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Abst.Tact. Nonlinear net~ork optimization is of grea.t importance not only in theory but also ill practical 
apphcat~ons. T~le range of Its ap.pl~cations c?vers a variety of problems which arise in transportation systems, 
water distrIbution systems, resistive electrIcal net.works, and so on. There are various methods to solve 
nonlinear network. flow. problems, and many of them belong to the class of descent methods which successively 
generate search dIrectIOns and perform lllle searches. In this paper we propose an algorithm, based on the 
Newton method, which exploits the network structure ef the problems. The algorithm directly solves the dual 
problem which, under appropriate conditions, can be formulated as an ullcollstrained convex minimization 
probl.em with a continuously differentiable objective function. We give a global convergence theorem of the 
algOrIthm and present practical strategies for computing search direct.ions a.nd finding steplengths. Some 
computatIOnal results for test problems of up to 4900 nodes and 14490 arcs show the pra.ctical efficiency of 
the proposed algorithm. 

1. Introduction 

Nonlinear network optimization is of great imporbnce not only in theory but also in practical 

applications. The range of its application is so wide as to cover a variety of problems which 

arise in transportation systems, water distribution systems, resistive electrical networks, and 

so on. 

There are various methods to solve nonlinear network flow problems, and many of them 

belong to the class of descent methods which s11ccessively generate search directions a.nd 

perform line searches [2, 6, 7, 10, 11, 12, 13, 1.5]. Among others, the algorithms presented in 

[7,10, 12,13] are adaptations of Newton method, which effectively utilize the network struc­

ture of the problems. These algorithms are expe~ted to have good convergence properties 

because Newton method is a very efficient nonJinear opt.imization method whose convergence 

rate is normally superlinear. 
In this paper we propose an algorithm, based on Newton method, for separable non­

linear minimum cost network flow problems. U Illike the above mentioned algorithms, it 

directly solves the dual problem which, under appropriate conditions, can be formulated as 

an unconstrained convex minimization problem with Cl. continuously differentiable objective 

function. We use the conjugate gradient method to solve Newton equations. The algori1 hm 
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264 S. lbaraki, M. Fukushima & T. lbaraki 

can be efficiently implemented using the network structure, though the Hessian matrix of 

the dual objective function is composed of that of the primal cost functions and the node-arc 

incident matrix of the underlying graph. 

The idea of solving the dual problem has also been presented by Hager and Hearn [9] 

and Tseng and Bertsekas [17] (see also [4]). In particular, Tseng and Bertsekas [17] propose 

Gauss-Seidel relaxation procedures which successively minimize the dual function along each 

coordinate. Their algorithms have a linear convergence rate but are well suited for parallel 

com pu tation. 

This paper consists of eight sections. In the next section we formulate a nonlinear 

minimum cost network flow problem and make two fundamental assumptions. In Section 3 

we derive the dual problem and examine differential properties of its objective function. In 

Section 4 we describe a basic algorithm of descent type and establish a global convergence 

theorem. We propose a direction finding procedure based on Newton method in Section 

5, and describe a practical line search technique in Section 6. We present computational 

results in Section 7. Finally Section 8 concludes the paper. 

2. Network Flow Problems 

We describe a nonlinear network flow problem, with a single commodity, which has a convex 

and separable cost function. 

Let r be a directed graph which has the set N = {I, 2, ... , m} of nodes and the set 

A = {aI, a2, ... ,an} of arcs, i.e. r = (N, A). Let aJ = (i, k) denote that the start and end 

nodes of arc aj are i and k, respectively. A flow of arc aj is denoted by x J E R and each arc 

has a cost function fJ : R -.... R U { +00 }. 
Then the minimum cost flow problem is stated as 

11 

(P) minimize f{x) = L fj{xj) 
j,=1 

n 

(2.1) subject to LejjX;i = b.j , Vi EN - {m}, 
j=1 

where ejj are the elements of the incident matrix denoted by E E R(m --1)/.1/, i.e., 

{

I if i is the start node of arc aj, 

ejj = -1 if i is the end node of arc aj, 

o otherwise, 

and the equality constraints (2.1) are called the flow conservation equations. Except the 

columns corresponding to the arcs incident to node m, the number of nonzero elements 

in each column is two; an entry + 1 is in the row corresponding to the node where the arc 

originates and an entry -1 is in the row corresponding to the node where the arc terminates. 
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Node i is a supply node if bj > 0, a transshipment node if bi = 0, and a demand node if 

bi < O. It is assumed that the total supply equals the total demand, i.e., LiEN b; = O. As 

this implies that the flow conservation equation for node m is redundant, that equation has 

been ignored in (2.1). We assume that the graph r is connected, so that the matrix E has 

full rank [1]. 

