
Journal of the Operations Research 
Society of Japan 

Vo!. 34, No. 3, September 1991 

SELECTION OF RELAXATION PROBLEMS FOR A CLASS OF 
ASYMMETRIC TRAVELING SALESMAN PROBLEM INSTANCES 

Seiji Kataoka 
National Defense Academy 

Susumu MOl·ito 
Waseda University 

(Received March 2, 1990; Revised March 25, 1991) 

Abstract It is commonly believed that the use of the assignment problem works well when one selects a 
relaxation problem within the framework of a branch and bound algorithm to solve an asymmetric traveling 
salesman problem (TS P) optimally. In this paper, we present asymmetric TSP instances found in real-life 
setting, and show that t.he above common belief is not necessarily appropriate. Based on the real-life example, 
a family of asymmetric TSP instances called SLOPE is considered, which are generated by deforming arc 
lengths of standard two-dimensional TSPs on a plane in a, specific manner. 

For this type of instances, we show that the assignmellt relaxation yields poor performance, and propose 
a minimum 1-arborescence relaxation similar to the minimum i-tree relaxation that has been successfullv 
applied to the symmetric TSPs. In order to make the algorithm more efficient, the propel' selection of Cc ro;t 
node and the detenninat,ion of Lagrange multipliers to increase the lower bounds are explored. 

Computational experiments with instances SLOPE and also with t.he real-life instance show that the 
proposed algorithm gives better computational performance than the algorithm with the assignment relax­
ation. 

1 Introd uction 
Most papers in the field of mathematical programming refer to applications of the mod­

els discussed. Presentation and discussion of computational experiments are often regarded 
as necessary ingredients of research on algorithm development, and in fact many papers give 
results of computational experiments. It is rather rare, however, to find papers which present 
computational results based on real-life instances. Most studies somehow "generate" instances 
artifically to evaluate algorithms. 

Nothing is wrong to use such randomly generated instances, and this would be necessary 
for the systematic evaluation of proposed algorithms. However, algorithm evaluation could 
sometimes be based on experiments with "improper" instances. It would be important to 
perform algorithm evaluation which reflects characteristics of instances which arise in real-life 
situations. 

For those who solve problems in real-life using mathematical programming, there is no 
question that the proper choice of models and algorithms is crucial. There exist some guide­
lines which should be followed to come up with a proper choice of models and algorithms, but 
more information would be desired for their proper choice. This paper considers the popular 
traveling salesman problem (TSP) for which a huge number of algorithms have been proposed 
and evaluated, and shows that the commonly believed guideline for selecting a relaxation 
problem within a branch and bound scheme is not necessarily appropriate. Specifically, the 
standard guideline for the selection of a relaxation problem recommends to use "the assign­
ment problem if the instance is asymmetric, whereas the minimum I-tree if symmetric". See, 
e.g., [6], [7], [9], [11 ,p.370,p.378,p.392], [12] ,[13]. 

This paper presents a practical problem scenario which could be modeled as an asym-
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234 S. Kataoka & S. Morito 

metric TSP, and shows that the assignment relaxation does not produce good performance 
for the particular type of instances, presenting a case where a commonly-believed guideline 
leads us to an erroneous decision on algorithm design. 

It is well-known for combinatorial optimization problems that computational time may 
vary substantially even for the instances of the identical size, and also that one may encounter 
exceptionally difficult instances by chance. However, if a specific class of instances is found to 
be difficult for some reasons, then it is desired to find a proper algorithm to deal with the class 
of instances. It is shown that a particular type of asymmetric TSP instances could better be 
solved by the minimum l-arborescence relaxation which is proposed in this paper. 

This paper is organized as follows. Section 2 describes the real-life problem scenario 
which motivated our study, and then defines a general class of asymmetric TSP instances 
called SLOPE. Computational results are given which show that the assignment relaxation 
produces poor performance for the real-life instance. Similar results are presented for a sub­
class of instances within SLOPE. The next section proposes the use of the l-arborescence 
relaxation to solve SLOPE instances efficiently. To obtain stronger lower bounds, l)the choice 
of a root node for the l-arborescence relaxation, and 2)the proper determination of Lagrange 
multipliers to increase the lower bounds, are explored. Section 4 demonstrates computational 
results which indecate the effectiveness of the proposed algorithm to solve the difficult class 
of SLOPE instances and the real-life instance. 

In Appendix A, the real-life instance from which the proposed family of asymmetric 
TSPs originate is given. Appendix B shows a different type of "deformed" 2-dimensional 
TSPs, for which computational results similar to instances SLOPE can be observed. They 
imply the existence of a rather large class of asymmetric TSPs in the real world which are 
some "modifications" of the Euclidean TSPs. Finally, Appendix C gives the description of a 
heuristic algorithm to find an initial tour. 

2 Real-Life Problem and Modeling-Instance SLOPE 
2.1 Real-Life problem 

Assume that at a factory, there exist several distinct products to be produced. Pro­
duction of these products will be performed on a machine, and there are two parameters, for 
example, temperature and product size, that basically determine the production process. The 
temperature and size specifications are assumed to be mutually independent. As for temper­
ature, it is desirable to go from high to low as much as possible. There is cost incurred when 
temperature is changed in either directions, but the cost is substantially higher when it is 
raised. So there is a penalty, so to speak, to raise the temperature. Sizes, on the other hand, 
may go from large to small, or vice versa, yet, frequent size changes are certainly undesirable, 
say, due to required setup losses. Thus just sorting products in the decreasing order of tem­
perature specifications would not generally give a good production sequence. In essence, we 
seek a production sequence so that changes in both temperature and sizes are as "smooth" as 
possible, with a particular attention given to temperature raises. 

