here, by investigating the signs of sk Vk and CPj" we can obtain two new strategies (a) 
and (b): 

(a) Set CPk = ((Lkskl Jk+1sk)2 + IILkskll21sk vkl. For f3~ in (5.4), we choose 

( a-I) 
f3k = rnin(If3~I, 1), 

or 
( a-2) 

{

-I 

f3k = f3~ 
if f3~::; -1, 
if -1 < f3£ < 1, 
if 1::; f3£. 

Note that, in (a-I) , we use the absolute value of f3L which corresponds to (5.5), and that, 
in (a-2) , we consider the sign of f3£. 
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(b) Set 

and 

Then we have 
(b-1) 

or 
(b-2) Set 

H. Yabe & T. Takahashi 

4>1 ((Lksk)T Jk+ISk)2 + II LkSkl1 2(sr Vk), 

4>~ ((Lksk)T Jk+1 Sk? -II LkS kI1 2(sr Vk) 

-(Lkskf Jk+1 Sk + sgn((LkSkf Jk+ISk)!i£ 

IILk sk l12 

-(Lksk)T Jk+1 Sk + sgn((Lksk)T Jk+ISk)!if 
IILk skl12 

min{max(l,Bn l,Bm, I} 
min(l,Bn 1) 
min(I,B~1, 1) 

if 4>1 ~ 0 and 4>~ ~ 0, 
if 4>1 ~ 0 and 4>~ < 0, 
otherwise, 

if (4)1 ~ 0 and 4>~ ~ 0 and l,Bkl ~ l,Bm or if (4)1 ~ 0 and 4>~ < 0), 
otherwise. 

For this ,B~, we choose ,Bk by the same way as Strategy (a-2). 

6. Algorithm 
Now we present an algorithm of a new factorized quasi-Newton method. 

(FACTNLS method) 

Starting with a point Xl E Rn and an m x n matrix L\, the algorithm proceeds, for 
k = 1,2, ... , as follows: 

Step 1. Having Xk and Lk , find the search direction dk by solving the linear system of 
equations (3.1). 

Step 2. Choose a steplength CYk by a suitable line search algorithm. 

Step 4. If the new point satisfies the convergence criterion, then stop; otherwise, go to 
Step 5. 

Step 5. Construct L k +l by using a suitable updating formula for L k . 

It should be noted that, for the SZ method, Step 1 can be rewritten as 

Step 1'. Having Xk and Lk, find the search direction dk by solving the normal equation 
( 4.2). 
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7. Computational Experiments 
Computational experiments were performed to compare our factorized versions with the 

SZ method from the viewpoint of the number of iterations and the number of vector valued 
function (i.e. r(x) ) evaluations_ Further, we examined the effect of sizing techniques. 

The numerical calculations were carried out in double precision arithmetic on a NEC 
PC-9S0IVX personal computer, and the program was coded in FORTRAN 77. The iterative 
process is terminated 

(i) if Ilr(xk)lloo::; max(TOLI, c), 

or 

(ii) if leT 1(xk+1f:r(xk+dl ::; max(TOL2, c)llr(xk+1)IIIIJ(xk+1)eill for i = 1, ... , nand 
Ilxk+1-XkII00 ::; max(TOL3, c)max(llxk+111"o, 1.0), where ei denotes the i-th column 
of the unit matrix, 

or 

(iii) if the number of iterations exceeds the prescribed limit (ITMAX), 

or 

(iv) if the number of function evaluations exceeds the prescribed limit (NFEMAX), 

where 11-1100 denotes the maximum norm and c is machine epsilon. Further, the lacobian 
matrix is evaluated by the forward difference approximation, and the bisection line sea,rch 
method with Armijo's rule 

(7.1) 

is employed. In the experiments, we set TOLl =: TOL2 = TOL3 = 10-4
, ITMAX = 500 

and NFEMAX = 2000. In addition to (2.6), we used the following sizing factor 

(7.2) 

For all the methods, the initial matrix L1 was set to the zero matrix. 
The names, the sizes and the starting points of the test problems given in [6] and [S], 

together with the abbreviated problem names used in Tables 2-5, are listed in Table 1. In 
Table 1, (Z), (S) and (L) mean a zero residual problem, a small residual problem, and a 
large residual problem, respectively. 

