
Journal of the Operations Research
Society of Japan

Vo!. 34, No. 3, September 1991

SELECTION OF RELAXATION PROBLEMS FOR A CLASS OF
ASYMMETRIC TRAVELING SALESMAN PROBLEM INSTANCES

Seiji Kataoka
National Defense Academy

Susumu MOl·ito
Waseda University

(Received March 2, 1990; Revised March 25, 1991)

Abstract It is commonly believed that the use of the assignment problem works well when one selects a
relaxation problem within the framework of a branch and bound algorithm to solve an asymmetric traveling
salesman problem (TS P) optimally. In this paper, we present asymmetric TSP instances found in real-life
setting, and show that t.he above common belief is not necessarily appropriate. Based on the real-life example,
a family of asymmetric TSP instances called SLOPE is considered, which are generated by deforming arc
lengths of standard two-dimensional TSPs on a plane in a, specific manner.

For this type of instances, we show that the assignmellt relaxation yields poor performance, and propose
a minimum 1-arborescence relaxation similar to the minimum i-tree relaxation that has been successfullv
applied to the symmetric TSPs. In order to make the algorithm more efficient, the propel' selection of Cc ro;t
node and the detenninat,ion of Lagrange multipliers to increase the lower bounds are explored.

Computational experiments with instances SLOPE and also with t.he real-life instance show that the
proposed algorithm gives better computational performance than the algorithm with the assignment relax­
ation.

1 Introd uction
Most papers in the field of mathematical programming refer to applications of the mod­

els discussed. Presentation and discussion of computational experiments are often regarded
as necessary ingredients of research on algorithm development, and in fact many papers give
results of computational experiments. It is rather rare, however, to find papers which present
computational results based on real-life instances. Most studies somehow "generate" instances
artifically to evaluate algorithms.

Nothing is wrong to use such randomly generated instances, and this would be necessary
for the systematic evaluation of proposed algorithms. However, algorithm evaluation could
sometimes be based on experiments with "improper" instances. It would be important to
perform algorithm evaluation which reflects characteristics of instances which arise in real-life
situations.

For those who solve problems in real-life using mathematical programming, there is no
question that the proper choice of models and algorithms is crucial. There exist some guide­
lines which should be followed to come up with a proper choice of models and algorithms, but
more information would be desired for their proper choice. This paper considers the popular
traveling salesman problem (TSP) for which a huge number of algorithms have been proposed
and evaluated, and shows that the commonly believed guideline for selecting a relaxation
problem within a branch and bound scheme is not necessarily appropriate. Specifically, the
standard guideline for the selection of a relaxation problem recommends to use "the assign­
ment problem if the instance is asymmetric, whereas the minimum I-tree if symmetric". See,
e.g., [6], [7], [9], [11 ,p.370,p.378,p.392], [12] ,[13].

This paper presents a practical problem scenario which could be modeled as an asym-

233

© 1991 The Operations Research Society of Japan

234 S. Kataoka & S. Morito

metric TSP, and shows that the assignment relaxation does not produce good performance
for the particular type of instances, presenting a case where a commonly-believed guideline
leads us to an erroneous decision on algorithm design.

It is well-known for combinatorial optimization problems that computational time may
vary substantially even for the instances of the identical size, and also that one may encounter
exceptionally difficult instances by chance. However, if a specific class of instances is found to
be difficult for some reasons, then it is desired to find a proper algorithm to deal with the class
of instances. It is shown that a particular type of asymmetric TSP instances could better be
solved by the minimum l-arborescence relaxation which is proposed in this paper.

This paper is organized as follows. Section 2 describes the real-life problem scenario
which motivated our study, and then defines a general class of asymmetric TSP instances
called SLOPE. Computational results are given which show that the assignment relaxation
produces poor performance for the real-life instance. Similar results are presented for a sub­
class of instances within SLOPE. The next section proposes the use of the l-arborescence
relaxation to solve SLOPE instances efficiently. To obtain stronger lower bounds, l)the choice
of a root node for the l-arborescence relaxation, and 2)the proper determination of Lagrange
multipliers to increase the lower bounds, are explored. Section 4 demonstrates computational
results which indecate the effectiveness of the proposed algorithm to solve the difficult class
of SLOPE instances and the real-life instance.

