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Abstract This study proposes a new use of goal programming for empirically estimating a regression 
quantile hyperplane. The approach can yield regression quantile estimates that are less sensitive to not 
only non-Gaussian error distribut.ions but also a small sample size t.han conventional regression quantile 
methods. The performance of regression quantile estimates is compared with least absolute value estimates 
in a simulation study. 

1. Introduction 

An underlying assumption on the use of least squares (LS) method is that errors dis­
tribute normally with a common variance. The assumption seems to be a compound of 
truth, assumption and convenience in use. It is ahead}" well known tha.t the normal er­
ror distribution is useful over a wide variety of research areas (e.g., gambling, physics and 
biology). However, it is also widely accepted that even a few outliers occurring with low 
probability can cause a serious departure from normality. In addition, the same variance is 
not maintained by all independent variables. 

In the last twenty years we have witnessed an increasing interest in robust estimation 
among researchers who have recognized that the distributioll of a rea.! data set is different 
from the normal and has often longer tails than the normal iIJ lIlost cases. [See, for instance, 
Hogg [13] and Huber [14] for their descriptions regarding robust estimation.] 

In many cases these researchers are really interested ill estima.tes of various quantiles 
(percentiles) than LS estimates because the former estimates can reduce the influence of 
outliers. Thus, quantile estimates can be replaced for the use of the LS method in regression 
analysis when a data set is contaminated by outliers. [See. for instance. Amemiya [1] and 
[13] for their detailed discussions concerning robustness of quantile estimates.] 

In order to specify the research purpose more dearly. this article starts with fitting a 
linear regression hyperplane that is mathematically defincd as 

Yi = Xi!1 + tj, i = 1.···.11. 

where Yi is the ith observed dependent variable, ;J = (d1,'2.··· . o1m )T is a column vector 
indicating parameter coefficients to be measured, Xi = (.1'Il .. l'i2.···,.I';m) is the ith row 
vector of an observed design matrix and f.j is an error associated with the ith observation. 

Usually, f.i is assumed to be normally distributed with a common variance. In order to 
drop the assumption regarding the error distribution, this study will develop an algorithmic 
framework that produces a linear regression hyperplane 011 the (lOOp )th percentile of the y 
distribution. That is, this study attempts to find parameter estimates 3 = (:31 , ;:h . .... /311/) 
that can satisfy 

(1 ) 

250 
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where N(/3) indicates the number of observations (i) such that Yi < xJr 
In the history of statistics, Koenker and Bassett [4, 1.5] have first proposed a linear 

programming (LP) method referred to as "regression qua.ntile" that can measure parameter 
estimates of the regression quantile hyperplane. They also investigated conditions for a 
unique solution of the regression quantile and established asymptotical theory concerning 
the variance-covariance matrix of quantile estima·;es. 

Clearly, the most important quantile value is p = 50%, where fifty percent sample 
observations on y are above and the remaining fifty percent are below the regression quantile 
hyperplane. Koenker and Bassett termed specially the regression quantile with p = 50% as 
"regression median:' The regression median is also often referred to as "least absolute value 
(LAY) estimation" because it minimizes the sum of a.bsolute value errors. [Hogg [13] has 
also proposed another method for estimating percentile regression.] 

A drawback of t.he regression quantile proposed by I\:oenker and Bassett [4, 15] is that 
quantile estimates satisfy (1) asymptotically (i.e., a large sample size) and approximately 
satisfy (1) when a data set has a small sample size. The estimation property due to the 
small sample can be expla.ined by the fact tha.t any LP solutioll exists 011 all extreme point 
(s). Since the extreme point can be determined by the cOl1lbillatioll of sample observations, 
the regression quantile a.lways needs several data poillts 011 its regressioll byperplane. For 
instance, when a lillear regression model with three parameters is fitted to a data set, at 
least three sample observations are often required to be on the regression quantile hyperplane. 
That is the rationale as to why (1) call1lOt be maintained by the regressioll quantile when a 
sample size is small. 