The computational results are summarized in Tables 2-5. Note that the numbers in 
Tables 3 and 5 include the number of vector valued function (i.e. r( x) ) evaluations to 
evaluate J (x) by the forward difference approximation. In each table, we use the following 
symbols, where GN means the Gauss-Newton method: 

BFGS1"-O 

1"-1 

F-2a 

1"-·2b 

1"-3a 

1"··3b 

F-4a 

1"·-4b 

the FACTNLS method with (3.3) and (3.7)' 

the 1"ACTNLS method with (3.4) and (3.7), 

the FACTNLS method with (3.4), (5.1) and (7.2), 

the FACTNLS method with (3.4), (5.1) and (2.6), 

the FACTNLS method with (3.4), (5.1) and (a-I), 

the FACTNLS method with (3.4), (5.1) and (a-2), 

the FACTNLS method with (3.4), (5.1) and (b-I), 

the FACTNLS method with (3.4), (5.1) and (b-2), 
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DFP F-O 

F-l 

F-2a 

F-2b 

F-3a 

F-3b 

F-4a 

F-4b 

SZ F-O 

F-l 

F-2a 

F-2b 

F-3a 

F-3b 

F-4a 

F-4b 

G-Nl 

G-N2 

G-N3 

H. Yabe & T. Takahashi 

the FACTNLS method with (3.3) and (3.8), 

the FACTNLS method with (3.4) and (3.8), 

the FACTNLS method with (3.4), (5.2) and (7.2), 

the FACTNLS method with (3.4), (5.2) and (2.6), 

the FACTNLS method with (3.4), (5.2) and (a-I), 

the FACTNLS method with (3.4), (5.2) and (a-2), 

the FACTNLS method with (3.4), (5.2) and (b-l), 

the FACTNLS method with (3.4), (5.2) and (b-2), 

the FACTNLS method with (3.3) and (4.15), 

the FACTNLS method with (3.4) and (4.15), 

the FACTNLS method with (3.4), (5.3) and (7.2), 

the FACTNLS method with (3.4), (5.3) and (2.6)' 

the FACTNLS method with (3.4), (5.3) and (a-I), 

the FACTNLS method with (3.4), (5.3) and (a-2), 

the FACTNLS method with (3.4), (5.3) and (b-l), 

the FACTNLS method with (3.4), (5.3) and (b-2), 

if Ihll::; 10-1 , then GN is used, otherwise SZF-l, 

if Ihll::; 10-3 , then GN is used, otherwise SZF-l, 

if Ihll::; 10-5
, then GN is used, otherwise SZF-l. 

the method failed to converge. 

For comparison, the results of BFGSF-O, F-l, F-2a, F-3a, DFPF-O, F-l, F-2a and F-3a in 
Tables 2 and 3 are referred to from [11]. Further, since the comparison of our methods with 
the Gauss-Newton method, the Biggs method, and the DGW method was shown in [11], 
we omit those numerical results. In the above, SZG-Nl, SZG-N2 and SZG-N:I are original 
SZ methods, which combine the structured quasi-Newton method and the Gauss-Newton 
method. 

The following can be observed from Tables 2 and 3. In our factorized methods, BFGSF-O 
and DFPF-O did not perform well for all the problems, and the latter was much worse than 
the former. BFGSF-l performed about as well as sized BFGS-like methods, even though 
BFGSF-I does not employ a sizing technique. However, this tendency cannot be observed 
between DFPF-l and the sized DFP-like methods. The sized BFGS-like and the sized 
DFP-like methods performed well for all the problems. Sizing techniques take effect for the 
DFP-like methods better than for the BFGS-like methods. Actually, as shown in the results 
of BFGSF-3a, band BFGSF-4a, b, the BFGS-like methods seem sensitive to choosing the 
sign of {3~. In addition, it is interesting that the BFGS-like methods with (3.4) perform well 
whether sizing techniques are employed or not. On the other hand, all the methods based 
on the SZ update performed very well except SZF-O. Their behavior made little difference 
whether either sizing techniques or the switching to the Gauss-Newton method is employed 
or not. On the whole, the SZ method performed better than our methods did for the zero 
and small residual problems. 

Tables 4 and 5 show the results for the PEAK problems, which are large residual 
problems. For those problems, we compared the BFGS-like update with the SZ update. 
Roughly speaking, sizing techniques did not have much effect on the performance in the SZ 
method as well as our methods. 
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8. Conclusion 
This paper is concerned with the structured quasi-Newton methods for nonlinear least 

squares problems. We review our factorized quasi-Newton updates, the BFGS-like and the 
DFP-like updates. It seems that Sheng Songbai and Zou Zhihong introduced their update 
without investigating the existence of such a formula in detail. So we examine closely the 
existence and construct an updating formula which contains the SZ update, though we 
use the same least change secant update as Sheng Songbai et al. Further, we apply sizing 
techniques to the SZ method and propose new sizing factors. 