In Appendix A, the real-life instance from which the proposed family of asymmetric
TSPs originate is given. Appendix B shows a different type of "deformed" 2-dimensional
TSPs, for which computational results similar to instances SLOPE can be observed. They
imply the existence of a rather large class of asymmetric TSPs in the real world which are
some "modifications" of the Euclidean TSPs. Finally, Appendix C gives the description of a
heuristic algorithm to find an initial tour.

2 Real-Life Problem and Modeling-Instance SLOPE
2.1 Real-Life problem

Assume that at a factory, there exist several distinct products to be produced. Pro­
duction of these products will be performed on a machine, and there are two parameters, for
example, temperature and product size, that basically determine the production process. The
temperature and size specifications are assumed to be mutually independent. As for temper­
ature, it is desirable to go from high to low as much as possible. There is cost incurred when
temperature is changed in either directions, but the cost is substantially higher when it is
raised. So there is a penalty, so to speak, to raise the temperature. Sizes, on the other hand,
may go from large to small, or vice versa, yet, frequent size changes are certainly undesirable,
say, due to required setup losses. Thus just sorting products in the decreasing order of tem­
perature specifications would not generally give a good production sequence. In essence, we
seek a production sequence so that changes in both temperature and sizes are as "smooth" as
possible, with a particular attention given to temperature raises.

One way of formulating this problem is to plot products on a two-dimensional plane with
axes corresponding to temperature and size, somehow assign "cost" of moving from product i
to j, and finally find a path which visits all points with the minimum cost. Then, this problem
can be formulated as the Traveling Salesman Problem (TSP).

With regard to the "cost" of moving between two products (points), it would be reason­
able to assume that the basis for the cost assignment is the (Euclidean) distance between the
points. For temperature, however, extra penalty is accessed when it goes from low to high.
Because of this "directionality", the resultant "cost" matrix becomes asymmetric, and thus
we have an instance of an asymmetric TSP:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems 235

Minimize {C(T) IT ET}
Here T is a set of tours that visit all the points exactly once and C(T) is the sum of arc cost
on a tour T .

This problem originates from a rael-life problem which arose at a steel plant. Note that this
type of problm is expected to exist widely for many sequencing problems in productions and
other settings. Numerical data of one real-life instance with 35 products are shown in Ap­
pendix A.

To solve the particular asymmetric instance, we first applied a branch and bound algo­
rithm based on the assignment relaxation, and the results of computational experiment are
given in Table 4-2. F'undamentally, our program j,s based on a FORTRAN translation of a
BASIC program given in Kobayashi [S, pp.107-12S]. To make it more efficient and to get
stronger lower bounds, at each subproblem, subroutine AP given in Carpaneto, Martello and
Toth [5] and the Balas and Christofides bounding procedures [1] are coded and incorporated
into the algorithm.

Throughout this paper, time shown corresponds to CPU seconds on APOLLO DOMAIN
Series 4000. The 35-product instance required 3030831 branches and the 971223 CPU seconds.
The poor performance of the algorithm motivated us to perform this study.

2.2 Modeling and instance SLOPE
We now define a family of Asymmetric TSP (ATSP) instances, referred to as instances

SLOPE, which take two-dimensional Symmetric TSPs (STSPs) on a plane and deform their
distances of a particular direction p(~ 1) times as described below. To get an intuitive feel,
think of a situation where one moves around a ski slope, from which the above name origi­
nated. (Refer to Figures 2-1,2-2.)

Points are originally given on a two-dimensional plane (x, y). The x and y coordinates

x

Figure 2-1: A geometric image of instance SLOPE

of point i, (Xi, Yi),i E= V, where V is node set, are assumed to be known and are sorted in
nondecreasing order of x axe. Assume also that these points are randomly distributed on a
square. "Distances" between two points are evalua.ted as follows:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

236

(2.1)

(2.2)

o

s. Kataoka & S. Morito

x
y

b

X~------------------------rl

b

z
~---, Y

Figure 2-2: Calculation of arc length

Ci) = J(Xi - Xj)2 + (Yi - Yj)2

Ci) = J p2(Xi - Xj)2 + (Yi - Yj)2

if

if

X· > x . -)

Xi < Xj

Note that we "penalize" a move from smaller Xi to larger Xj when p > 1. In reality, a starting
node was fixed to the node at the top of the slope and it was not required to come back to
the starting node. To conform with this practical requirement, we fix the starting node and
also add a dummy node D.

Thus, if the original instance consists of N(N =\ V I) products, then the instance to
solve becomes an N + 1 node problem. For example, the real-life instance with 35 products be­
comes 36-node instance. Define the lengths of arcs that are incident to D, as in (2.3) and (2.4).

