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Abstract This study proposes a new use of goal programming for empirically estimating a regression
quantile hyperplane. The approach can yield regression quantile estimates that are less sensitive to not
only non-Gaussian error distributions but also a small sample size than conventional regression quantile
methods. The performance of regression quantile estimates is compared with least absolute value estimates
in a simulation study.

1. Introduction

An underlying assumption on the use of least squares (L.S) method is that errors dis-
tribute normally with a common variance. The assumption seems to be a compound of
truth, assumption and convenience in use. It is already well known that the normal er-
ror distribution is useful over a wide variety of research areas (e.g., gambling, physics and
biology). However, it is also widely accepted that even a few outliers occurring with low
probability can cause a serious departure from normality. In addition, the same variance is
not maintained by all independent variables.

In the last twenty years we have witnessed an increasing interest in robust estimation
among researchers who have recognized that the distribution of a real data set is different
from the normal and has often longer tails than the normal in most cases. [See. for instance,
Hogg [13] and Huber [14] for their descriptions regarding robust estimation.]

In many cases these researchers are really interested in estimates of various quantiles
(percentiles) than LS estimates because the former estimates can reduce the influence of
outliers. Thus, quantile estimates can be replaced for the use of the LS method in regression
analysis when a data set is contaminated by outliers. [See. for instance. Amemiya [1] and
[13] for their detailed discussions concerning robustness of quantile estimates.]

In order to specify the research purpose more clearly. this article starts with fitting a
linear regression hyperplane that is mathematically defined as

yi=Xi,»’f+€i’ = 1,---.n.

where y; is the ith observed dependent variable, 3 = (31, 4.+, Fm)! is a column vector
indicating parameter coefficients to be measured, X; = (a,1.459.+ -, 2im) is the ith row
vector of an observed design matrix and ¢; is an error associated with the ith observation.

Usually, ¢, is assumed to be normally distributed with a common variance. In order to
drop the assumption regarding the error distribution, this study will develop an algorithmic
framework that produces a linear regression hyperplane on the (100p)th percentile of the y
distribution. That is, this study attempts to find parameter estimates 3 = (3. 3. - - - B
that can satisfy

N(BYn=p (1)
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where N ([3) indicates the number of observations (7) such that y; < X;4.

In the history of statistics, Koenker and Bassett [4, 15] have first proposed a linear
programming (LP) method referred to as “regression quantile” that can measure parameter
estimates of the regression quantile hyperplane. They also investigated conditions for a
unique solution of the regression quantile and established asymptotical theory concerning
the variance-covariance matrix of quantile estimases.

Clearly, the most important quantile value is p = 50%, where fifty percent sarnple
observations on y are above and the remaining fifty percent are below the regression quantile
hyperplane. Koenker and Bassett termed specially the regression quantile with p = 50% as
“regression median.” The regression median is also often referred to as “least absolute value
(LAV) estimation” because it minimizes the sum of absolute value errors. [Hogg [13] has
also proposed another method for estimating percentile regression.]

A drawback of the regression quantile proposed by Koenker and Bassett [4, 15] is that
quantile estimates satisfy (1) asymptotically (i.e., a large sample size) and approximately
satisfy (1) when a data set has a small sample size. The estimation property due to the
small sample can be explained by the fact that any LP solution exists on an extreme point
(s). Since the extreme point can be deterniined by the combination of sample observations,
the regression quantile always needs several data poiunts on its regression hyperplane. For
instance, when a linear regression model with three parameters is fitted to a data set, at
least three sample observations are often required to be on the regression quantile hyperplane.
That is the rationale as to why (1) cannot be maintained by the regression quantile when a
sample size is small.

This study will present an empirical use of regression quantile that can yield a linear
regression hyperplane exactly on the (100p)th percentile of the y distribution. Here, the term
“empirical” is used because the regression quantile proposed in this study can be applicable
to any real data set, maintaining the condition of (1). The approach does not require the
assumptions on normality and/or a large sample size. This study admits that there are
several alternatives (e.g. [5] and [13]) to produce thae regression quantile estimates. However,
the approach of this study is computationally efficient and contains less assumptions than
these conventional methods. [It is hoped that the new method will be one small step in the
study of robust estimation.]

The remainder of this article is organized as follows. Section 2 presents the mathematical
notation of regression quantile and extend it to the LP formulation originally proposed in
[15]. Section 3 describes an empirical use of LP for measuring exactly the regression quantile
estimates. Section 4 documents the new result of a Monte C'arlo simulation study in which the
performance of the approach is compared with the original regression quantile. Conclusion
and future extensions are summarized in Section 3.