This study will present an empirical use of regression Cjuantile that can yield a linear 
regression hyperplane exactly on the (lOOp )th percentile of the y distributioll. Here, the term 
"empirical" is used because the regression quantile proposed in this study can be applicable 
to any real data set, maintaining the condition of (1). The approach does not require the 
assumptions on normality and/or a large sample size. This st.udy admits that there are 
several alternatives (e.g. [.5] and [13]) to produce tne regressioll quantile estimates. However, 
the approach of this study is cornputationally efficient ami ('olltains less assumptions than 
these conventionall1lethocls. [It is hoped that the new met hod will be Olle small step in the 
study of robust estimation.] 

The remainder of this article is organized as follows. Sectioll 2 presents the mathemat.ical 
notation of regression quantile and extend it to the LP formulation originally proposed in 
[15]. Section 3 describes an empirical use of LP for measuring exactly the regression quantile 
estimates. Section 4 documents the new result of a Monte Carlo simulatioll study in which the 
performance of the a.pproach is compared with the original regression quantile. Conclmion 
and future extensiolls are summarized in Section .5. 

2. Regression Quantile 

Koenker a.nd Bassett [15] formally defined tIlt' pth regression quantile as allY solution to 
the following minimization problem: 

minimizer :L plYi - Xi!31 + :L (1 - p)ly, - X"dl]· 
/3 iE{i:y.~X./3} H:{i:y,<X,IJ} 

(2) 

By the result of Charnes et al. [9], (2) can be transformed into the followillg goal program­
ming (GP) problem: 

11 

mJl1111llZe :L[pbt + (1 - ll)bj] 
i=1 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



252 T. Sueyoshi 

subject to Xi!3 + bt - bi = Yi, i = 1, ... , n, (3) 

bt 2 0 and bi 2 0, i = 1. .... n. 

Here, at and bi are positive and negative deviations related to the ith observation, respec­
tively. 

[See Charnes and Cooper [6, 7J for a detailed discussion on the nonlinear condition 8t ·8; = 
O,i = 1"" ,n.] 

2.1 Property of Dual Variables 

The dual form of (3) becomes 

n 

maximize L WiYi 
i=) 

" 
subject to L ll'j·1"ij = 0, 

;=1 
j = 1. .. '.111. 

- (1- p)::; Wi::;]I. i = 1.··· . n. 

(4) 

where Wi indicates the ith dual variable and .ri) is the jth component of the ith row vector 
Xi = (Xil,···.XiJ,···,Xim). 

An important property of the dual variable is that it indicates the locational relation­
ship between sample observations and the pth regression qllil.ntilp hyperplane estimated by 
(3). That is, if tui = -(1 - p). -( 1 - p) < w, < p. and (1"1 = ji: then 1,11<:' corresponding 
ith observation is located below, on and above the regression hyperplalw. respectively. The 
property follows from the theory of coruplementary slackness condition of lillear program­
ming. [See Sueyoshi and Chang [16J for their detailed discussioll on th(' property of dual 
variables derived from (4) with p = ,50% (i.e .. LAV estimation).J 

2.2 Degeneracy and Multiple Optimal Solutions 

A common assumption concerning the pth regression quantile is that the problem of 
degeneracy does not occur at an optimal solution of (:3). Hellce. (:3) call avoid multiple 
optimal solutions with a same objective value. The degeneracy occurs II'h(,1I optimal 8; or 
8; for some i becomes a basic variable and equals zero ill prillldl \'01'111 (:n. \k'allll'hil('. ill dual 
form (4), a degenerated extreme point is a sample observation with U'i = P or U'i = -(1-]1) 
and is on the pth regression quantile hyperplane. As described before. II'hell one measures 
m unknown para.lueters of a linear regression model. at least 171 sample observations are 
required to consist of a regression hyperplane. If more than III sample observations are on 
the regression hyperplane. the degeneracy often occurs. In order to deal with the occurrence 
of degeneracy, when it happens, one needs to develop an algorithmic scheme which can select 
the location of a regression quantile hyperplane in a sample space more flexibly than (:3). 
That is, the regression hyperplane can be determined Oil not only all extrellle point but also 
other points in the sample space. 