One way of formulating this problem is to plot products on a two-dimensional plane with 
axes corresponding to temperature and size, somehow assign "cost" of moving from product i 
to j, and finally find a path which visits all points with the minimum cost. Then, this problem 
can be formulated as the Traveling Salesman Problem (TSP). 

With regard to the "cost" of moving between two products (points), it would be reason­
able to assume that the basis for the cost assignment is the (Euclidean) distance between the 
points. For temperature, however, extra penalty is accessed when it goes from low to high. 
Because of this "directionality", the resultant "cost" matrix becomes asymmetric, and thus 
we have an instance of an asymmetric TSP: 
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Minimize {C(T) IT ET} 
Here T is a set of tours that visit all the points exactly once and C(T) is the sum of arc cost 
on a tour T . 

This problem originates from a rael-life problem which arose at a steel plant. Note that this 
type of problm is expected to exist widely for many sequencing problems in productions and 
other settings. Numerical data of one real-life instance with 35 products are shown in Ap­
pendix A. 

To solve the particular asymmetric instance, we first applied a branch and bound algo­
rithm based on the assignment relaxation, and the results of computational experiment are 
given in Table 4-2. F'undamentally, our program j,s based on a FORTRAN translation of a 
BASIC program given in Kobayashi [S, pp.107-12S]. To make it more efficient and to get 
stronger lower bounds, at each subproblem, subroutine AP given in Carpaneto, Martello and 
Toth [5] and the Balas and Christofides bounding procedures [1] are coded and incorporated 
into the algorithm. 

Throughout this paper, time shown corresponds to CPU seconds on APOLLO DOMAIN 
Series 4000. The 35-product instance required 3030831 branches and the 971223 CPU seconds. 
The poor performance of the algorithm motivated us to perform this study. 

2.2 Modeling and instance SLOPE 
We now define a family of Asymmetric TSP (ATSP) instances, referred to as instances 

SLOPE, which take two-dimensional Symmetric TSPs (STSPs) on a plane and deform their 
distances of a particular direction p(~ 1) times as described below. To get an intuitive feel, 
think of a situation where one moves around a ski slope, from which the above name origi­
nated. (Refer to Figures 2-1,2-2.) 

Points are originally given on a two-dimensional plane (x, y). The x and y coordinates 

x 

Figure 2-1: A geometric image of instance SLOPE 

of point i, (Xi, Yi),i E= V, where V is node set, are assumed to be known and are sorted in 
nondecreasing order of x axe. Assume also that these points are randomly distributed on a 
square. "Distances" between two points are evalua.ted as follows: 
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Figure 2-2: Calculation of arc length 

Ci) = J(Xi - Xj)2 + (Yi - Yj)2 

Ci) = J p2(Xi - Xj)2 + (Yi - Yj)2 

if 

if 

X· > x . - ) 

Xi < Xj 

Note that we "penalize" a move from smaller Xi to larger Xj when p > 1. In reality, a starting 
node was fixed to the node at the top of the slope and it was not required to come back to 
the starting node. To conform with this practical requirement, we fix the starting node and 
also add a dummy node D. 

Thus, if the original instance consists of N(N =\ V I) products, then the instance to 
solve becomes an N + 1 node problem. For example, the real-life instance with 35 products be­
comes 36-node instance. Define the lengths of arcs that are incident to D, as in (2.3) and (2.4). 

(2.3) 

(2.4) 

CDi = 00 for all i except CDl = 0 

CiD = 0 for all i 

Note that node 1 corresponds to the node located at the top of the slope, since nodes are 
numbered in nondecreasing order of the values of X axe. 

2.3 Applications of ATSP algorithms to instance SLOPE 
The performance of a standard branch and bound algorithm with the assignment relax­

ation and with the Balas and Christofides (BC) procedures is examined for instances SLOPE. 
We parametrically change the number of nodes N (Throughout the paper, N stands for the 
number of nodes excluding t.he dummy node.) and slope parameter p, and study their effects 
on the total number of branches(NB), the ratio of the optimal value of the assignment relax­
ation of the original problem to its optimal value (AP /OPT), and the ratio of the value of 
lower bound improved by the BC procedures to the optimal value (BC/OPT), and CPU time. 
Values of p examined range from 1.0 to 2.0 with an increment of 0.2, together with 3.0, 5.0 
and 10.0. 
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Table 2-1: E t £ t xpenmen s or Ins ances SLOPE 'th th WI e assIgnme nt relaxation 
N p NB AP/OPT BC/OPT CPU 

1.0 35.85 0.7883 0.9493 0.314 
1.2 34.45 0.7914 0.9357 0.297 
1.4 31.35 0.8002 0.9348 0.275 
1.6 30.80 0.8095 0.9352 0.268 

10 1.8 28.20 0.8164 0.9321 0.249 
2.0 27.65 0.8210 0.9251 0.248 
3.0 15.45 0.8584 0.9348 0.161 
5.0 5.10 0.9017 0.9545 0.089 

10.0 4.30 0.9237 0.9499 0.080 
RND 7.85 0.9600 0.9711 0.087 

1.0 97.35 0.8242 0.9543 1.109 
1.2 97.30 0.8314 0.9478 1.097 
1.4 83.85 0.8370 0.9413 0.949 
1.6 69.00 0.8414 0.9380 0.776 