2. Regression Quantile

Koenker and Bassett [15] formally defined the pth regression quantile as any solution to
the following minimization problem:

minimize[ Z ply: — Xipl + Z (L= p)y — Xi3)) (
B eligaN.8) i i< X, 5

[8%)
~—

By the result of Charnes et al. [9], (2) can be transformed into the following goal program-
ming (GP) problem:

n

minimize Y [pdf + (1 — p)o]]

=1
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subject to X;B + &6 — &7 = v, 1=1.--,n, (3)
6;}20 and 6 >0, i=1.--,n

Here, 6} and 6 are positive and negative deviations related to the ith observation, respec-
tively.

[See Charnes and Cooper [6, 7] for a detailed discussion on the nonlinear condition 67 -6 =
0,i=1,---,n}

2.1 Property of Dual Variables
The dual form of (3) becomes

n
maximize Z w;Y;

i=1
n

subject to Z wiei; =0, Jo= 1o (4)
=1
—(1—p)<w; <p. =1 .n,

where w; indicates the 7th dual variable and xi; is the jth component of the ¢th row vector
Xi = (Ti1, - iy, 0, i)

An important property of the dual variable is that it indicates the locational relation-
ship between sample observations and the pth regression quantile hyperplane estimated by
(3). That is, if w; = —(1 — p),=(l — p) < w; < p, and w; = p: then the corresponding
1th observation is located below, on and above the regression hyperplaue, respectively. The
property follows from the theory of complementary slackness condition of linear program-
ming. [See Sueyoshi and Chang [16] for their detailed discussion on the property of dual
variables derived from (4) with p = 50% (i.e.. LAV estimation).]

2.2 Degeneracy and Multiple Optimal Solutions

A common assumption concerning the pth regression quantile is that the problem of
degeneracy does not occur at an optimal solution of (3). Hence, (3) can avoid multiple
optimal solutions with a same objective value. The degeneracy occurs when optimal 6 or
6;” for some ¢ becomes a basic variable and equals zero in primal form (3). Meanwhile, in dual
form (4), a degenerated extreme point is a sample observation with w; = p or w; = —(1 ~p)
and is on the pth regression quantile hyperplane. As described before, when one measures
m unknown parameters of a linear regression model, at least m sample observations are
required to consist of a regression hyperplane. If more than n sample observations are on
the regression hyperplane, the degeneracy often occurs. In order to deal with the occurrence
of degeneracy, when it happens, one needs to develop an algorithmic scheme which can select
the location of a regression quantile hyperplane in a sample space more flexibly than (3).
That is, the regression hyperplane can be determined on not ouly an extreme point but also
other points in the sample space.

3. Empirical Regression Quantile

As first presented in [5], a difficulty of (3) is that it vields a regression quantile hyperplane
approximately on the (100p)th percentile of the y distribution. That is, although one expects
that there are exactly np sample observations below and n{1 — p) observations above the pth
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regression quantile hyperplane, (3) frequently yields a result that differs from the expectation,
particularly when a data set has a small sample size. For instance, (3) with p = 50% fitted
to a data set with 50 sample observations produces an estimation result in which 26, 5 and
19 data points are above, on and below the 50%th regression quantile hyperplane. The
regression quantile is approximately acceptable. The estimation problem often occurs to
any regression models with or without a parameter representing a constant. [Hereafter, this
study uses By to express the constant parameter.]

This study proposes a two-stage approach to estimate exactly the pth regression quan-
tile. Hereafter, this article refers to problem (3) proposed by Koenker and Bassett [15] as
“original regression quantile” while referring the estimation method proposed in this study
as “empirical regression quantile (ERQ).” The first stage of ERQ starts with the original
regression quantile (3). Using dual variables produced by (3). a data set is classified into two
groups of sample observations (i.e., observations above and below the pth regression hyper-
plane). The second stage consists of two GP models that determine the location of the pth
regression quantile hyperplane between the dichotomously classified sample observations.