Since the range of each cost function iJ is R U {+OO}, we may define u J ana II such that 

which are regarded as the upper and lower bounds of the flow Xj, respectively. It is allowed 

that Uj = +00 or lj = -00 or both. 

Conventionally, a minimum cost flow problem contains real valued cost functions /1 
R ...... R and, besides the flow conservation equat'tons, the explicit upper and lower bound 

constraints IJ :s: Xj ~;ujl that is, 

'/I 

(Pi) nllnlllllze i( x) = L jj ( XI) 
)=1 

'/I 

subject to L eijXj = boi , Vi 
;=1 

(2.2) I; :s: x) :s: up Vj. 

In this case, problem (Pi) can be reformulated as problem (P) with the cost functions 

(2.3) 

Clearly, the convexity of the cost function is retained by (2.3). 

We may also transform problem (Pi) into problem (P) using penalty functions. In 

particular, we may introduce the barrier function 

where I-lJ > 0, so as to include the upper and lower bound constraints (2.2) in the cost 

functions. Of course, if lj = -00 (uJ = +(0), then the second (third) term of the right-hand 

side of (2.4) is vacuous. When the parameters Vi are small enough, the optimal solution 

of the transformed problem (P) may be regarded as a good approximation to an optimal 

solution of problem (Pi). Note that the domain of the function fj (:r)) defined by (2.4) is 

(lj, Uj) and hence the feasible region of the problem is open relative to the affine subspace 

corresponding to the flow conservation equations. In fact, the methods proposed in [7, 10] 

take advantage of this property. 
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The following two assumptions on the cost function fi(Xj) of problem (P) will play a 

crucial role in the subsequent sections. 

Assumption 1. On the interval {x j Ifi (xi) < +oo} c R, the function 11 (xi) is strictly 

convex. 

Assumption 2. IJ(Xj) is co-finite [16]' i.e., 

lim fi(Xj) = +00. 

",->±-x IXil 
Note that Assumption 2 is satisfied whenever t.he int.erval {xjl!1{Xj} < +oo} is bounded. 

3. Dual Problem 

In this section we will formulate the dual of problem (P). Let us associate a Lagrange 

multiplier, or a potential, Pi with the flow conservation equation (2.1) for node i, and define 

the Lagrangian function by 

n .",.-1 n 

L(x,p) = L fi(Xj) - L Pi(L ei1xJ - bi), 
j=l i=l j=l 

where P is the vector with elements Pi, i EN - {m}. Then the dual problem can be written 

as 

(D) minimize q(p) 

where the dual function q(p) is given by 

q(p) - inf L(x,p) 
" 

sup L{Xj L eijPi - JJ(Xj)} - L biPi. 
:1: 

For the subsequent discussions, it is convenient to define tj by 

(3.1) tJ=LeijPi=Pl-'Pk, Vj=1,2, ... ,n 

where aj = (l, k). We call tj the tension of arc aj. Furthermore, the conjugate function of 

fj (x j) is defined by 

An example of a conjugate pair of the functions /j and Jj* is illustrated in Figure 1. Then 

the above dual function can be rewritten as 

q(p) 

(3.3) 

LJj*(LeiJPi) - Lb'Pi 

L J}(t j ) - L biPi, 
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slope I j 

----~~~-----------------~ 
tj 

Figure 1. An example of the conjugate pair Ii and Jr 
where tj is given by (:3.1). The conjugate functions f,*( tJ ) are convex and satisfy J;(tj) < +)0 
for all tj E (-00, +cx)) by Assumption 2 in the previous section [16]. Hence the dual problem 

(D) is an unconstrained convex minimization problem. 

In the remainder of this section, let us consider differential properties of the dual function 

q(p). For simplicity, we assume here that each function fi(;r;j) is closed [16, p . .52]. Th{,n, 

Assumption 1 implies that, for every t" there exists a unique Xl such that 

(3.4) 

(This means that xi is the value of Zj which uniquely attains the maXllllum III (3.4)). 

Moreover, it can be shown [16, Theorems 23 . .5 and 2.5.1] that Xj is the gradient of J
j
* at tn 

i.e., 

From (3.2), (3.3) and (3.5), we see that for a given potential vector p the partial derivatives 

of the dual function q(p) are given by 

8q(p) 
8p; 

l-':>i;ij'(t j ) - bi. 

j 

L eijXj - bi , Yi = 1,2, ... , III - 1, 

where Xj is given by (3.4). Note that the dual function q(p) is differentiable and convex, 

so that 8q(p) /8p; is continuous and monotonically nondecreasing in Pi. Consequently the 

gradient vector V' q(p) is given by 

V' q(p) (8q(p) ... 8q(P))T 
8Pl' , 8pm-l 

Bx- b. 
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--~-+-7'-----------~ 

Xj 

Figure 2. Relationship between the first derivatives of the pair I, and f; 
exemplified in Figure 1. 