3. Empirical Regression Quantile 

As first presented in [.5J, a difficulty of (:3) is that it yields il regressioll Cjualltile hyperplane 
approximately on the (100p)th percentile of the Y distributioll. That is. although one expects 
that there are exactly np sample observations below andn( 1 - p) observations above the pth 
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regression quanti le hyperplane, (:3) frequently yield.3 a result that differs from the expectation, 
particularly when a data set has a small sample ~lze. For illstance. (:3) with p = ,50% fitted 
to a data set with 50 sample observations produces an estimation result in which 26, 5 and 
19 data points are above, on and below the 50%)th regression quantile hyperplane. The 
regression quantile is approximately acceptable. The estimation problem often occurs to 
any regression models with or without a parameter representing a constant. [Hereafter, this 
study uses 130 to express the constant parameter.] 

This study proposes a two-stage approach to estimate exactly the pth regression quan­
tile. Hereafter, this article refers to problem (3) proposed by Koenker and Bassett [15] as 
"original regression quantile" while referring the estimation method proposed in this study 
as "empirical regression quantile (ERQ)." The first stage of ERQ starts with the original 
regression quantile (:3). Using dual variables produced by (:3). a data set is classified into two 
groups of sample observations (i.e., observatiolls a bove and Iwlol\' the pth regression hyper­
plane). The second stage consists of two GP models that determine the location of the pth 
regression quantile hyperplane between the dichotomously classified sample observation:;. 

3.1 Classification of Sample Observations 

In order to describe the use of dual variables for dichotomizing sample observations, 
ERQ returns to the optimal objective value of (:3) and (4) that can be expressed by 

11 It 

~* = 2.)pb~ + (1 - p),5iJ = L (/'i.'!i· (.5 ) 
i=] 1=1 

where the symbol "*" indicates optima.lity. The deri va ti \'(:' or (;')) yields 

(6) 

The optimal dual variable Wi thus indicates the rate of change of the objective value :;* with 
one unit increase in 1/i. Assuming that tu = (W:,lL'2.···. (('/I) is a unique, nondegenerate 
solution to (4), the interpretation on the rate of cllange of .:* ca.1l be classified as follows: 

(a) if 0 -:; Wi ~; p, then each unit increase (decrease) in .l/i produces Wi increment 
(decrement) in ~*, and 

(b) if -(1 - p) ::; t!'i < 0, then each llllit ilJ('leClse (d(On('ast') ill /11 yields tui decrelllent 
(increment) in z*. 

Thus, the optimal tu; is associated with the change of bt or (),-. Therefore. the examination on 
the dual variable can provide information on the optimal SUIll of a new regression hyperplane 
that can be determined by slightly changing the previously optimal pth regression quantile 
hyperplane. [The dual variable associated with each obser\'ation is not available in the 
statistical test based on LS regression. The approi\ch proposed in this study is similar to the 
sensitivity anaJysis of linear programming in spirit.] 

Now, to express the data classification in a formal maJllwr. t bis a.rtide uses a. new symbol 
k(k = 1,···, n) that indica.tes the descending order of tll<' dllal \"'Iria.blcs. i.{'". 

WI :::: W',! ::::.' •• , :::: w .. :::: .... ,:::: (('/I' (7) 

Note that the symbol "i" denotes an observed order of sa.mple observations while the "k" 
indicates the descending order of the clual variables of (4). 

Following the order of (7), sample observations are classified into the two groups as 
follows: 
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G A = {i I the ith observation has Wi that belongs to the top (1 - P )th percentile in (7)) 
and 

GB = {i I the ith observation has Wi that belongs to the bottom pth percentile in (7)}. 

The sample size of GAlS n( 1 - p) while that of CB is Hp. It is illlportant to note that for 
some cases the approach ca.nnot clearly separate a data set into G A and CB. In this case, 
one needs to round off fractions to an integral value. For instance, the combination between 
n = 26 and p = .3 yields np = 7.8 and n(l - p) = 18.2. The round-off method determines 
np ~ 8 for GB and n(1 - p) ~ 18 for CA. Furthermore, the combination between n = 25 
and p = .. 5 yields np = 12.5 and n( 1 - p) = 12.5. In the case both CA and CB contain 1:3 
data. points. A sample observa.tion, whose dual variable is the middle (j .e., (17 + 1) /2) on the 
order of (7), belongs to bot.h GA and GB. 