3.1 Classification of Sample Observations

In order to describe the use of dual variables for dichotomizing sample observations,
ERQ returns to the optimal objective value of (3) and (4) that can be expressed by

= Z[pé""’ + (1 — 1))451»_] = Z Wil (5)
1=1

=1

»

where the symbol “#” indicates optimality. The derivative ol (3) vields

w; = 0:*/(3'%. (6)

The optimal dual variable w; thus indicates the rate of change of the objective value z* with
one unit increase in y;. Assuming that w = (w;,w2,---.w,) is a unique, nondegenerate
solution to (4), the interpretation on the rate of change of =* can be classified as follows:
(a) if 0 < w; < p, then each unit increase (decrease) in y; produces w; increment
(decrement) in z*, and
(b) if —(1 —p) < w; <0, then each unit increase (decrease) in g, vields w; decrement
(increment) in z*.

Thus, the optimal w; is associated with the change of 6} or ¢7. Therefore, the examination on
the dual variable can provide information on the optimal sum of a new regression hyperplane
that can be determined by slightly changing the previously optimal pth regression quantile
hyperplane. [The dual variable associated with each observation is not available in the
statistical test based on LS regression. The approach proposed in this study is similar to the
sensitivity analysis of linear programming in spiris.]
Now, to express the data classification in a formal manner. this article uses a new symbol
k(k =1,.--,n) that indicates the descending order of the dual variables. i.e..
WL 2 Wy e 2 Wk 2, 2 Wy, (1)

(1942
1

Note that the symbol denotes an observed order of sample observations while the “k”
indicates the descending order of the dual variables of (4).

Following the order of (7), sample observations are classified into the two groups as
follows:
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G4 = {7 | the ith observation has w; that belongs to the top (1 — p)th percentile in (7)}
and
{i | the ith observation has w; that belongs to the bottom pth percentile in (7)}.

Il

Gp

The sample size of G 4 1s n(1 — p) while that of G g is np. It is important to note that for
some cases the approach cannot clearly separate a data set into (G4 and G g. In this case,
one needs to round off fractions to an integral value. For instance, the combination between
n = 26 and p = .3 ylelds np = 7.8 and n(1l — p) = 18.2. The round-off method determines
np = 8 for Gp and n(l — p) = 18 for G4. Furthermore, the combination between n = 25
and p = .5 yields np = 12.5 and n(l — p) = 12.5. In the case both G4 and Gp contain 13
data points. A sample observation, whose dual variable is the middle (i.e., (n 4+ 1)/2) on the
order of (7), belongs to both G4 and Gp.

3.2 Goal Programming Models
After dichotomizing a data set into G4 and G g, ERQ uses the following GP models:

minimize > &t +L > &F (8)
1€G 4 1€Gp
subject to X;8 + 67 =y, € Gy (8a)
XiB+of —67 =yi.ielp (3b)
6 >0, and 67 > 0. (3¢)
and
minimize L Z 67 + Z o7 (9)
€G A 1eliy
subject to X,;7 + 6:’ -6 =yt €3G, (9«)
X — 67 =y 1 €0p (96)
6l-+ >0, and 6; > 0. (9¢)

Here all the symbols used in (8) and (9) are the same as described in (2), except L indicating
a non-Archimedian large number.

Model (8) is used to yield a bottom hyperplane for 1 where “hottom” indicates that
all the sample observations in (v4 are above or on the regression hyperplane. The first set of
constraints (8a) produce the bottom hyperplane because ouly positive deviations 8, € G4
are minimized in (8). Meanwhile, the second set of constraints (3b) prevent any observation
in Gp from being above the bottom hyperplane of G 4 because 6F,i € (G g are weighted by
L in (8).

Conversely, (9) can estimate an upper regression hyperplane for Gp where “upper”
indicates that all the sample observations in GG g are below or on the regression hyperplane.
The second set of constraints (9b) can yield the upper regression hyperplane for G g because
only negative deviations 67,1 € G'p are minimized in (9). On the other hand, the first
set of constraints (9a) prevent any sample ohservation in (7 from being below the upper
hyperplane of G g because 6,1 € (G4 are weighted by L in (9).

3.3 Algorithm
The algorithm for the pth ERQ can be formally defined as the following steps:

1. Solve problem (3). Then, classify all sample observations into G4 and G p using dual
variables produced by (3).
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2. Solve problem (3) to estimate a bottom hyperplane of (G4 that is represented by

ya = XPBa.
3. Solve problem (9) to estimate an upper hyperplane of (Gp that is represented by
yB = XBp.