--~~-----------~ 

Xj 

Figure 3. Relationship between the second derivatives of the pair f, and fj 

exemplified in Figure 1. 

Now we turn our attention to the second derivatives of function q(p). As seen in (3.3), 

the dual function q(p) consists of the conjugate functions f] (tj). Therefore, if each fj* (t J) is 

twice differentiable, then so is q(p) and its Hessian matrix can be written as 

where tension t is given by (3.1) and H(t) is the diagonal matrix defined by 

(3.7) H(t) = diagU;//(tj)). 

The following theorem establishes a condition under which the second derivative of fj*( tj) 

exists and is positive for a given t j . 

Theorem 1 Assume that for a given tj the corresponding Xj is uniquely determined by 

(3.5). Moreover, suppose that the function fJ(xj) is twice differentiable at Xj and that 

fj'(xj) > O. Then the conjugate function fj(tj) is also twice differentiable at tj and the 

second derivative is given by 
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(3.8) f *"() 1 
j tj = f"(-.) > O. ] x] 

Proof. Under the given assumptions, the function fj( Xj) is differentiable at Xj and it follows 

from [16, Theorem 23.5J that 

Therefore (3.5) and (3.9) imply that l' and f,*' are the inverse functions of each other. Since 
J . 

If is continuous and strictly monotone at xn so is the inverse I;'(t j ) and (3.8) holds. 0 

Figures 2 and 3 show the relationship between the first and second derivatives of the 

pair fj and fi exemplified in Figure 1. 

The algorithm proposed in this paper does not utilize explicit representation of q(p) 

or fj*(t j ). We only require that for each given p, the values of q(p), V'q(p), and possibly 

V'2q(p) are computed. Furthermore, we comment that the value of f;( t,) is easily evaluated 

by solving a one-dimensional minimization problem that appears on the right-hand side of 

(3.5). 

Though problem (P) has the unique solution owing to the strictly convexity of the cost 

function, an optimal solution of the dual problem (D) is not necessarily unique. The next 

theorem gives a sufficient condition which guarantees the uniqueness of the optimal solution 

of problem (D). 

Theorem 2 Let 15 be an optimal solution of problem (D) and l be the tension vector associ­

ated with 15, i.e., l = ETp. Suppose that f;"(l)) exist for all j. Then p is the unique solution 

of problem (D), provided that the subgraph (N, A) of r is connected, where A is the set of 

arcs defined by 

Proof. The existence of fi" (lj) implies that the dual objective function q(p) is twice 

differentiable at p. Moreover, by (3.6), we have 

To prove the theorem, it then suffices to show that V'2q(p) is positive definite. Let E be the 

node-arc incidence matrix of the graph (N, A) and H(l) be the diagonal submatrix of H(l) 

which consists of the elements f;"(lj) such that ai E A. Then the matrix Hef) is obviously 

positive definite. On the other hand, since the convexity of f;(lj) implies f;"(lj) ~ 0, it 
~ 11 - ' 

follows from the definition of A that fj* (tj) = 0 for all aj rf. A. Therefore (3.10) can be 

rewritten as 

Since the connectedness of the subgraph (N, A) implies that the incidence matrix E has 

full rank, the matrix V'2q(p) is positive definite. [J 
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4. Basic Algorithm 

Since the dual problem (D) is formulated as an unconstrained minimization problem with 

a differentiable objective function, we can adopt the following algorithm which belongs to 

the class of descent methods. 

Basic Algorithm 

Step 0: Choose an initial solution p. 

Step 1: Choose a symmE·tric positive definite matrix Q(p) E R(m-l)y(m-l), and solve the 

following system of linear equations so as to obtain a search direction s satisfying the 

descent property \1 q(p)T S < 0: 

(4.1) Q(p)s = -v'q(p). 

Step 2: Determine a steplength 8 > 0 such that 

(4.2) q(p+bs) <q(p) 

by approximately solving the one-dimensional problem 

( 4.3) min q(p + 8s). 
h>U 

Step 3: Set p := p + 8s and go to Step 1. 

Note that if \1 q(p) does not vanish and the search direction s is determined by (4.1), 

then the descent property is satisfied by the positive definiteness of Q(p), i.e., 

\1q(pfs = -\1q(pfQ(pt 1\1q(p) < O. 