3.2 Goal Programming Models 

and 

After dichotomizing a data set into CiA and CH, ERQ U",("S tlw following GP Illodels: 

mmullIze L 8t + L L ht 
iEGA IEGB 

subject to XiP + 8t = YI, i E G A 

Xi] + ht - hi = Yi· 1 E U 1J 

8t ::::: 0, and hi ::::: o. 

IrlllllllllZe L L hi + L hi 
iEG" lEGs 

subject to Xi;) + 8t - h; = V"~ i E U.J. 

Xi!' - hi = :th. i E GB 

ht ::::: O. and hi ::::: O. 

(8) 

(8a) 

(8b) 

(8e) 

(9) 

(9a) 
(9b) 

(ge) 

Here all the symbols used in (8) and (9) are the same as descri bed in (:2). except L indica.ting 
a non-Archimedian large number. 

Model (8) is used to yield a bottom hyperplalle for G-l where "bottom" indicates that 
all the sample observations in GA are above or on the regressioll hyperplalle. The first set of 
constraints (8a) produce the bottom hyperpla,lle because ollly posi t i \'t' de\·ial iOllS ht, i E G A 

are minimized in (8). Meanwhile, the second set of constraillts (8b) prevellt any observation 
in GB from being above the bottom hyperplane of CA becausp ht, i E GB are weighted by 
L in (8). 

Conversely, (9) can estimate an upper regression hyp(~rplane for GB where "upper" 
indicates that all the sample observations in C; B are below or on the regression hyperplane. 
The second set of constraints (9b) can yield the upper regression hyperplalle for GB beca.use 
only negative deviations b,-,i E GB are minimized in (9). On the other hand. the first 
set of constraints (9a) pre\'ent any sample observation in (/.\ from being below the upper 
hyperplane of G H because 0;, j E CA are weighted by L ill (l)). 

3.3 Algorithm 
The algorithm for the pth ERQ can be formally defiued as the followiug steps: 

1. Solve problem (3). Then, classify a.ll sample observations into CA and GB using dual 
variables produced by (:3). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Empirical Regression Quantile 255 

2. Solve problem (8) to estimate a bottom hyperplane of G A that is represented by 

YA = Xf3A· 
3. Solve problem (9) to estimate an upper hyperplane of GB that is represented by 

YB = Xf3B· 
4. Determine the pth ERQ hyperplane y = .Y/3 where} == (1- 0)t3A + 0/3B where 0 is 

a constant ill the interval [0,1]. 

The algorithm creates a family of the pth ERQ hyperplane by varying o. Choosing 0 = 0 
and 0 = 1 yield upper and lower bounds on the family, respectively. Thus, different values 
on 0 may result in distinct hyperplanes. 

3.4 Choice of 0 

An important question is how to select the 0 value. The ERQ uses the following quadratic 
programming problem so as to uniquely determine the optimal 0 value: 

minimize f((3) = L p(Yi - )(i})2 + L (1 - p)(Yt - Xi})" 
iEG A iEGB 

subject to d == (1 - O);3A + OdB 

0::;0::;1. 

which can be transformed to the following problem by imprt illg ( lOa) to ( 10): 

mlllll11lZe f(o) = L P[Yi - (1 - o:)XiJA - nX,!jB]2 
iEG A 

iEG B 

su b ject to 0 ::; 0 ::; 1. 

(10) 

(lOa) 

( lOb) 

(11) 

Here, this study has introclucecl a new criterion for the objectin' function (10) that is in 
the form of minimizing the sum of weighted squared deviatiolls (\VSD). The advantage of 
the new criterion is that it can provide ;3 = (1 -- (\) f4 + (\,-J H Ivith t he property of WSD 
estimation. As a result, j:J can maintain the property of estil1lates that are obtained by 
minimizing the sum of both WSD and weighted absolute I'alue deviations. Furthermore. the 
o value can be uniquely selected because the ob jecti\'e of (11) is a con vex function. 