4. Determine the pth ERQ hyperplane y = X where 3 = (1 — «)3,4 + a3 where « is
a constant in the interval [0,1].

The algorithm creates a family of the pth ERQ hyperplane by varying o. Choosing o =0
and o = 1 yield upper and lower bounds on the family, respectively. Thus, different values
on a may result in distinct hyperplanes.

3.4 Choice of o

An important question is how to select the a value. The ERQ uses the following quadratic
programming problem so as to uniquely determine the optimal o value:

minimize f(B8) = Y plyi — Xid)* + X (1 = p)y: — X;3)* (10)
1€Ga 1€Gp

subject to 7 = (1 — a)34 +afip (10a)

0<a<l, (100)

which can be transformed to the following problem by inserting (10a) to (10):

minimize f(a)= Y plyi — (1 — a)Xi34 — a X35
1€G A
+ 5 (L= p)yi — (1 — @) Xi34 — aX;35)?
1€Gpg
subject to 0 < o < 1. (11)

Here, this study has introduced a new criterion for the objective function (10) that is in
the form of minimizing the sum of weighted squared deviations (WSD). The advantage of
the new criterion is that it can provide 3 = (1 - )74 + a3 with the property of WSD
estimation. As a result, § can maintain the property of estimates that are obtained by
minimizing the sum of both WSD and weighted absolute value deviations. I'urthermore. the
a value can be uniquely selected because the objective of (11) is a convex function.

The derivative of f(a), 1.e. df(a)/da can produce the tollowing optimal condition:

Soopl=ni+ad]+ S (1 -p)—ni+aX]=0. (12)
1€G 4 i€Gp

where 1; = (y, — X;84) (N3 — Xi34) and
A= (Xida — Nidp).

Furthermore, the o value, which is the solution to (12), needs to satisfy the condition 0 <
a < 1. Hence, the optimal o* value for minimiziug (11) is determined by the following way:

(a) if 0 < @ <1, then the optimal a* becomes

z P+ Z (1 —pny,

* 1€G 1€Gp .
a =q = - . (13)
Z PA; + Z (1 = p)A;
i€Ga i€Cy
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(b) if & > 1, then optimal o* = 1, and
(c) if a < 0, then optimal a* = 0.

The selection of a* stops the algorithm for measuring the pth ERQ.

3.5 Degeneracy in Empirical Regression Quantile

As described before, the degeneracy problem may often occur when many data points are
located on the pth regression hyperplane. The algorithmic scheme of ERQ may potentially
deal with the problem when it happens in (3). That is, sample observations on the regression
hyperplane are classified into two distinct subgroups. Therefore, the occurrence of degeneracy
is reduced with the dichotomized sample observations.

Of course, the approach also needs to assume the absence of degeneracy for two regression
hyperplanes for G4 and Gpg. The multiple solutions occur on the bottom hyperplane of
G4 when at least one optimal &},i € G4 becomes a basic variable and equals zero in (8).
Similarly, the degeneracy can occur on the upper hyperplane of Gy when at least one optimal
0.7 ,% € G g becomes a basic variable and equals zero in (9). The absence ol degeneracy in
(8) and (9) is required to uniquely determine an ERQ hvperplane.

4. Computational Results
4.1 Ilustrative Example

This study applies first the algorithm of ERQ to an illustrative data set so as to confirm
the difference between original regression quantile and ERQ. The resulting ERQ hyperplane
describes empirically the level of improvement in terms of (1). The illustrative data set used
in this study contains ten sample observations [(x,y) : (1.5.0)(2.3.0)(3,5.5)(4,2.0)(5,8.0)
(6,4.5)(7,7.0)(8,3.5)(9,9.0)(10,5.0)]. The linear regression model. i.e.. y = 3y + Fr is fitted
to the data set. The two coefficients are measured by both original regression quantile and
ERQ with nine different quantile values. The comparison between the two approaches is
summarized in Table 1. In Table 1, the fifth column indicates the ERQ lines with nine dif-
ferent p values while the sixth column denotes the corresponding original regression quantile
lines. All the regression lines presented at the second and third columns are the bottom line
of G 4 measured by (8) and the upper line of G g measured by (9), respectively. The optimal
a scores at the fourth column are derived from (13).