If Q(p) == I, the direction s is the steepest descent direction, while if Q(p) is chosen as the 

Hessian matrix of function q(p), the direction s is the Newton direction. 

From the descent property, there exists a lJ > 0 such that the inequality (4.2) holds 

for all 8 E (0, lJ]. In practice we solve (4.3) only approximately because it is expensive to 

perform exact line search. 

Basic Algorithm generates a sequence of points whose objective function values decrease 

monotonically. Strictly speaking, however, this property is not sufficient to ensure global 

convergence to an optimal solution. Specifically, sufficient reduction in q(p) may not be 

obtained if the directions s tend to be orthogonal to the gradients \1q(p), or if steplengths 

approach zero. In the rest of this section, we shall consider general conditions under which 

the global convergence of Basic Algorithm is guaranteed. We will explain in detail practical 

implementation of the algorithm in Sections 5 and 6. 

First, we set up a condition which the matrices Q(p) should satisfy in order to yield 

sufficient reduction in q(p~. Specifically, we require Q(p) to satisfy the inequalities 
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0< ,\ :=::; yTQT(p)y :=::; A, Vy =I 0, 
Ij y 
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where ,\ and A are positive constants independent of p. In particular, the inequalities (4.4) 

are satisfied if the matrices Q(p) are determined as E D(p )ET, where E is a matrix of full 

rank and D(p) are cliagonalmatrices whose diagonal elements are uniformly bounded above 

and away from zero. 

When the matrices Q(p) are chosen to satisfy the above condition (4.4), the directions 

s defined by (4.1) have the property that the angle B between sand - V' q(p) is uniformly 

bounded away from orthogonality [5, p.31]' that is, 

7r ,\ 
B < - --. -2 A 

where () E [0, 7r /2) is given by 

V'q(p)T s 

cosB = -11V'q(p)llllsll' 

Next, let us consider how to select steplengths fj which give a sufficient reduction in q(p). 

For convenience, we write 

cjJ(fj) = q(p + 8s). 

Then the gradient of cjJ( fj) is given by 

Note that cjJ(O) = q(p) and the descent property is equivalent to cjJ'(O) < O. 

Following Fletcher [5, p.27], we call a steplength fj acceptable if it satisfies the conditions 

(4.5) cjJ( fj) :=::; cjJ(O) + fjpcjJ'(O) 

(4.6) cjJ'(fj) 2: O"cjJ'(O), 

where p E (O,~) and 0" E (p, 1) are preset parameters. These conditions are illustrated in 

Figure 4. It is known that the interval of acceptable steplengths fj is nonempty whenever 

the dual function is bounded below (see Fletcher [5, Lemma 2.5.1]). 

Finally, we can state a global convergence theorem for Basic Algorithm. The proof 

follows directly from Fletcher [5, Theorem 2.5.1] and is omitted here. 

Theorem 3 Assume that the dual problem (DJ has an optimal solution. Let the search 

directions s be obtained by solving (4.1) in which the matrices Q(p) satisfy the condition 

(4.4 J, and let the steplengths fj be determined by inexact line search based on (4·5 J and (4·6 J. 
Then Basic Algorithm generates a sequence which is convergent to an optimal solution of 

problem (DJ. 
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cp(S) =q (p+Ss) 

o 

acceptable steplength 

Figure 4. Conditions for line search. 

5. Search Directions 

As described in the previous section, search directions are determined by solving (4.1). If it 

were possible to set Q(p) == '\J2q(p) for any p, the algorithm would be regarded as Newton 

method. In practice, however, the second derivatives of Ij(t j ) may not be defined every­

where. So we propose a practical strategy for constructing matrices Q(p), which attempts 

to incorporate second-order information on Ij*( if) as much as possible. In view of (3.6) and 

(3.7), we let Q(p) be given as 

(5.1) Q(p) = EH(t)ET, 

where E is the node-arc incidence matrix and H(t) is a diagonal matrix such that 

To simplify the discussion, we assume that the number of points t J where It' (tJ ) is 

undefined is finite. This assumption is not restrictive and usually satisfied in practical 

applications. Then we determine hj(tj ) in (5.2) as follows. For a given tl , if Ij"(t j ) exists, 

then define 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Dual-Based Newton Methods 273 

where £. and c are constants such that c > £. > 0, while if fi/l (t,) is undefined, then hJ (t,) is set 

to be a real number arbitrarily chosen from the interval [lim inC_->t, hj(z), lim sUPz--+t, hj{z)]. 