The derivative of f(o), i.e. df(o)/do: can produce t.he following optimal ('ondition: 

L P[-Tli + OA,J + L (1 ,- PH-Ili + (d;] = O. 
iEGA JEGB 

where Tli = (y, - XiP .. d(XI/)B - Xid"d alld 

Ai = (Xj3A - X,')8 f. 

( 12) 

Furthermore, the 0 value, which is the solution to (12). needs to satisfy the ('ondition 0 ::; 
o :S 1. Hence, the optimal 0* value for minimizillg ( 11) is cle\('nllilled by the following way: 

(a) if 0 :S 0 :S 1, then the optimal 0* becomes 

L ]lTli + L (1 - p)Tr, 

o. = n = iEG" iEGB 

L p'\i + L (l - P)'\i . 
(13) 

iEG" iEGH 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



256 T. Sueyoshi 

(b) if a > 1, then optimal a* = 1, and 
(c) if a < 0, then optimal a* = O. 

The selection of a* stops the algorithm for measuring the pth ERQ. 

3.5 Degeneracy in Empirical Regression Quantile 

As described before, the degeneracy problem may often occur when many data points are 
located on the pth regression hyperplane. The algorithmic scheme of ERQ may potentially 
deal with the problem when it happens in (3). That is, sample observations on the regression 
hyperplane are classified into two distinct subgroups. Therefore, the occurrence of degeneracy 
is reduced with the dichotomized sample observations. 

Of course, the approach also needs to assume the absence of degeneracy for t wo regression 
hyperplanes for GA and GB. The multiple solutions occur on the bottom hyperplane of 
G A when at least one optima1 ot, i E G A becomes a basic variable and equals zero in (8). 
Similarly, the degeneracy call occur on the upper hyperplalw of n jj whell at least one optimal 
0; , i E GB becomes a basic variable allt! equals zero ill UJ). '1'11(' absellce of degellera,cy ill 
(8) and (9) is required to ulliquely determine all ERQ hypel'plalw. 

4. Computational Results 
4.1 Illustrative Example 

This study applies first the algorithm of ERQ to an illustrative data set so as to confirm 
the difference between origina1 regression quantile and ERQ. TIlt' resulting ERQ hyperplane 
describes empirically the level of improvement in terms of (1). The illustrative data set used 
in this study contains ten sample observations [(:r.y): (1.;).O)(2.:j.0)(:~,:).F.i)(4,2.0)(5,8.0) 
(6,4.5)(7,7.0)(8,3 .. 5)(9,9.0)(10,5.0)]. The linear regressioll lllode!, i.e .. IJ = d ll + .11.1' is fitted 
to the data set. The two coefficients are measured by both origillal regression quantile and 
ERQ with nine different quantile values. The comparison between the two approaches is 
summarized in Table 1. In Table 1, the fifth colunlll indicates tlte ERQ Jilles with nine dif­
ferent p values while the sixth column denotes the correspolldillg origillal regression quantile 
lines. All the regression lines presented at the second and third columns are the bottom line 
of G A measured by (8) and the upper line of GB measured by (9), respectively. The optimal 
a scores at the fourth column are derived from (1:3). 