Table 1: Comparison between Original and Empirical-Regression Quantile Lines

Bottom Upper Empirical- Original
Line Line Optimal Regression Regression

p of G4 of Gg o* Quantile Quantile
0.1 2.833 4+ 0.083z 0.500 + 0.375x 0.040861 2.738 + 0.0952 0.500 + 0.375z
0.2 2.500 + 0.250x 0.500 4 0.375z 0 2.500 4 0.250x 2.833 + 0.083z
0.3 5.100 — 0.100x 2.833 + 0.083zx 0.287327 4.449 — 0.047x 2.500 + 0.250zx
0.4 5.000 3.750 + 0.125x 0.695652 4.130 4 0.087z 3.750 + 0.150z
0.5 4.375 + 0.3752 3.750 + 0.125z 0.576817 4.014 4 0.231x 5.000
0.6 4.667 + 0.333x 4.750 4 0.250x 1 4.750 + 0.250x 4.750 4+ 0.250z
0.7 4.500 + 0.500x 4.375 + 0.3752 1 4.375 4 0.375x 4.670 + 0.330x
0.8 6.750 + 0.250x 4.667 + 0.333x 1 4.667 4+ 0.333x 4.500 + 0.500x
0.9 6.750 + 0.250x 4.500 + 0.500z 1 4.500 + 0.5002 6.750 + 0.250z
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As presented in Table 1, the two regression quantile methods yield distinct regression
lines at all the p values except p = 60%. When p = 60%, both the original regression quantile
line and the upper line of (G g become y = 4.750 4+ 0.25z. Furthermore, the optimal o* value
is determined as 1 by (13). Thus, the ERQ line equals the original regression quantile line.

Figure 1 depicts five original regression quantile lines with p = 20,40, 50,60 and 80% in
Table 1. Similarly, Figure 2 presents the corresponding five regression lines using the ERQ
approach. Two data points are always required to be on each regression line in Figure 1
while the ERQ line does not require the estimation property as presented in Figure 2. See,
for instance, the line with p = 50%. The ERQ approach can measure the pth regression
quantile hyperplane more flexibly than (3) in the sense that it can select an optimal solution
on not only an extreme point but also other points in a sample space.

4.2 Simulation Study

A Monte Carlo simulation study was conducted to assess the behavior of regression
quantile estimates measured by the ERQ approach. The quantile p = 50% (i.e., regression
median) is selected because it can yield the most important regression hyperplane among
the family of regression quantiles. LAV estimates were employed as a means of comparing
the performance of ERQ estimates so as to investigate how much the latter can improve
the statistical efficiency of the former. [It is well known that LAV estimates outperform LS
estimates to any error distributions except normal. Hence. LS estimates was not compared
in the simulation study.] This study conducted a 6 x 4 x 5 factorial experiment in which
each treatment had 10 replications. Factors used in the simulation study were

(a) Sample size (n) : 10,20, 30,40,50 and 100

(b} Error distribution (¢)

i) Normal: N(0,0?) where 0 = 1,1.5,2,2.5 and 3
i1) Uniform: U(—d,d) where d = 0.5,1,1.5,2 and 3
iii) Contaminated Normal: 95%N(0,1) 4+ 5%N(0,0?)

where 0 = 1,5,10,15,20

exp(ka)/2 (r <0).
iv) Laplace : F'(@) =< 1/2 (0 =0).
I —exp(—hku)/2 (> 0).

where k =0.1,0.5,0.3. 1 and 2.
(c) Regression model: y = 5+ 2z + 32 + €, 27 and @y ~ (7[1,50].

F(z) is a distribution function of a random variable X. N(,c”) denotes a normal
distribution with a mean () and a standard deviation (¢). ('(a,b) indicates a uniform
distribution on the interval [¢,b]. The constants, d and k. determine the shape of error
distributions.

It is important to note that [16] provides a similar simulation result of a simple regression
model, i.e., y = o + P12, while this study explores the simulation with a multiple regression
model, i.e., y = Bo + S121 + Paxa.

All the error distributions were generated by the inversion of these distribution functions
in a personal computer, IBM-AT. For each error distribution with five different shapes and
for each sample size, the estimates of By, 81 and B3 were measured by LAV estimation and
ERQ with p = 50%. This study has developed two computer codes for the two estimation
methods using the revised simplex method.
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Ratio of Mean Squares Errors (ERQ/LAV Estimation)