12 1.8 97.45 0.8468 0.9291 1.054 
2.0 92.00 0.8598 0.9252 0.986 
3.0 37.80 0.8685 0.9174 0.465 
5.0 11.25 0.8988 0.9408 0.194 

10.0 4.30 0.9296 0.9598 0.118 
RND 17.25 0.9471 0.9619 0.215 

1.0 841.80 0.7987 0.9363 11.808 
1.2 848.45 0.8039 0.9308 12.091 
1.4 1023.95 0.8095 0.9237 14.400 
1.6 890.00 0.8148 0.9203 12.033 

14 1.8 457.65 0.8170 0.9160 6.447 
2.0 369.95 0.8211 0.9130 5.208 
3.0 134.05 0.8500 0.9185 2.046 
5.0 32.50 0.8784 0.9210 0.593 

10.0 10.30 0.9122 0.9410 0.239 
RND 27.15 0.9487 0.9646 0.427 

1.0 1063.15 0.8080 0.9333 17.029 
1.2 1161.65 0.8132 0.9252 19.466 
1.4 852.60 0.8192 0.9208 13.731 
1.6 773.05 0.8233 0.9187 12.576 

15 1.8 757.95 0.8258 0.9127 12.378 
2.0 691.25 0.8297 0.9077 11.280 
3.0 515.65 0.8421 0.8916 8.146 
5.0 99.10 0.8648 0.9073 1.828 

10.0 19.00 0.8921 0.9180 0.445 
RND 61.55 0.9612 0.9702 0.932 

1.0 4251.75 0.7967 0.9366 80.871 
1.2 4317.10 0.7993 0.9169 79.104 
1.4 30104.75 0.8035 0.9113 520.350 
1.6 35272.50 0.8067 0.9042 607.400 

16 1.8 25150.55 0.8137 0.8981 444.000 
2.0 18983.65 0.8135 0.8979 333.852 
3.0 723.00 0.8223 0.8950 13.289 
5.0 148.15 0.8460 0.9019 3.074 

10.0 16.80 0.8747 0.9115 0.502 
RND 88.40 0.9696 0.9743 1.478 
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The preformance of the algorithm on random ATSPs of the corresponding size is also 
shown for comparisons. Those rows denoted as RND in Table 2-1 give results for N + 1 node 
random ATSPs in consideration of the added dummy node for SLOPE instances. 

Values of x and y are generated as uniform real random numbers between 1 and 100. 
Distances between nodes are calculated by (2.1), (2.2) and for the dummy node as defined by 
(2.3), (2.4) whose fractional parts are truncated to make them integers. With regard to RND, 
the arc lengths are generated as uniform random numbers between 1 and 100. All figures 
reflect average results of 20 trials. 

Table 2-1 summarizes the results from which the following observations can be made: 
1) There is a general tendency that as p increases, NB decreases when p gets greater than a 
certain value. This is natural because instances become less symmetric as p increases, and 
because the algorithm tends to work well for totally random and totally asymmetric ATSPs, 
where each Cij is independent. Note that the maximum NB occurs when p is between 1 and 
2. We emphasize the fact that NB is not uniformly decreasing as p increases. This is clearly 
shown when N = 16. 
2) The ratio AP /OPT increases almost uniformly as p increases. 
3) The ratio BC/OPT deteriorates almost uniformly as p increases for the range of p less than 
or equal to 2, contributing to the increase of NB as well as CPU. 
4) As N exceeds 15, NB increases rapidly. 
5) It may be possible to view that instances RND roughly correspond to instances SLOPE 
with parameter p ranging between 3 and 10, from the standpoint of NB and CPU. Note, 
however, that with respect to the strength of lower bounds such as AP /OPT and BC/OPT, 
instances RND always yields stronger (i.e., higher) lower bounds than SLOPE, irrespective of 
values of p. 

The above observations would imply that the guideline which recommends to "use the 
assignment relaxation for ATSPs" does not necessarily apply to all instances within the wide 
class of ATSPs. More specifically, one can recognize within a class of SLOPE instances a 
non-trivial subclass for which the superiority of the assignment relaxation is doubtful. 

3 A Proposed Algorithm for Instance SLOPE 
3.1 Minimum 1-arborescence relaxation 

The computational experience shown in Section 2 indicates that the real-life instance 
and SLOPE instances presented in this paper have properties similar to those of STSPs. It 
then is natural to consider the introduction of the minimum l-arborescence relaxation, i.e., 
the directed version of the minimum I-tree relaxation which is known to work well for STSPs 
[6). We thus develop in this section a branch and bound algorithm based on the l-arborescence 
relaxation for the type of ATSPs which preserve some flavor of symmetry. 

There exist few studies on the applications of the l-arborescence relaxation to solve 
ATSPs. Smith [12] is the only one known to the authors to study such algorithms. He used 
random instances for his computational experiments and concluded that the assignment relax­
ation works better for ATSPs than the 1-arborescence relaxation. It is not clear,however, the 
assignment relaxation uniformly outperforms the l-arborescnece relaxation across the wide 
variety of asymmetric instances. 

In Section 3.2, we discuss a method for selecting a root node of the l-arborescence, and 
then discuss in Section 3.3 the determination of Lagrange multipliers. 

For completeness, we give definitions of some basic terminologies. An arborescence 
rooted at node q is a spanning subgraph of a directed graph which contains no subtours, 
exactly one edge directed into every node except q. A value of an arborescence is a sum of 
its arc lengths, and a numinum arborescence is one whose value is minimum. A minimum 
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1-arborescence rooted at node q is a minimum arborescence rooted at node q, plus a minimum­
length incoming arc to node q. 