Table 1: Comparison between Original and Empirical-Regression Quantile Lines 

Bottom Upper Empirical- Origina1 
Line Line Optimal Regression Regression 

p of G A of GB a* Quantile Quantile 
0.1 2.833 + 0.083x 0.500 + 0.375x 0.040861 2.738 + 0.095:r 0.500 + 0.375x 
0.2 2.500 + 0.250x 0.500 + 0.375x 0 2.500 + 0.250J: 2.833 + 0.083x 
0.3 5.100 - 0.100x 2.833 + 0.083x 0.287327 4.449 - 0.047 x 2.500 + 0.250x 
0.4 5.000 3.750 + 0.125x 0.695652 4.130 + 0.087x 3.750 + 0.150x 
0.5 4.375 + 0.375.1' 3.750 + 0.125x 0.576817 4.014 + 0.23h 5.000 
0.6 4.667 + 0.333J: 4.750 + 0.250x 1 4.750 + 0.2.50x 4.750 + 0.250x 
0.7 4.500 + 0.500x 4.375 + 0.375x 1 4.375 + 0.375J: 4.670 + 0.330x 
0.8 6.750 + 0.250x 4.667 + 0.333x 1 4.667 + 0.333:r 4.500 + 0.500:r 
0.9 6.750 + 0.250x 4.500 + 0.500x 1 4.500 + 0.500x 6.750 + 0.250x 
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As presented in Table 1, the two regression quantile methods yield distinct regression 
lines at all the p values except p = 60%. When p = 60%, both the original regression quantile 
line and the upper line of GB become y = 4.750 + 0.25x. Furthermore. the optirnal ex' value 
is determined as 1 by (13). Thus, the ERQ line equals the origin a.! regression quantile line. 

Figure 1 depicts five original regression quantile lines with p = 20,40,50,60 and 80% in 
Table 1. Similarly, Figure 2 presents the corresponding five regression lines using the ERQ 
approach. Two data points are always required to be on each regression line in Figure 1 
while the ERQ line does not require the estimation property as presented in Figure 2. See, 
for instance, the line with p = 50%. The ERQ approach can measure the pth regression 
quantile hyperplane more flexibly than (:3) in the sense that it can select an optima.! solution 
on not only an extreme pOlllt but also other points in a salllple space. 

4.2 Simulation Study 

A Monte Carlo simulation study was conducted to a.ssess the behavior of regression 
quantile estimates measured by the ERQ approach. The quantile p = 50'1(. (i.e., regression 
median) is selected because it can yield the most important regression hyperplane among 
the family of regression quantiles. LAY estimates were employed as a means of comparing 
the performance of ERQ estimates so as to investigate how much the latter can improve 
the statistical efficiency of the former. [It is well known that LAV estimates outperform LS 
estimates to any error distributions except normal. Hencf>. LS estimates was not compared 
in the simulation study.] This study cOllducted a G X -4 x :j factorial experilllellt. in which 
each treatment had 10 replications. Factors used ill t he si III ula t iOIl st L1d\' were 

(a) Sample size (n) : 10,20, :30,40, .50 and 100 
(b) Error distribution (E) 

i) Normal: N(O, 0 2 ) where a = 1,1..5,2,2 .. 5 and :3 
ii) Uniform: U( -d, d) where d = 0.5,1, 1..5,2 and 3 

iii) Contaminated Normal: 95%N(0, 1) + 5%N(0. a 2 ) 

where a = 1.5,10.15,20 

{ 

exp (I.:.r ) /1 

iv) Laplace: F(.!') = 1/1 

1 - exp( -k.r)/2 

(.1' < 0). 

(.1' = 0). 

(J' > 0). 

where k = 0.1. 0.5, 0.8.1 and 2. 
(c) Regression model: y = 5 + 2xI + :3X2 + C,.rl and .I':! ~ e[1,.50]. 

F(x) is a distribution function of a random variable X. N(1/,a2) denotes a normal 
distribution with a mean (,,) and a standard deviation (a). e(a. b) indicates a uniform 
distribution on the illterval [a, b]. The constants. cl and k. cletermilw the sllape of error 
distributions. 

It is important to note that [16] provides a similar silllLllat.ioll result of a silllple regression 
model, i.e., y = ;30 + ;31.r, while this study explores the simulatioll with a lllultiple regression 
model, i.e., y = (30 + f3l x I + (32X2. 