Note that matrices Q(p) are symmetric and positive definite. Moreover, since h j ( tJ ) always 

lies in the interval L.:::, cl, Q(p) satisfy condition (4.4) which is necessary to guarantee global 

convergence of Basic Algorithm. In numerical experiments reported below, the constants £. 

and c are set 10-" a,nd 105 , respectively. 

Now we consider a procedure for solving the system (4.1) of linear equations. For large­

scale problems, it seems difficult to apply direct methods such as Gaussian elimination 

because they require large memory space. Here we employ the conjugate gradient (CG) 

method to solve (4.1). We deal with matrices q(p) as the product form (.5.1) and hence 

the most time-consuming matrix-vector multiplication can be efficiently calculated using 

one-dimensional arrays representing the network structure. Since the speed of convergence 

of a CG algorithm is dependent on the condition number of Q(p), a preconditioning is 

recommended in order to improve the condition of Q(p). Here we use the diagonal part of 

Q(p) as the preconclitioner matrix M, because its inverse is easily available. Note that the 

entries of matrix M can be obtained by 

Now we can state the CG algorithm for solving (4.1). 

CG algorithm 

begin 

k:= O;so:= O;ro:= -Y'q(p) 
while a convergence criterion is not satisfied do 

begin 
begin 

r" := M- 1r,,; 
k := k + 1 

end 
if k = 1 then 

Si := ro 
else 

begin 
f3 .- rT r- forT r- . 
".- ~;-1 "-1 ~;-2 "-2, 

05" := r"-l + f3~;h-l 
end 

end if 
begin 

a" := rLlr,,-ds[Q(p)s,,; 
s" := S"-l - a"s,,; 
r" := rk-l - a"Q(p )Sk 

end 
end 
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s:= s'" 
end 

s. Ibaraki. M. Fukushima & T. Ibaraki 

Let us mention the convergence criterion of the above algorithm. It is well known that 

CG algorithms finitely terminate under exact arithmetic. In practice, however, this property 

fails to hold because of numerical error. Therefore we terminate the procedure if the residual 

T~; satisfies 

(5.3) IIT",II < Eccllroll, 

where Tu is the initial residual and Ecc > 0 is a small constant. 

6. Line Search 

We describe an iterative method for finding an acceptable steplength 0 that satisfies the 

inequalities (4.5) and (4.6). This is accomplished by bracketing an interval of the acceptable 

steplengths, and then sectioning this bracket to find a suitable steplength. The procedure 

is an adaptation of the one presented in [5, §2.6j. 

[Bracketing Phase] 

choose a sufficiently large integer imax; 

choose p E (0,1/2),0" E: (p, 1), l' E (1, +00) and 0 > 0; 

i:= 1 

while i :s: imax do 

begin 

evaluate <jJ( 0); 
if <jJ(0) ~ <jJ(0) + po<jJ'(O) then 

begin 
0/1 := 0; 0/ :=: 0; go to Sectioning Phase 

end 
end if 
evaluate <jJ'(o); 
if <jJ'(o) ~ O"<jJ'(O) then terminate; 
set 0 := 1'0 
i := i + 1 

end 

[Sectioning Phase] 

while i :s: imax do 

begin 

choose 0 E (0/,0,,) 
evaluate <jJ( 0); 
if <jJ(0) > <jJ(0) + po<jJ'(O) then 8" := 8 
else 

begin 
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evaluate <jJ'(8); 
if <jJ'(8) ;::: O"<jJ'(O) then terminate; 
8/ := 8 

end 
end if 
i := i + 1 

end 

275 

Various methods are available to choose Dj E (D/, ()'") in the Sectioning Phase. Here we shall 

employ a curve fitting technique based on cubic interpolation [14]. To start the procedure, 

we have to specify the values of several parameters. In the numerical experiments reported 

below, we set p = 0.01, (J' = 0.7, ,= 10 and 81 = 1. 

7. Numerical Results 

In this section we report some computational results with the proposed algorithm. The 

computer codes were written entirely in FORTRAN77, and run in double precision on a 

FACOM M780-30. 

In addition to the proposed algorithm, we have coded two other methods. One is the 

relaxation method presented in [17], and the other is a primal Newton method proposed 

in [10]. In particular, the latter method is an interior method which is designed to solve 

problems whose objective function is defined on an open set like barrier or penalty functions. 

supply nodes 
(bi>O) 

• 
• 

• 
• 

transshipment nodes 
(bi=O) 

• • • 

• • • 

• 
• 

~ . • 
Figure 5. Lattice network. 

demand nodes 
(b i < 0) 

• 
• 
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7.1. Test Problems 

We have used lattice networks as illustrated III Figure .5 to construct test problems. In 

those networks, supply nodes (bi > 0) are all located in the left-most columll, while demand 

nodes (b.; < 0) are in the right-most column. The nodes in the intermediate columns are all 

transshipment nodes (b.; = 0). The size of the test problems varies from (rn, n) = (30,73) 

to (rn, n) = (4900,14490), where rn and n are the numbers of nodes and arcs, respectively. 