3.2 Choice of root node for the l-arborescence relaxation 
Generally, any node can be chosen as a root to give a lower bound when the minimum 

1-arborescence relaxation is used. It then is natural to select a root node so that the resul­
tant lower bound is higher. We can show that the strongest lower bound can be obtained by 
selecting node 1, the node at the top of the slope, as the root node. 
Theorem 1 
The value of a minimum 1-arborescence becomes the largest when node 1 is chosen as the 
root node under the conditions (2~3) and (2.4). 
Proof 
First we define the following. 
arb( i) = the value of a minimum ar borescence rooted at node i 
one( i) = the value of a minimum 1-arborescence rooted at node i 
Note that the dummy node D is included in each case. 
For arbitrary node q (#- 1, D),CqD = Cm = 0 from the definitions of (2.3) and (2.4), and thus 

(3.1) one(l) = arb(l) + Cm. 

In one(l), we call the arc which goes into node q as arc a, and define the length of the arc a 
as c(a). Removing arc a from one(l), produces an a,rborescence rooted at node q (Figure:I-1), 
which implies 

(3.2) arb(q) ~ one(l) - c(a). 

If we call the minimum-length incoming arc to node q as arc b, and define the length of the 
arc b as c(b), the definition of a minimum 1-arborescence implies 

(3.3) one(q) = arb(q) + c(b). 

From (3.2) and (3.3), 

(3.4) one(q) ~ one(l) - c(a) + c(b). 

Since c( b) ~ c( a), we obtain 

(3.5) one(q) ~ one(l). 

Theorem 1 is valid even when some arcs that are not incident to dummy node Dare 
fixed in a branch and bound procedure, and thus it is best to select node 1 as the root of a 
1-arborescence throughout the process of a branch and bound procedure. 

3.3 Improvement of lower bounds by the Lagrange relaxation 
We now consider, based on Smith [13]' how the Lagrange relaxation can be applied to 

instances SLOPE, where improvement of lower bounds is tried by putting the degree con­
straints of the 1-arborescence relaxation into the objective function. 

To put those relaxed degree constraints into the objective function, we consider an ar­
bitrary multiplier vector {-Iri liE V}, and transform arc lengths Ci] into c:] = Ci] + 'lri. The 
lower bounds L is obtained by subtracting LiEV 'lri from the value of a 1-arborescence based on 
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1 

D 

Figure 3-1: Arborescences rooted at node 1 and at node q 

the transformed c:j' This lower bound forms a piecewise linear convex function with respect 
to{ 7ri liE V}, based on which we obtain a new and improved multiplier vector {7r: liE V} 
by the following formula: 

(3.6) 7r: = 7ri + t(di - 1) i E V. 

Here di ( i E V) denotes the out-degree of the 1-arborescence of node i. The step size t can be 
obtained by: 

(3.7) t = .\(U - L)/ 2:(di - 1)2 o < .\ ::; 2, 
iEV 

where U stands for an upper bound for the value of the optimal tour. 
Smith [13] states that the algorithm for the l-arborescence cannot be used when some 

arc lengths are negative, and thus forces those Lagrange multipliers which become negative 
to be 0 as in (3.8): 

(3.8) 7r: = max{O, 7ri + t(di - I)} i E V. 

Those nodes whose degree is zero should have negative Lagrange multipliers, but be­
cause of (3.8) the actual multipliers assigned by Smith's method are zeros. This leads to the 
solution of the l-arborescence not increasing the out-degree of those nodes whose associated 
multiplier should have been negative. The restriction of nonnegativity of arc lengths in the 
1-arborescence algorithm is noted also by Suzuki [14]. However, the following simple result 
holds: 
Theorem 2 
Given a graph, add a given constant M to all arc lengths. Then a minimum l-arborescence 
for the original graph gives the same minimum l-arborescence for the transformed one, and 
VIce versa. 
Proof 
Suppose that G is the given graph and GM a graph where a constantM is added to length of 
each arc on G. Let T be an arbitrary l-arborescence, and z(T) the value of T on G. Let T* 
be a minimum l-arborescence. If N denotes the number of nodes in G, any l-arborescence 
T consists of N arcs, and thus the value of T* on graph GM would be z(T*) + M N. If there 
exists an optimal minimum l-arborescence T;A=I- T*) on GM, then 
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(3.9) z(T~) + MN ::; z(T*) + M N, 

which implies 

(3.10) z(T~) ::; z(T*). 

Unless the inequality in (3.10) holds, however, this contradicts that T* is a nummum 1-
arborescence on G. Therefore, T* is also the same minimum 1-arborescence on GM' 0 

The above theorem shows that even if some arcs have negative lengths, one can add 
some (possibly big) constant M to all arc lengths to make them nonnegative, and apply a 
1-arborescence algorithm. The value of the 1-arborescence is the optimal value obtained for 
the transformed graph minus M N. 

To see the effect of adding constant M instead of forcing negative multipliers to () as 
done by Smith, the following experiments are performed: 
1) >. in (3.7) is fixed to 1.25. This is based on the knowledge obtained from the experiments, 
where various values of >. are tested ranging from 0.25 to 2.0 with a step of 0.25. 
2) An initial value of 7r is set to O. 
3) The termination criteria is as follows: 
a. When lower bound exceeds or is equal to an upper bound. 
b. Maximum of 100 repetitions if the above condition is not satisfied, where iterations corre­
spond to the number of times 7r is updated. 