All the error distributions were generated by the inversion of these distribution functions 
in a personal computer, IBM-AT. For each error distribution with five different shapes and 
for each sample size, the estimates of 130,131 and ;32 were measured by LAY estimation and 
ERQ with p = .50%. This study has developed two computer codes for the two estimation 
methods using the revisecl3implex method. 
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Table 2: Ratio of Mean Squares Errors (ERQ/LAV Estimation) 

~ 
10 20 30 40 50 

Distribution IlO III ~ IlO III 112 110 III 112 110 .81 .82 & III .82 
0.5 .826 1.244 .586 1.666 1. 500 .982 1.642 .928 .800 .998 .500 1.000 .960 .950 .800 
1.0 1.5]; 1.300 .964 .667 .667 .611 .954 4.222 .627 1. 785 1.187 1:555 1.469 1.272 1.194 

Normal " - 1.5 .927 .612 1.117 .847 .934 .891 .847 .979 1.227 1.031 .891 1.153 .971 .894 1.521 

U ~m Jii .506 Jli :m Lm l:m l:m l:m d:~ l:m dr! :m l:m 1.m ....2ll 
~.5 .736 1.000 .648 .500 1.000 .555 .833 1.166 .800 .750 .800 .998 .500 .833 1.000 
1.0 .806 .733 .569 1.684 .619 1.888 .739 1.058 .500 .998 .999 1. 222 .866 .769 .952 

Unlforll " - 1.5 1.111 .597 .987 .302 .450 .490 .956 2.600 .906 .884 .681 .997 .705 1.238 .653 

~~ .:.m :m :~~O l:m 1.~45 1.~g . ~r~ ilii :m lJll 1jll i~ 1.000 1:~~ tm .895 

~:g :;~~ u:~ 2:~~O d:~ :m U~g .981 
l:m 

.675 :m 1.1~~ L~~g 1:6~3 d~~ :~;~ Contaminated .947 .734 .795 
NOl"'lllal Q - 10.0 2.191 .406 6.627 .962 .711 1. 815 .588 .846 1.291 .945 1. 562 .576 1. 285 1.900 1.086 
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Table 2 presents the ratio of mean squared errors [MSE( ERQ)/MSE( LAV) for /10, /3} and 
10 

/32 where MSE of each parameter is computed by MSE= L (,3Jk - !f;)2 /10, j = 0,1, and 2. 
k=1 

Here, the term k indicates the number of the replications and /3jk is the estimate of /3j(/3o = 
5, /31 = 2 and /32 = 3) for the kth replicate. The study generated 10 repetitions for the 
specific combination among its error, shape and sample size. The notation of 2.J~jk _ /1j)2 

k 
indicates the sum of squared deviations between the j th true parallleter (jfJ) and its estimate 

(~j). Thus, the ratio of MSE indicates MSE of the ERQ estimates divided by that of the 
LAVestimates. [See [19] for the rationality on the MSE.] 

In Table 2 the ratio of MSE is presented with a decimal number. If the ratio is less 
than 1, ERQ estimate is more efficient than LAV estimate: conversely, if the ratio is larger 
than 1, the opposite is indicated. The last two columns of t.he table, when aggregated by 
the distribution, show the frequency count of MSE ratios that were;::: 1 and < 1 for all 
simulation runs, respectively. 

The results indicate that ERQ outperforms LAV estima.tion for normal, uniform and 
contaminated normal distributions. For the Laplace distribution, ERQ could not improve the 
performance of the LA V regression, indicating 46% (42/90) improvemellt alld 54% (48/90) 
inferiority. This may be explained by the fact that the LA Vest imator becollles the maximum 
likelihood estimate under the Laplace distri bu tion. 

The last two rows at the bottom, when aggregated by the sample size, report the fre­
quency count of MSE ratios that were 2': 1 and < L respectively. EI:{Q could improve the 
performance of LA V estimation at all sample sizes (except -to) examined ill the simulation 
study. One might expect tha.t the frequency count for MSE ratios less than one decreases 
as the sample size increases, because LAY estimation can asymptotically provide regression 
quantile estimates. However, the expectation was not confirmed by the simulation study. 

Finally, this study needs to describe a shortcoming related to the silllulatioll study exhib­
ited in Table 2. That is, the simulation study measures the perfonnallce of ERQ using only 
three parameter coefficien t5 (/10, /11 and (12) of a multiple regression lIlodel. The simulation 
evidence contradicting the result in Table 2 may occur whell Ill(:' 1l11l11ber of parameters of the 
regression model is increased. Hence, we cannot conclude illlllledia.tely that ERQ is always 
much bet.ter than LAV, depending upon only the simulatioll result in Table 2. It is needed 
to conduct a more intensive simulation study incorporating different perspect.ives related to 
different error distributions and different structures of the regression model. This is a future 
task. 