The cost functions are supposed to be one of the following two types. 

(7.1 ) !;(Xj) = { 
+ Id 2 if x] E [0, u J ] CjXJ :2 j;r j , 

+00, otherwise, 

fj(xj) = { 
Id 3 ifXj E [O,Uj] CjXj + j' jXj' 

+00, otherwise. 
(7.2) 

In each test problem, bi, Cj and Uj are randomly chosen from the intervals (1, 10), (1, 20) 

and (5,10), respectively. As to the coefficient dj in (7.1) and (7.2), we have tested two cases, 

i.e., dj are randomly chosen from the intervals (1, la) and (0.1, 2). In the former case, the 

effect of the nonlinear term is stronger than that in the latter. In the rest of this section, 

we shall refer these two cases to as type I and type 11, respectively. 

7.2. Results 

In the tests, the convergence of Basic Algorithm is checked using the ratio of the norm of 

the gradient V'q(p}. Specifically, we terminate the iteratioll if the condition 

(7.3) IIV'q(p)11 < E 

IIV'q(Pll)11 

is satisfied, where P and pu are the current and initial values of the dual variables, respec­

tively, and E is a small positive number. 

Tables 1 through 4 summarize the numerical results. Tables 1 and 2 respectively show 

the results for the type I and the type 11 problems, in which the cost functions are given by 

(7.1). Tables 3 and 4 respectively show the results for the type I and the type 11 problems, 

in which the cost functions are given by (7.2). In all cases, the initial point Po was chosen 

to be Pu = O. The tolerance E in (7.3) was set equal to 10-3 . 

As mentioned in Section 6, the accuracy of the computed solutions of Newton equation 

(4.1) depends on the tolerance ECG used in condition (5.3). Tables 1 and 2, which contain the 

results obtained by setting ECG = 10-1 and ECG = 10-3
, show that computing an accurate 

solution of Newton equations on every iteration reduces the number of the major iterations 

of Basic Algorithm but tends to spend more CPU time in total. 

Making a comparison between Tables 1 and 2, it is evident that the total CPU time and 

the total number of iterations for the type I problems are considerably less than those for the 
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type II problems. Similar relation may be observed in Tables 3 and 4. This phenomenon 

may be explained as follows: When the coefficients dJ are relatively small, the function 

fj(xj) is almost linear, and hence the gradients of fJ(xJ are nearly constant, on its domain 

[0, uJ This implies that the first derivatives of fJ*(tj) behave like a step function, because 

ft( tj) is the inverse function of fj (x J)' In other words, the objective function q(p) of 

the dual problem (D) may be regarded as practically nondifferentiable from the numerical 

standpoint. The alg;orithm requires a large number of iterations to achieve the termination 

condition (7.3) for such problems. 

Detailed results for test problems 1-1-11, 1-1-12, 11-1-11, 11-1-12, 1-2-11, 1-2-12 and 11-2-

11,11-2-12 are shown in Tables 5, 6, 7 and 8, which consist of the following items: 

(a) the marginal/cumulative number of iterations required to achieve the levels of accuracy 

E = 10-1, 10-2 , 10-3 , and 10-4 ; 

(b) the marginal/cllmulative CPU time spent to achieve the same levels of accuracy as 

above. 

It is recognized that the speed of convergence is very fast near the optimal solution not only 

for the type I test problems but also for the type 11 problems. This phenomenon, which is 

typical in Newton-type methods, has also been observed for other test problems. We add 

that, for all test problems, Basic Algorithm spent more than 90% of the total CPU time in 

Step 1 to find search directions. 

We have also solved the same test problems llsing the relaxation method presented in 

[3]. Figure 6 compares the behavior of this method with that of the proposed algorithm for 

the test problems 1··1-7 and 11-1-7. From these numerical results, we see that the proposed 

algorithm converges faster than the relaxation method, in particular for the the type II 

problems. However. it may be worth mentioning 1;hat, as pointed out in [3, 4, 17], the latter 

method is suited for parallel computation and hence its efficiency would be much improved 

if implemented using several processors. 