With regard to the reason why the number of repetitions is limited to 100, we performed 
experiments on the real-life instance to see the effect of changing the limit, which showed that 
the upper limit of 100 repetitions outperforms the other cases with limits ranging from 40 to 
160. Refer to computational results given in Table 4-2. 

As preliminary computational experiments, lower bounds obtained by the following four 
cases are compared: 
(1) a proposed method based on Theorem 2 
(2) the Smith's method 
(3) the BC procedures 
(4) the assignment relaxation 

Evaluations are made based on the ratio beltween the lower bounds obtained and the 
optimal value. The instance used is the real-life one in Appendix A. For this instance, the 
optimal value is known, which is used as an upper bound U in (3.7). The results are shown 
in Figure 3-2. 

The results show that the Smith's method could not improve the lower bounds to the 
level of the BC lower bound even after 100 iterations, whereas the proposed method domi­
nates the BC lower bound with approximately 20 iterations, and moreover, yields lower bounds 
which is around 99 % of the optimal value after roughly 80 iterations. 

4 Computational Experiments 
Computational experiments are performed to see the effectiveness of the proposed al­

gorithm. First we describe the results for instances SLOPE, and then for the real-life instance. 

4.1 Computational experiments with instances SLOPE 
Experiments are performed under the following conditions: 

1) A root node is defined to be node 1 as discussed in 3.2. 
2) Lower bounds are improved by the Lagrange relaxation as discussed in 3.3. In the algo­
rithm, an initial upper bound is calculated by the heuristic algorithm explained in Appendix 
C. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



242 S. Kataoka & S. Morito 

Ratio 
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Figure 3-2: Increase of lower bounds 

3) The branching rule is the same as that of Smith [13]. 
4) Problem sizes of N =15,20,25 are tested. 

Results are shown in Table 4-1. The performance measures shown include the num­
ber of branches(NB), the ratio of the value of the minimum 1-arborescence to the optimal 
value (ARB/OPT), the ratio of the final lower bound after the Lagrange relaxation to the 
optimal value (LAG/OPT), and CPU time. Moreover, Table 4-1 shows the total number of 1-
arborescence problems solved (TN1A) including the number of repetitions needed to increase 
the lower bounds with the Lagrange relaxation, and the average number of 1-arborescence 
problems per subproblem (AN1A), where AN1A = TN1A/NB. For comparisons, figures in 
parenthes~s provide corresponding results obtained from the algorithm given in Section 2. 
Dashes ( - ) indicates the fact that 20 instances could not be solved within the time limit of 
3 days. 

Following observations are in order from Table 4-1. 
1) With respect to NB (i.e., the number of nodes or subproblems in a branch and bound 
tree), the proposed algorithm uniformly dominates the assignment relaxation with the only 
exception of N = 20, p = 10. 

The l-arborescence relaxation generally yields stronger lower bounds than the assign­
ment relaxation. Specifically, in the range of p :::; 2 of instances SLOPE with N = 15, the 
lower bounds generated by the 1-arborescence relaxation (ARB/OPT) are stronger than those 
by the assignment relaxation (AP /OPT). For N =20 and 25, the similar trend is expected, 
even though these ratios are unknown because too much computation time was required for 
these cases. Recall that instances SLOPE with smaller p(> 1) tend to be difficult. More 
importantly, the final lower bounds as measured by LAG/OPT are uniformly stronger than 
those generated by the assignment relaxation after the BC procedures. Obviously, this con­
tributes to the superiority of the 1-arborescence relaxation to the assignment relaxation. 

On the other hand, one can easily observe that the ratios AP /OPT as well as BC/OPT 
are very high for instances RND, indicating that instances RND are substantially different 
from instances SLOPE with even large values of p. This would imply that instances RND fall 
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Table 4-1: Experiments for instances SLOPE with the 1-arborescence relaxation 
N p ND TNIA ANIA Ann/OPT (AP/OP'f) LAO/OPT (DC/OPT) CPU 

1.0 18.00 (1003.15) 493.90 27.44 0.9023 (0.808~! 0.9797 (0.9333) 18.812 ~17029! 
1.2 25.05 (1161.65) 109.85 28.38 0.8898 (0.8132) 0.9792 (0.9252) 26.202 (190456) 
1.4 28.15 (852.60) 851.00 30.14 0.8753 (0.8192) 0.9801 (0.9208) 26.891 (13.731) 
1.6 31.40 (773.05) 957.30 30.19 0.8032 (0.8233) 0.9802 (0.9187) 28.313 (12.570 ) 

15 1.8 37.70 (757.95) 1193.20 31.65 0.8530 (0.8258) 0.9712 (0.9127) 33.875 (12.378) 
2.0 43.55 (691.25) 1355.60 31.13 08427 (0.8297) 0.9685 (0.9077) 36.920 (11.2:30) 
3.0 34.55 (515.65) 1097.90 31.78 0.8062 (0.8121) 0.9709 (0.8916) 30.186 (8.14G) 
5.0 22.00 (9n.l0) 719.50 32.70 0.7631 (0.8648) 0.9850 (0.9073) 17.709 (1.828 ) 

10.0 13.80 (19.00) 439.10 31.82 0.7022 (0.8921) 0.9885 (0.9180) 9.908 (0.445) 
RND 50.05 (61.55) 1478.00 29.53 0.7057 0.9612 0.8941 (0.9702) 37.270 0.93~ 
10 62.05 ( ) 2314.20 37.30 0.9050 ( ) 0.9716 ( ) 141.293 (-) 
1.2 67.25 (-) 2507.00 37.28 0.8947 (-) 0.9721 (-) 148.087 (-
1.4 86.95 (--) 3754.55 43.18 0.8834 (-) 0.9716 (-) 187.806 (-
1.6 141.95 (._) 5275.85 37.17 0.8715 (-) 0.9684 (-) 267.317 (-