5. Conclusion and Future Extensions 

This article has presented an empirical use of regression quantile that can produce a 
linear regression byperplal1f' exactly on the (lOOp)t h quail! i le of tlw lj distri bution. The 
ERQ is designed to utilize illfonnation regardillg dua.l \"ariable,. t.hdl Mt' produced by origilla.1 
regression quanti le of Koen].;er and Bassett [Vi], so as to classify it data set into two groups 
of sample observations. The classified data sets det.erruille tbe upper and lower bounds 
of the pth regression quantile hyperplane. The criterion of minimizing the sum of weighted 
squared deviations uniquely selects the best regression quantile hyperplane. As an important 
property, the resulting estimates of the ERQ were found to be less sensitive to a small sample 
size than the original form. The evidence was confirmed by an illustrative da.ta set and a 
simulation study in which this study selected ]J = .50% a.nd compared the performance of 
ERQ with LAY estimation. 

Besides the property of robustness, the ERQ quantile call become a practical tool to deal 
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with managerial issues such as EEO (equal employment opportunity). For instance, consider 
an EEO evaluation for hospital management in which the amount of salary is measured by 
each employee's rank, gender, race, education ba.ckground and experience, using a linear 
regression model. Csually, medical doctors receive much higher salaries than nurses a.nd 
administrative employees. The wages of doctors often become outliers. A common practice 
of LS regression analysis is identification of outliers to be deleted from estimation, using an 
assumption of a normal error distribution. Deletion of outliers (i.e., medical doctors in the 
case) may be statistically important but often produce managerially insignificant conclusions. 
[For instance, Atkinson [3] has proposed a way of deleting outliers based on LS regression 
median.] On the other hand, the ERQ can be a practical method to deal with various 
evaluation problems of employees in situations where one needs to avoid pronounced outliers 
in order to obtain consensual evaluations. [See Sueyoshi [17] that describes the use of ERQ 
for examining possible salary discrimination against a protected (female or minority) group. 
His study transforms the ERQ result into a 2 x 2 contingency table and thereby presents a.n 
exact way of computing type I and type II errors concel'llillg discrimination. Furthermore, 
Sueyoshi [17] proposes a new measure of the level of discrimination based upon the ERQ 
result, which is expected to be easily understood by law~'ers, judges amI other individuals 
involved in the EEO issue. See [18], as well.] 

This study needs to explore two research topics so a.s to provide ERQ with more practi­
cability. First, as described by Charnes et al. [8, Y, 10], tll<' ERQ call easily incorporate pl'ior 
information concerning estimation results in various forms of side constraints. The ERQ can 
also maintain the methodological capability to incl\lde a ]Irivri requirelIlents in its estimation 
process. Second, the ERQ needs a computational framework for testing the null hypothesis 
regarding parameter estimates. As a.n analytical method, this study proposes the use of ERQ 
in combination with the statistical test proposed by Hogg [1 :3]. Sillce it is a straightforward 
matter to extend the ERQ result. into Hogg's metbod, t.his study omit.s a det.ailed discus~ion 
on how to conduct a statistical test using the ER Q result. [See Hogg [1:3] for his discript ion 
on the statistical test and regression quantile.] Fmtherlllore. as a promising approach, this 
study proposes the use of the bootstrap method 1'01 testing the lIull hypotllt'sis. As presented 
in [12], the computer intensive simula.tioll study I).e., tlw I)uotstrap llwlllOd) call llul1leri­
cally measure the variance-covariance matrix of parameter estimates. The bridge between 
the bootstrap method and the ERQ will open up a lIew statistical testillg method. 

Finally, we hope that the research concerning the ERQ becomes increasingly important 
and anxiously wait for further research devt'lopmE'llts alollg tlw lilies illdicated in tbis study. 
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