Figure 7 illustra.tes the behavior of the proposed algorithm and the primal Newton 

method presented in [10], for the test problem 1-1-7. The latter is an interior method 

which solves the problem constructed from the primal problem (P) using barrier functions 

(2.4). Note that since problem (D) has been formulated as a minimization problem. its 

optimal value is the negative of that of problem (P). In order to clarify the fact that the 

proposed method actually solves the dual problem, we have plotted in Figure 7 the curve 

corresponding to the negative of the objective values attained by the proposed algorithm. 

The curve is thus ascending and approaches the optimal value of the primal problem from 

below. It is seen that the proposed algorithm produces a near optimal value much faster 

than the primal Newton method. The main reason for this is that the latter has to work on 

an artificial problem first in order to find an initial feasible solution of the primal problem. 

This is in contrast with the proposed algorithm in which the initial solution can be chosen 

arbitrarily. 
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Table 1: Results for the type 1 problems with cost functions 

defined by (7.1): E = IQ-3 

Problem Number Number ECG = 10-1 ECG = IQ-3 

number of nodes of arcs CPU(s) Iterations CPU(s) Iterations 

1-1-1 30 73 0.04 10 0.05 10 

1-1-2 30 73 0.04 14 0.04 10 

1-1-3 56 146 0.13 16 0.19 16 

1-1-4 56 146 0.11 14 0.20 15 

1-1-5 121 330 0.43 25 1.02 20 

1-1-6 121 330 0.53 26 0.91 20 

1-1-7 256 720 2.02 25 3.84 22 

1-1-8 256 720 1.92 26 3.66 21 

1-1-9 529 1518 4.50 22 12.6 22 

I-I-IQ 529 1518 6.08 27 14.3 25 

1-1-11 1024 2976 21.6 40 60.7 37 

1-1-12 1024 2976 18.3 36 46.3 28 

1-1-13 2025 5940 53.8 40 165 36 

1-1-14 3025 8910 111 54 388 53 
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Table 2: Results for the type II problems with cost functions 

defined by (7_1): E = 10-3 

Problem Number Number ECG := 10-1 
ECG = 10-3 

number of nodes of arcs CPU(s) Iterations CPU(s) Iterations 

II-l-l 30 73 0.06 16 0.09 16 

II-I-2 30 73 0.08 16 0.08 15 

II-I-3 56 146 0.24 26 0.29 18 

II-I-4 56 146 0.17 17 0.38 21 

II-I-5 121 330 1.34 33 2.44 34 

II-I-6 121 330 1.04 30 2.17 33 

II-I-7 256 720 4.54 42 9.63 38 

II-I-8 256 720 4.84 38 11.7 44 

II-I-9 529 1518 15.7 53 46.9 55 

II-I-I0 529 1518 15.2 47 41.5 47 

II-l-11 1024 2976 69.9 77 224 74 

II-I-12 1024 2976 64.2 61 181 60 

II-I-13 2025 5940 248 108 829 76 

II-I-14 3025 8910 510 159 > 900· 

* The convergence criterion (7.4) was not satisfied in 900 seconds. 
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Table 3: Results for the type 1 problems with cost functions 

defined by (7.2): f = 10-3 

Problem Number Number fCG = 10-1 fCG = 10-3 

number of nodes of arcs CPU(s) Iterations CPU(s) Iterations 

1-2-1 30 73 0.06 20 0.08 16 

1-2-2 30 73 0.04 12 0.07 14 

1-2-3 56 146 0.10 13 0.19 16 

1-2-4 56 146 0.10 16 0.18 15 

1-2-5 121 330 0.52 26 0.86 19 

1-2-6 121 330 0.34 18 0.74 18 

1-2-7 256 720 1.90 35 3.51 24 

1-2-8 256 720 1.33 30 3.46 25 

1-2-9 529 1518 4.79 43 11.0 30 

1-2-10 529 1518 9.50 69 12.8 29 

1-2-11 1024 2976 17.1 55 37.8 28 

1-2-12 1024 2976 14.9 48 34.0 33 

1-2-13 2025 5940 36.2 54 101 41 

1-2-14 3025 8910 49.7 52 193 36 

1-2-15 3422 10090 91.4 64 200 29 

1-2-16 4900 14490 159 58 434 36 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Dual-Based Newtol1 Methods 2B1 