20 18 176.85 (.- ) 6658.60 37.65 0.8611 (-) 0.9650 (-) 335.660 (-
20 192.35 (._) 7392.40 38.43 0.8503 (-) 0.9664 (-) 363.356 (-
3.0 103.95 (514550.40) 1184.50 40.25 0.8023 (0.8289) 0.9648 (0.8974) 188.456 (15082.950) 
5.0 43.70 (102:34.25) 1779.65 40.72 0.7391 (0.8561) 0.9704 (0.9062) 70.710 (328.350) 
10.0 47.95 (24.30) 1998.50 41.68 06616 (0.9027) 0.9820 (0.9319) 67.499 (1.181) 
nND 100.50 (14l.85 3166.60 31.51 0.6873 0.9449) 0.8652 (0.9514) 133.990 (3.080) 
1.0 224.85 (- ) 8826.15 39.25 09016 ( ) 0.9739 ( ) 835.458 -) 
12 316.80 (-- ) 12289.35 38.79 0.8895 (-) 0.9696 (-) 1140.250 -
14 843.65 (-- ) 32699.35 38.76 08759 (-) 0.9636 (-) 2912.100 -
16 1031.45 (-- ) 40903.60 39.66 0.8606 (-) 0.9621 (-) 3599.900 -

25 1.8 1438.20 ( --) 58622.25 40.76 0.8477 (-) 0.9546 (-) 5030.700 -
2.0 1890.30 ( --) 78272.80 41.41 0.8328 (-) 0.9486 (-) 6527300 -
3.0 1002.75 ( --) 46167.95 46.04 0.7796 (-) 0.9460 (-) 3268.900 -
5.0 719.85 ( --) 35648.80 49.52 0.7087 (-) 0.9542 (-) 2162.000 -

10.0 168.75 (191.55) 7670.75 45.46 0.6263 ,:0.8883) 0.9782 (0.9130) 342.518 (12.1~3) 
nND 168.35 (3390.75 5933.45 35.24 0.7147 ',0.9762) 0.8557 0.9804 412.359 (11.248) 

into a very special, and peculiar, class of ATSPs. 
Note also that values of lower bounds improved by the Lagrange relaxation are relatively 

independent of the value of the slope parameter p, and give good(i.e., large) lower bounds. 
2) These results together with Table 2-1 indicate that, irrespective of the algorithm used, 
difficult SLOPE instances which require much computational time are those whose parameter 
values are around p = 2. It is interesting to note that as p is increased from 1, instances 
SLOPE first become more difficult to solve, and as p exceeds 2, they become easier. For 
those difficult SLOPE instances, the increase of computational time for the proposed algo­
rithm based on the l-arborescence relaxation is not as substantial as that for the assignment 
counterpart. 
3) As will be expected from the computational experiments given in Section 2, the compu­
tational time requirement of the assignment relaxation exploded even for p = 3 or 5 when 
N = 25. When N is 20, the assignment relaxation took excessive time for p ::; 3. As N 
increases, the assignment relaxation becomes inefficient even for large values of p. 
4) When the assignment relaxation is used for instances SLOPE, NB increases rapidly as N 
exceeds 15 as shown in Table 2-1. The proposed algorithm, on the other hand, indicates much 
preferable characteristics in terms of the growth of NB as N increases. 

Computational time requirement per subproblem (i.e., a node in a branch and bound 
tree) is not so heavy when the assignment relaxation is used even with the BC procedures. 
However, because of the weakness of the resultant lower bounds for instances SLOPE, NB 
tends to grow rapidly, resulting in an excessive overall computational time. 

The l-arborescence relaxation together with the Lagrange relaxation, on the other hand, 
requires more time per subproblem, because many l-arborescence problems must be solved 
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repeatedly as the Lagrange multipliers get modified. The subgradient optimization, however, 
yields comparatively better lower bounds, which helps reduce NB. 

4.2 Computational experiments with the real-life instance 
Two branch and bound algorithms, one based on the assignment relaxation with the 

BC procedures, and the other based on the 1-arborescence relaxation discussed in the present 
paper, are compared, and the results are shown in Table 4-2. 

In Table 4-2, RX denotes the type of relaxation problem to be used, and with regard to 

T bl 42 E a e - : xpenmen t £ th or ere al n . t - I e Ins ance 
RX NB TN1A RX/OPT LB/OPT CPU 

assignment 3030831 0.7231 0.8786 971223.000 
1-arb(160) 475 28130 0.7675 0.9493 3149.611 
1-arb(140) 475 25330 0.7675 0.9493 2845.613 
1-arb(120) 475 22530 0.7675 0.9493 2512.327 
1-arb(100) 478 19946 0.7675 0.9493 2242.828 
1-arb(80) 547 21309 0.7675 0.9493 2653.280 
1-arb(70) 654 25287 0.7675 0.9493 3438.836 
1-arb(60) 887 34624 0.7675 0.9403 5163.555 
1-arb(50) 3798 155181 0.7675 0.9306 25251.000 
1-arb(40) 18705 635209 0.7675 0.9174 93882.000 

the 1-arborescence relaxation, the value kin "l-arb(k)" is the maximum number ofrepetitions 
allowed for a subproblem in the process of the Lagrange relaxation. Two ratios, RX/OPT and 
LB/OPT are nothing but AP /OPT and BC/OPT, respectively, for the assignment relaxation 
(see Table 2-1), and ARB/OPT and LAG/OPT,respectively, for the 1-arborescence relaxation 
(see Table 4-1). 