Table 2:
Sample Size 10 20 30 40 50 100 Number | Number
Distribution By o) ) By B ) Ao 8 ) Ao A i) ) L1 8, 8y 8 8, (1) (<1)
0.5] .826 1.244  .586 | 1.666 1.500  .982 | 1.642  .928  .800 | .998  .500  1.000 .960  .950 .
10 1is75 11300 (964 | 667 867 (61l | 954 4l222 627 | 11785 1)187 11355 | 11469 1,272 1194 | oo 300 1060
Normal a= 1.5| .927 612 1.117| .s47 93s 891 | 847 979 1.227 | 1.031  .891  1.153 L971 894 1.521 | 1840 846 1884
2.0] .955 .81  .506 | .691  .s547 1.333 | 1.313 10112 1.525 | .69 961 .571 981 991 1121 | 1l050 (750 1382 2 38
2.5 45 718 810  1.124 767 40 6 ’ : ‘397
0.5 7736 1.000  .648 [ .500 1.000  .555 | .833 1.166  .800 [ .750  .800 ~998 1500 .833 1,000 666 1.02 588
1.01 .806 .733  .569 | 1.684  .619 1.888 | .739 1.058  .500 | .998  .999  1.222 866 .769 1952 [ 17000 500 833
Uniform a= 1.5] 1111  :597 987 | .302 (450 490 | .956 2.600  .906 | .884 .81 2997 705 1.238 653 | 1925 846  1.125
2.01 .19 469 830 | L1471k 1.073 | 772 1142 666 | 1.067 1.473  1.080 | 1.000 11046 11296 [ 11333 764  2.000 3 39
5 89 N : :
1 s T >y 59 68 600 | 981 85 TS 97 5 : . L i 235
Contaninated siof (711 1los1 20090 [ 11142 614 1.090 | (947 10161 (734 | 993 1735  1.500 | (673 1.357 350 | (837 1 o0 800
Normal a-10.0] 2:191 406 6.627 | 962 711 1.815 | 588 (846 1.291 | .945 1.562 576 | 1.285 17900 1.086 | 10181 1 444 785
1500] 31203 10871 1,406 | 11372 [els 1./00 [ 879 11769 1.000 | 1.212 1.107 (956 | .588 348 835 | 1oy a1 @ o7
20,0} 2.375  2.745 500 856 923 890 | 1.613  1.206  1.046_ 278 7%
01l 1o 39% 1,388 1.356 | T1.237 999 1.140 | .968 2,040 1.158 | .994 .95  1.112 | L.119 765 1 1ic 922 945 73}
0.5 61l .55 729 | (sl 1.263 (796 | 1.067 (967 1.216 | 1.242 1.396  1.148 | 129 708 1.206 | 939 333 1 3%
Laplace A- 0.8] .893  .574 1.126| 1.129 1,677  .552 | 1.351 1.391 1051 | .940  .809 966 | 1.307  .857 1.166 | 1.026  .750  1.000
1.01 1:207 .864 1.345] 11128 1909  [es6 | 1.116  .960. 809 | 1.045 1.666  2.000 | 1020 .866  .909 | 1.027 999 .800 “8 “2
_2.0] 1666 2.000 924 | 1342 1.000 600 | 1,166 998 772 | 1.208 (753  1.250 149 500 999 | 1.000 1010 .98]
Number (= 1) 24 2% 27 31 27 22
Number (< 1) 3 3 13 29 33 18 154 206

apupng) uoissaLday wornduy
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Table 2 presents the ratio of mean squared errors [MSE(ERQ)/MSE(LAV) for o, f1 and
10
32 where MSE of each parameter is computed by MSE= Z(,’?jk — 3;)7/10,j = 0,1, and 2.
k=1
Here, the term k indicates the number of the replications and /}jk 1s the estimate of 3;(fy =
5,61 = 2 and B = 3) for the kth replicate. The study generated 10 repetitions for the
specific combination among its error, shape and sample size. The notation of Z(B]-k — ﬁj)z
k
indicates the sum of squared deviations between the jth true parameter (/;) and its estimate
(B]) Thus, the ratio of MSE indicates MSE of the ERQ estimates divided by that of the
LAV estimates. [See [19] for the rationality on the MSE.]

In Table 2 the ratio of MSE is presented with a decimal number. If the ratio is less
than 1, ERQ estimate is more efficient than LAV estimate; conversely, if the ratio is larger
than 1, the opposite is indicated. The last two columns of the table, when aggregated by
the distribution, show the frequency count of MSE ratios that were > 1 and < 1 for all
simulation runs, respectively.

The results indicate that ERQ outperforms LAV estimation for normal, uniform and
contaminated normal distributions. For the Laplace distribution, ERQ could not improve the
performance of the LAV regression, indicating 46% (42/90) improvement and 54% (43/90)
inferiority. This may be explained by the fact that the LAV estimator becomes the maximum
likelihood estimate under the Laplace distribution.