Finally, the numerical comparison between our factorized quasi-Newton methods and 
the structured quasi-Newton methods based on the SZ update was made. On the whole, 
the SZ method performed better than our methods did. This fact seems to be caused by 
the difference between their conditions imposing on Lk+l and ours. We consider only the 
secant condition (3.2), while, they notice the combination of the Newton equation (1.3) and 
the approximation model of r(x) given in (4.1), in addition to (3.2). Our numerical results 
suggest that consideration of an approximation model of r( x) takes effect on computational 
performance. It is expected to exploit an efficient approximation model of r( x). 
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Table 1. Test Problems 

Abbrebiated N,tme of Test Problem m 
Name 

n Starting Point Residual 

WATSON6 Watson Problem with 31 6 (0, 0, ... , 0) (S) 
6 variables 

WATSON9 Watson Problem with 31 9 (0, 0, ... , 0) (S) 
9 variables 

WATSON12 Watson Problem with 31 12 (0, 0, ... , 0) (5) 
12 variables 

WATSON20 Watson Problem with 31 20 (0, 0, ... , 0) (5) 
20 variables 

ROSENBROCK Rosenbrock Problem 2 2 (-1.2,1.0) (Z) 
HELIX Helical Valley Problem 3 3 (-1,0,0) (Z) 

POWELL Powell's Singular Problem 4 4 (3,-1,0,1) (Z) 
BEALE Beale Problem 3 2 ( 0.1,0.1) (Z) 

FRDSTEINl Freudenstein and 2 2 ( 6, 6) (Z) 
Roth Problem 

FRDSTEIN2 Freudenstein and 2 2 (15, -2) (L) 
Roth Problem 

BARD Bard Problem 15 3 (1,1,1) (S) 

BOX Box Problem 10 3 ( 0, 10, 20) (Z) 
KOWALIK Kowalik Problem 11 4 (0.25 , 0.39, (5) 

0.415, 0.39) 

OSBORNEl Osborne Problem 33 5 (0.5, 1.5 , -1.0, (5) 
om, 0.02) 

OSBORNE2 Osborne Problem 65 11 (1.3, 0.65, 0.65, (S) 
0.7, 0.6 , 3.0 , 
5.0, 7.0 , 2.0 , 

4.5 , 5.5) 

JENNRICH Jennrich Problem 10 2 (0.3, 0.4) (L) 

'PEAK Peak Problem 51 5 (q, 2, 6, 3.5,0.1) (L) 
q = -2, -1, ... , 8 
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Table 2. Number of Iterations 

BFGS BFGS BFGS BFGS BFGS BFGS BFGS BFGS 
F-O F-l F-2a. F-·2b F-3a. F-3b F-4a. F-4b 

WATSON6 19 15 14 15 17 19 12 20 
WATSON9 28 28 26 21 31 30 23 31 
WATSON12 19 13 14 7 19 27 11 30 
WATSON20 18 16 15 11 21 25 11 22 
ROSENBROCK 29 22 13 16 16 13 15 12 
HELIX 26 24 16 15 20 34 14 19 
POWELL 20 14 14 14 14 14 14 14 
BEALE 13 9 8 8 8 11 8 9 
FRDSTEINl 9 6 6 6 6 6 6 6 
FRDSTEIN2 9 7 7 7 11 27 10 31 
BARD 20 9 8 8 8 8 8 7 
BOX 10 5 5 5 5 5 5 5 
KOWALIK 14 10 9 9 8 12 9 10 
OSBORNE1 43 27 18 18 16 17 15 26 
OSBORNE2 22 24 15 15 16 16 17 14 

JENNRICH 10 11 9 12 11 102* 10 16 

Table 2. (Continued) 

DFP DFP DFP DFP DFP DFP DFP DFP 
F-O F-l F-2a. F-2b F-3a. F-3b F-4a. F-4b 

WATSON6 76 27 8 8 9 9 9 8 
WATSON9 126 47 23 23 21 21 21 21 
WATSON12 153* 25 6 6 8 9 8 7 
WATSON20 79 25 6 6 8 9 8 7 
ROSENBROCIC 500* 54 19 19 18 17 19 21 
HELIX 283 34 12 12 12 14 11 15 
POWELL 20 14 14 14 14 14 14 14 
BEALE 19 11 8 8 7 12 7 11 