Table 4: Results for the type II problems with cost functions 

defined by (7.2): f = 10-3 

Problem Number Number fCG == 10-1 fCG = 10-3 

number of nodes of arcs CPU(s) Iterations CPU(s) Iterations 

II-2-1 30 73 0.04 14 0.06 13 

II-2-2 30 73 0.06 17 0.08 15 

II-2-3 56 146 0.19 24 0.24 20 

II-2-4 56 146 0.21 24 0.32 22 

II-2-5 121 330 0.96 35 1.83 32 

II-2-6 121 330 0.60 26 1.00 19 

II-2-7 256 720 2.90 37 6.12 31 

II-2-8 256 720 2.51 38 5.74 28 

II-2-9 529 1518 8.75 47 21.5 34 

II-2-10 529 1518 10.7 55 26.7 42 

II-2-11 1024 2976 23.4 48 98.5 43 

1I-2-12 1024 2976 26.7 57 88.0 48 

1I-2-13 2025 5940 103 87 318 54 

II-2-14 3025 8910 181 115 551 65 

II-2-15 3422 10090 206 94 619 54 

II-2-16 4900 14490 623 144 > 900* 

* The convergence criterion (7.4) was not satisfied in 900 seconds. 
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Table 5: Detailed results for problems 1-1-11 and 1-1-12 

problem 1-1-11 problem 1-1-12 

fCG' = 10-1 fCG = 10-3 
fCG = 10-1 

fCG = 10-3 
( 

(a) Iterations 

f = 10-1 33 33 30 22 

10-2 4/37 3/36 3/33 4/26 

10-3 3/40 1/37 3/36 2/28 

10-4 2/42 0/37 4/40 0/28 

(b) CPU (sec) 

f = 10-1 20.3 58.2 17.2 42.7 

10-2 0.6/20.9 1.9/60.1 0.6/17.8 2.4/45.1 

10-3 0.7/21.6 0.6/60.7 0.5/18.3 1.2/46.3 

10-4 0.4/22.0 0/60.7 0.9/19.2 0/46.3 

Table 6: Detailed results for problems 11-1-11 and 11-1-12 

problem 11-1-11 problem 11-1-12 

fCG = 10-1 fCG = 10-3 fCG = 10-1 
fCG = 10-3 

(a) Iterations 

• f = 10-1 55 65 46 53 

10-2 11/66 4/69 8/54 3/56 

10-3 11/77 5/74 7/61 4/60 

10-4 2/79 2/76 3/65 2/62 

(b) CPU (sec) 

f = 10-1 60.7 215.9 58.9 175.9 

10-2 4.6/65.3 3.4/219.3 3.4/62.3 2.6/178.5 

10-3 4.6/69.9 5.4/224.7 1.9/64.2 2.3/180.8 

10-4 0.4/70.3 1.8/226.5 0.4/64.6 1. 7/182.5 
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Table 7: Detailed results for problems I-2-11 and I-2-12 

problem I-2-11 problem I-2-12 

ECG = 10-1 ECG = 10-:3 
ECG = 10-1 ECG = 10-3 

(a) Iterations 

E = 10-1 21 113 25 16 

10-2 15/36 5/21 7/32 8/24 

10-3 19/55 7/28 16/48 9/33 

10-4 18/73 2/30 12/60 4/37 

(b) CPU (sec) 

E = 10-1 7.5 26.4 9.4 21.6 

10-2 3.5/11.0 4.9/31.:3 2.0/11.4 6.0/27.6 

10-3 6.2/17.2 6.5/37.8 3.5/14.9 6.4/34.0 

10-4 3.4/20.6 1.8/39.G 5.6/20.5 4.1/38.1 

Table 8: Detailed results for problems II-2-11 and II-2-12 

problem II-2-11 problem II-2-12 

ECG = 10-1 ECG = 10-.3 ECG = 10-1 ECG = 10-3 

(a) Iterations 

E = 10-1 24 2'7 26 29 

10-2 13/37 9/3G 11/37 10/39 

10-3 11/48 6/4:3 20/57 9/48 

10-4 12/60 3/413 14/71 5/52 

(b) CPU (sec) 

E = 10-1 18.2 80.!) 20.9 72.0 

10-2 2.6/20.8 9.9/90.8 1.7/22.6 8.0/80.0 

10-3 2.6/23.4 7.7/98.1> 4.1/26.8 7.9/87.9 

10-4 2.2/26.7 3.1/101.13 4.7/31.4 3.7/91.7 
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Figure 6. Comparison of the proposed algorithm and relaxation method 

for test problems 1-1-7 and II-1-7. 
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Figure 7. Comparison of the proposed algorithm with the primal Newton method 

for test problem 1-1-7. The curve for the proposed algorithm corresponds 

to the negative of the objective values of the dual problem (D). 
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8. Conclusion 

We have proposed a globally convergent dual-based Newton method for nonlinear minimum 

cost network flow problems. The method can effectively be applied to problems whose cost 

functions are strictly convex and co-finite. We have solved various t.est. problems of up to 

4900 nodes and 14490 arcs, and obtained very encouraging results in term of the speed of 

convergence and the accuracy of the computed solutions. 
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