The results suggests the following observations: 
1) The proposed algorithm solves the real-life ATSP instance more than 400 times faster than 
the algorithm that uses the assignment relaxation. Also, the number of branches required 
for the assignment relaxation algorithm is more than 6000 times of that for the proposed 
algorithm. Though the 1-arborescence relaxation takes more time for solving a subproblem, 
the better improvement of lower bounds contributes more to yield an efficient algorithm. 
2) Even within the 1-arborescence relaxation, one can observe the dramatic dependence of the 
strength of lower bounds on the algorithmic efficiency. A small difference of 0.01 in LB/OPT 
could change CPU time by one digit. This indicates that the proper selection of the iteration 
limit k is important for the 1-arborescence relaxation. Setting k too small would likely to hurt 
the computational efficiency, as seen from Table 4-2. 

5 Conclusions and Future Researches 
This paper is motivated by a real-life instance of the asymmetric TSP, for which an 

algorithm based on the assignment relaxation fails to provide good performance, despite a 
widely believed guideline which recommends to "select the assignment relaxation for ATSPs, 
whereas the I-tree relaxation for STSPs". 

It is a matter of course that solution algorithms should take full advantages of structure 
and/or characteristics of the problem of interest. This is especially true for computation ally 
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tough (say, NP-hard) combinatorial optimization problems such as the TSP studied in this 
paper. 

It is natural that problem instances reflect characteristics of a real problem scenario. 
Since information concerning a TSP instance is condensed in its distance matrix, characteris­
tics and structure of the problem would be hidden in the distances. As in the case presented 
in this paper, even rough ideas known about how distances are "defined" would help identify 
any potential problem structures. Knowledges of problem structures can be, and should be 
exploited to determine suitable solution strategy such as the selection of relaxation problems 
used within the branch-and-bound framework. 

For TSP instances of a particular application, the distances (Cij) reflect relative "undesir­
ableness" of going from one node to another. Each node normally corresponds to a particular 
"entity" in a real world and entities have their own "properties". Distances between two 
nodes are often defined as some functions of their properties, reflecting the underlying prob­
lem structure. This implies that so-called asymmetric TSP instances often used to evaluate 
ATSP algorithms are very peculiar problem instances in the sense that individual entries in 
the distance matrix are totally independent of each other, which may be difficult, if not im­
possible, to find in real world. 

The above argument leads us to believe, without proof nor definite evidence, that many 
of real-life instances of TSPs are some deformations of Euclidean TSPs, without regard to 
whether they are synunetiric or not. In fact, many such problems are expected, as in our ex­
ample, to retain flavour of Euclidean TSPs. For much wider range of real-life ATSPs than we 
anticipate, it is estimated that the I-tree or I-arborescence relaxation provides much stronger 
bounds than the assignment relaxation. 

Whether a TSP is symmetric or asymmetric is certainly one characterization of the 
problem. Standard references (say, [11]) suggest to base the selection of relaxation problem 
on this symmetric/asymmetric dichotomy. This paper warns that this dichotomy should be 
taken with caution. Moreover, the discussions given here imply that one should pay more 
attention, in selecting relaxation problems, to whether or not a problem maintains strong 
flavour of Euclidean TSPs. 

We have not yet come up with definite measures obtained from given distance data of an 
ATSP nor with a formula that tells us which relaxation problem to choose, even if we restrict 
our attention to the assignment relaxation and the I-arboresence relaxation. We guess that 
independence/dependence of Ci/S play a key factor to come up with some measures. More 
concretely, the independence/dependence of c;/s can be measured by, say, 1) the ratio of dis­
tances Cij and Cj; between two nodes, and 2) relative relationship of nodes. The former gives 
a local (i.e., pair wise) measure of the independence/dependence, whereas the latter a global 
measure. 

With regard to the local measure, when the variability of these ratios Cij/Cji is higher, 
distances CiJ and Cji can be regarded as more independent. Our results show that for ATSPs 
with high variability of the ratios, the assignment relaxation dominates the 1-arborescence 
relaxation. 

On the other hand, global measures try to extract some "geometric" structure based 
on the global and relative relationship of nodes. Recognition of certain forms of "directional­
ity" might lead to a good potential measure. One possibility for recognizing a directionality 
would take an original (complete) graph, and transform it by removing a longer arc (i.e., an 
arc with max{ Cij, CJi}) between each pair of nodes. The sum of in-degrees and out-degrees 
of each node of the resultant graph would be constant N, where N is the number of nodes. 
If the out-degrees of the transformed graph are distributed uniformly, i.e., N, N - 1, ... , 1, 
this would imply the existence of a certain directionality, as this is the case for SLOPE. For 
instances RND, however, the out-degrees of the tarnsformed graph may not be distributed 
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uniformly between 1 and N. 
In the mean time, one quick and dirty, yet easily implement able, test before selecting the 

type of a relaxation problem would be comparisons of the relative strength of lower bounds, 
without following blindly unproven criteria such as "use the assignment relaxation for ATSPs, 
whereas the I-tree relaxation for STSPs". 