FRDSTEINl 8 6 6 6 6 6 6 6 
FRDSTEIN2 10 6 6 6 8 10 8 13 
BARD 17 9 8 8 8 8 8 8 

BOX 15 5 5 5 5 5 5 5 
KOWALIK 62 10 9 9 8 10 8 8 

OSBORNE1 332* 57 139 139 21 19 20 26 
OSBORNE2 40 41 13 13 13 15 13 15 
JENNRICH 500* 89 9 9 8 8 8 8 
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Table 2. (Continued) 

SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ 
F-O F·· 1 F-2a F-2b F-3a F-3b F-4a F-4b G-N1 G-N2 G-N3 

WATSON6 9 10 
WATSON9 20 20 
WATSON12 6 6 
WATSON20 6 6 
ROSENBROCK 24 14 
HELIX 7 11 
POWELL 14 10 
BEALE 12 9 
FRDSTEIN1 
FRDSTEIN2 
BARD 
BOX 
KOWALIK 
OSBORNE1 
OSBORNE2 
JENNRICH 

7 6 
99* 27 
23 7 

7 5 
13 10 
42 ~'3 

24 21 
13 9 

7 

19 
5 
5 

14 
11 
10 

7 

7 
19 

5 
5 

14 
11 
10 

7 

7 
19 

5 
5 

14 
11 
10 

8 
666 

35 g 35 g 44 g 

555 
555 
889 

28 28 18 
14 

7 
14 

7 
12 

7 

g: the global minimum is obtained. 

7 

20 
5 
5 

14 
11 
10 

8 

7 

20 
5 

5 
14 
11 
10 

9 

6 6 
93 g 26 g 

6 5 

5 5 
10 9 

19 18 
14 
36 

12 
7 

Table 3. Number of Vector Valued Function Evaluations 

7 

19 
5 

5 
14 
11 
10 

9 
6 

19 9 

5 
5 
9 

17 
13 
15 

8 
19 

5 

5 
13 
10 
9 

7 

6 

27 
6 
4 

19 
6 

21 
9 

10 
20 

6 

6 

14 
11 
10 

9 

6 

27 
7 
5 

10 
33 
21 

9 

BFGS BFGS BFGS BFGS BFGS BFGS BFGS BFGS 

WATSON6 
WATSON9 
WATSON12 
WATSON20 
ROSENBROCK 
HELIX 
POWELL 
BEALE 
FRDSTEIN1 
FRDSTEIN2 
BARD 
BOX 
KOWALIK 
OSBORNEl 
OSBORNE2 
JENNRICH 

F-O F-l F-2a F-2b F-3a F-3b F-4a F-4b 

147 
297 
267 
406 

96 
122 
105 

50 
30 
33 

102 
45 
94 

274 
286 

70 

117 
295 
187 
362 

78 
127 

75 
39 
21 
31 
41 
24 
61 

181 
310 

57 

114 
280 
204 
345 

48 
95 
75 
36 
21 
31 
37 
24 
56 

128 
200 

64 

124 
229 
113 
261 
88 
95 
75 
36 
21 
31 
37 
24 
56 

128 
200 

76 

134 173 103 
339 365 251 
283 448 167 
495 629 263 

79 59 77 
121 238 88 

75 75 75 
35 46 35 
21 21 21 

102 442 93 
37 37 37 
24 24 24 
51 74 56 

118 127 107 
216 222 232 

59 2013 * 55 

174 
:180 
'l93 
543 

57 
128 

75 
38 
21 

!i20 
33 
24 
61 

219 
194 
197 ____________ -L ________________________________________ ___ 

10 
20 

6 
6 

14 
11 
10 

9 
6 

27 
7 

5 
10 
33 
21 

9 
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Table 3. (Continued) 

DFP DFP DFP DFP DFP DFP DFP DFP 
F-O F-1 F-2a F-2b F-3,iI, F-3b F-4a F-4b 

WATSON6 
WATSON9 
WATSON12 
WATSON20 
ROSENBROCK 
HELIX 
POWELL 
BEALE 
FRDSTEIN1 
FRDSTEIN2 
BARD 
BOX 
KOWALIK 
OSBORNE1 
OSBORNE2 
JENNRICH 

541 196 
1279 480 
2005* 342 
1682 547 
1521 * 180 
]142 143 

105 75 
65 42 
27 21 
33 21 
77 41 
64 24 

324 60 
2003* 349 

494 507 
1514 * 272 

Table 3. (Continued) 