The last two rows at the bottom, when aggregated by the sample size, report the fre-
quency count of MSE ratios that were > 1 and < 1, respectively. ERQ could improve the
performance of LAV estimation at all sample sizes (except 40) examined in the simulation
study. One might expect that the frequency count for MSE ratios less than one decreases
as the sample size increases, because LAV estimation can asymptotically provide regression
quantile estimates. However, the expectation was not confirmed by the simulation study.

Finally, this study needs to describe a shortcoming related to the simulation study exhib-
ited in Table 2. That is, the simulation study measures the performance of ERQ using only
three parameter coefficients (Fy, #1 and Fz2) of a multiple regression model. The simulation
evidence contradicting the result in Table 2 may occur when the number of parameters of the
regression model is increased. Hence, we cannot conclude immediately that ERQ is always
much better than LAV, depending upon only the simulation result in Table 2. It is needed
to conduct a more intensive simulation study incorporating different perspectives related to
different error distributions and different structures of the regression model. This is a future
task.

5. Conclusion and Future Extensions

This article has presented an empirical use of regression quantile that can produce a
linear regression hyperplane exactly on the (100p)th quantile of the y distribution. The
ERQ is designed to utilize information regarding dual variables. that ave produced by original
regression quantile of Koenker and Bassett [15]. so as to classify a data set into two groups
of sample observations. The classified data sets determine the upper and lower bounds
of the pth regression quantile hyperplane. The criterion of minimizing the sum of weighted
squared deviations uniquely selects the best regression quantile hyperplane. As an important
property, the resulting estimates of the ERQ were found to be less sensitive to a small sample
size than the original form. The evidence was confirmed by an illustrative data set and a
simulation study in which this study selected p = 50% and compared the performance of
ERQ with LAV estimation.

Besides the property of robustness, the ERQ quantile can become a practical tool to deal
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with managerial issues such as EEO (equal employment opportunity). For instance, consider
an EEO evaluation for hospital management in which the amount of salary is measured by
each employee’s rank, gender, race, education background and experience, using a linear
regression model. Usually, medical doctors receive much higher salaries than nurses and
administrative employees. The wages of doctors often become outliers. A common practice
of LS regression analysis is identification of outliers to be deleted from estimation, using an
assumption of a normal error distribution. Deletion of outliers (i.e., medical doctors in the
case) may be statistically important but often produce managerially insignificant conclusions.
[For instance, Atkinson [3] has proposed a way of deleting outliers based on LS regression
median.] On the other hand, the ERQ can be a practical method to deal with various
evaluation problems of employees in situations where one needs to avoid pronounced outliers
in order to obtain consensual evaluations. [See Sueyoshi [17] that describes the use of ERQ
for examining possible salary discrimination against a protected (female or minority) group.
His study transforms the ERQ result into a 2 x 2 contingency table and thereby presents an
exact way of computing type I and type II errors concerning discrimination. Furthermore,
Sueyoshi [17] proposes a new measure of the level of discrimination based upon the ERQ
result, which is expected to be easily understood by lawyers, judges and other individuals
involved in the EEO issue. See [18], as well.]

This study needs to explore two research topics so as to provide ERQ with more practi-
cability. First, as described by Charnes et al. [8, 9, 10], the ERQ can easily incorporate prior
information concerning estimation results in various forms of side constraints. The ERQ can
also maintain the methodological capability to include @ priori requirements in its estimation
process. Second, the ERQ needs a computational framework for testing the null hypothesis
regarding parameter estimates. As an analytical method, this study proposes the use of ERQ
in combination with the statistical test proposed by Hogg [13]. Since it is a straightforward
matter to extend the ERQ result into Hogg’s method, this study omits a detailed discussion
on how to conduct a statistical test using the ERQ result. [See Hogg [13] for his discription
on the statistical test and regression quantile.] Furthermore. as a promising approach, this
study proposes the use of the bootstrap method for testing the null hypothesis. As presented
in [12], the computer intensive simulation study {i.e., the bootstrap method) can numeri-
cally measure the variance-covariance matrix of parameter estimates. The bridge between
the bootstrap method and the ERQ will open up a new statistical testing method.

Finally, we hope that the research concerning the ERQ becomes increasingly important
and anxiously wait for further research developments along the lines indicated in this study.
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