In summary, the inherent problem structure is a key factor for selecting a proper so­
lution strategy. More research will be needed to associate problem structures with solution 
strategies, which allows us to design a mechanism for an "automatic" identification of a proper 
solution strategy. 
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A A Real-Life ATSP Problem Instance 

Figure A-I shows the numerical data of a real-life instance. 
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Figure A-I: Numerical data of a real-life instance 
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B Different Versions of "Deformed" Euclidean TSP 
If we consider road traffic, we often encounter a situation where going into the center 

of a city takes more time than going out, thus resulting in asymmetric cost matrix. Since 
vehicles can be assumed to move on a two-dimensional plane, distances would be same and 
the resultant "cost" tends to preserve some Euclidean properties, or symmetry. 

Consider a "center" on a plane. There is an extra penalty associated with approaching 
the center, whereas regular Euclidean distance is (lccessed when going away from the center. 
This, as opposed to instances SLOPE, may be c('Jled instances CONE, as it requires E'xtra 
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efforts or costs to go toward the top of a mountain or a cone. Details of the definition of 
"distance" between two points i and j on a cone will not be explained here. 

The above discussion implies the existence of many TSP problems which are not sym-

Table B-1: Computational experiments with instances CONE 

NB RX/OPT LB/OPT CPU 
N p assignment l-arb assignment l-arb assignment l-arb assignment l-arb 

1.0 1086.05 15.40 0.7823 0.8744 0.9167 0.9988 17.3349 16.3490 
1.2 693.95 21.35 0.7858 0.8759 0.9128 0.9956 11.6626 22.4133 

15 1.4 497.85 19.55 0.8627 0.8411 0.9132 0.9968 8.7810 18.3576 
1.6 364.10 23.20 0.7887 0.8230 0.9126 0.9924 5.9230 20.1919 
1.8 263.00 29.25 0.7906 0.8057 0.9137 0.9931 4.8492 26.3282 
2.0 232.65 30.90 0.7908 0.7898 0.9104 0.9910 3.5679 26.8591 
1.0 (- ) 56.65 (- ) 0.8775 (- ) 0.9935 (- ) 128.7699 
1.2 (- ) 63.40 (- ) 0.8584 (- ) 0.9919 (- ) 139.5196 

20 1.4 (- ) 50.80 (- ) 0.8414 (- ) 0.9913 (- ) 109.2427 
1.6 (- ) 79.70 (- ) 0.8223 (- ) 0.9853 (- ) 150.4980 
1.8 (- ) 99.65 (- ) 0.8048 (- ) 0.9829 (- ) 189.2531 
2.0 (- ) 100.70 (- ) 0.7894 (- ) 0.9866 (- ) 190.8522 

metric, yet closer to symmetric TSPs than those whose arc lengths are totally random. Our 
computational experiments for other types of "deformed" Euclidean TSPs show that our find­
ing here would apply equally well to other such cases. 

C Heuristic Algorithms for Instance SLOPE 
Since instances SLOPE are based on the two-dimensional Euclidean TSPs, it appears 

natural to consider heuristic algorithms originally designed for the Euclidean TSPs. Heuris­
tic algorithms for the Euclidean TSPs can be classified into two categories, namely, l)tour 
construction procedures, in which a subtour is gradually expanded to come up with an initial 
tour, and 2)tour improvement procedures, where a tour is replaced with an another improved 
tour [11]. In many cases these two procedures are used in combination, as will be done here, 
too. 

Tour construction procedures start with an initial subtour, and consist of two basic 
steps, a}node selection step which determines a node to be included in the current subtour, 
and b )node insertion step which decides where in the existing subtour the selected node will 
be inserted[11]. Repeated applications of a node selection and a node insertion steps would 
eventually produce a tour. 

To come up with a heuristic algorithm for our instances, the following two approaches 
are considered as candidates for the node selection step: 
(l)Farthest Insertion (FI) method, which selects a node farthest away from the current sub­
tour, and 
(2)Nearest Insertion (NI) method, which selects a node closest to the current subtour. 
FI is known to work well for the Euclidean TSPs. See, e.g., Chapter 7 of [11]. NI, on the other 
hand, tries to include nodes easier to include in the existing subtour based on the geometric 
image.(Fig.2-1) 

In order to adopt these methods to our asymmetric instances, we introduce the following 
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concepts of "distance": 
(i) Distance between a subtour and a selected node is defined as the minimum of distances 
between those nodes in the subtour and the selected node. 
(ii) Distance dij between two points i and j which is used in the selection step is calculated 
by one of the following three methods: 

(C.1) d'J = min{ciJ' Cji) - choose the shorter distance 

(C.2) diJ = (Cij + cji)/2 - use the average of the two distances 

(C.3) d;j = max{cJi, Cji) - choose the longer distance 

Criteria used in the insertion step is to choose the location such that the cost increase is kept 
minimum. 

After an initial tour is obtained based on the framework just outlined, 3-opt will be 
performed to improve the tour, and the resultant !lour will be used as an initial tour. 

Table C-1 compares three different methods to come up with "distances" of tours ob­
tained by the heuristic algorithms against the optimal value for the averages of 20 instances 
with N = 15 and p == 2.0. 

Table C-1 shows that a combination of NI with 3-opt where distances are calculated 

Table C-1: The accuracy of heuristics 
d 'J FI FI+3-opt NI NJ+3-opt 

(C.1) 1.174 1.124 1.079 1.063 
(C.2) 1.078 1.057 1.051 1.042 
(C.3) 1.073 1.056 1.112 1.061 

by (C.2) gives the best heuristic solutions, and thus the initial tours used for our algorithm is 
generated based on the above combination. 
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