63 
240 

91 
147 

68 
60 
75 
33 
21 
21 
37 
24 
55 

843 
170 

32 

63 
240 

91 
147 

68 
60 
75 
33 
21 
21 
37 
24 
55 

843 
170 

32 

70 
220 
117 

189 
73 
59 
75 
30 
21 
39 
37 
21 
50 

141 
171 

29 

70 
220 
130 
210 

69 
66 
75 
45 
21 
49 
37 
24 
61 

130 
204 

29 

70 
220 
117 

189 
80 
56 
75 
30 
21 
38 
37 
24 
50 

141 
171 

29 

63 
220 
104 
168 

82 
74 
75 
41 
21 
63 
37 
24 
50 

176 
204 

29 

SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ 
F-O F-1 F-2a F-2b F-3a F-3b F-4a F-4b G-N1 G-N2 G-N3 

WATSON6 
WATSON9 
WATSON12 
WATSON20 
ROSENBROCK 
HELIX 
POWELL 
BEALE 
FRDSTEIN1 
FRDSTEIN2 
BARD 
BOX 
KOWALIK 
OSBORNE1 
OSBORNE2 
JENNRICH 

70 77 56 
210 210 200 

91 91 78 
147 147 126 
126 61 61 

34 51 
77 55 
44 35 
34 22 

51 
55 
30 
22 

56 56 
200 200 
78 78 

126 126 
61 61 
51 
55 
30 
22 

51 
55 
32 
22 

56 56 
210 210 

78 78 
126 126 

61 61 
51 
55 
32 
22 

51 
55 
35 
22 

56 
200 

78 
126 

61 
51 
55 
36 
22 

63 
200 

78 
126 

57 
47 
50 
29 
22 

2020* 468 
107 32 

583 g 583 g 748 9 1800 g 384 g 251 g 468 

24 24 24 28 24 24 28 
35 24 24 24 24 24 24 24 
75 59 49 49 55 60 55 55 

262 210 199 199 148 139 137 128 
312 272 187 187 163 186 163 173 

44 32 30 30 26 616 26 109 

20 
103 
44 

272 
32 

g: the global minimum is obtained. 

77 
210 

91 
147 

61 
51 
55 

135 
22 

468 
32 
24 
59 

210 
272 

32 

77 
210 

91 
147 

61 
51 
55 
35 
22 

468 

32 
24 
59 

:no 
272 

32 
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Table 4. Number of Iterations for PEAK Problem 

q=-2 q=-1 q=O q=1 q=2 q=3 q=4 q=5 q=6 q=7,8 

BFGS:F-O 21# 13 13# 9 6 6 10 12# 16# 

F-l 14 21 13 8 4 5 9 16 21 
F-2a 13 17 9 7 4 5 7 12 12 
F-2b 13 ]7 9 7 4 5 7 13 ]2 

F-3a 18 26 9 7 4 5 7 12 
F-3b 13# 43 8 7 4 5 7 19 11 
F-4a 14 19 10 7 4 5 7 ]2 

F-4b 14 ]3 9 7 5 5 7 113 ]3 

S-Z:F-O ]9 ]4 9 9 6 6 8 ]2 16 
F-1 19 14 13 8 4 5 8 15 16 
F-2a 14 9 9 6 4 5 7 12 11 
F-2b 14 9 9 6 4 5 7 12 11 
F-3a 16 9 9 7 4 5 7 9 13 
F-3b 12 9 8 6 4 5 6 16 11 
F-4a 14# 9 9 7 4 5 7 12 13 
F-4b 16 9 9 6 5 5 7 14 14 

# : the negative r is obtained. 
-: another stationary point is obtained. 
(N ote) For the cases of q=7 and 8, another stationary point is obtained by all the methods. 

Table 5. Number of Vector Valued Function Evaluations for PEAK Problem 

q=-2 '1=-] q=O q=l q=2 q=3 q=4 q=5 q=6 q=7,8 

BFGS:F-O 156# 97 94# 62 42 42 70 89# 124# 
F-1 106 150 91 54 30 36 62 123 170 
F-2a 101 134 65 48 30 36 50 104 102 
F-2b 101 134 65 48 30 36 50 110 102 
F-3a 151 299 67 48 30 36 50 98 
F-3b 103# 574 59 48 30 36 50 190 99 
F-4a 115 205 73 48 30 36 50 97 
F-4b 116 115 66 48 36 36 51 1756 112 

S-Z:F-O 127 92 60 60 42 42 54 78 108 
F-1 127 94 86 55 30 36 55 100 111 
F-2a 109 63 61 43 30 36 49 87 80 
F-2b 109 63 61 43 30 36 49 89 80 
F-3a 127 62 63 49 30 36 49 62 100 
F-3b 87 62 55 43 30 36 43 141 81 
F-4a 108# 62 63 49 30 36 49 86 100 
F-4b 131 62 61 43 36 36 49 104 108 
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