(2.3)

(2.4)

CDi = 00 for all i except CDl = 0

CiD = 0 for all i

Note that node 1 corresponds to the node located at the top of the slope, since nodes are
numbered in nondecreasing order of the values of X axe.

2.3 Applications of ATSP algorithms to instance SLOPE
The performance of a standard branch and bound algorithm with the assignment relax­

ation and with the Balas and Christofides (BC) procedures is examined for instances SLOPE.
We parametrically change the number of nodes N (Throughout the paper, N stands for the
number of nodes excluding t.he dummy node.) and slope parameter p, and study their effects
on the total number of branches(NB), the ratio of the optimal value of the assignment relax­
ation of the original problem to its optimal value (AP /OPT), and the ratio of the value of
lower bound improved by the BC procedures to the optimal value (BC/OPT), and CPU time.
Values of p examined range from 1.0 to 2.0 with an increment of 0.2, together with 3.0, 5.0
and 10.0.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems 237

Table 2-1: E t £ t xpenmen s or Ins ances SLOPE 'th th WI e assIgnme nt relaxation
N p NB AP/OPT BC/OPT CPU

1.0 35.85 0.7883 0.9493 0.314
1.2 34.45 0.7914 0.9357 0.297
1.4 31.35 0.8002 0.9348 0.275
1.6 30.80 0.8095 0.9352 0.268

10 1.8 28.20 0.8164 0.9321 0.249
2.0 27.65 0.8210 0.9251 0.248
3.0 15.45 0.8584 0.9348 0.161
5.0 5.10 0.9017 0.9545 0.089

10.0 4.30 0.9237 0.9499 0.080
RND 7.85 0.9600 0.9711 0.087

1.0 97.35 0.8242 0.9543 1.109
1.2 97.30 0.8314 0.9478 1.097
1.4 83.85 0.8370 0.9413 0.949
1.6 69.00 0.8414 0.9380 0.776

12 1.8 97.45 0.8468 0.9291 1.054
2.0 92.00 0.8598 0.9252 0.986
3.0 37.80 0.8685 0.9174 0.465
5.0 11.25 0.8988 0.9408 0.194

10.0 4.30 0.9296 0.9598 0.118
RND 17.25 0.9471 0.9619 0.215

1.0 841.80 0.7987 0.9363 11.808
1.2 848.45 0.8039 0.9308 12.091
1.4 1023.95 0.8095 0.9237 14.400
1.6 890.00 0.8148 0.9203 12.033

14 1.8 457.65 0.8170 0.9160 6.447
2.0 369.95 0.8211 0.9130 5.208
3.0 134.05 0.8500 0.9185 2.046
5.0 32.50 0.8784 0.9210 0.593

10.0 10.30 0.9122 0.9410 0.239
RND 27.15 0.9487 0.9646 0.427

1.0 1063.15 0.8080 0.9333 17.029
1.2 1161.65 0.8132 0.9252 19.466
1.4 852.60 0.8192 0.9208 13.731
1.6 773.05 0.8233 0.9187 12.576

15 1.8 757.95 0.8258 0.9127 12.378
2.0 691.25 0.8297 0.9077 11.280
3.0 515.65 0.8421 0.8916 8.146
5.0 99.10 0.8648 0.9073 1.828

10.0 19.00 0.8921 0.9180 0.445
RND 61.55 0.9612 0.9702 0.932

1.0 4251.75 0.7967 0.9366 80.871
1.2 4317.10 0.7993 0.9169 79.104
1.4 30104.75 0.8035 0.9113 520.350
1.6 35272.50 0.8067 0.9042 607.400

16 1.8 25150.55 0.8137 0.8981 444.000
2.0 18983.65 0.8135 0.8979 333.852
3.0 723.00 0.8223 0.8950 13.289
5.0 148.15 0.8460 0.9019 3.074

10.0 16.80 0.8747 0.9115 0.502
RND 88.40 0.9696 0.9743 1.478

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

238 S. Kataoka & S. Morito

The preformance of the algorithm on random ATSPs of the corresponding size is also
shown for comparisons. Those rows denoted as RND in Table 2-1 give results for N + 1 node
random ATSPs in consideration of the added dummy node for SLOPE instances.

Values of x and y are generated as uniform real random numbers between 1 and 100.
Distances between nodes are calculated by (2.1), (2.2) and for the dummy node as defined by
(2.3), (2.4) whose fractional parts are truncated to make them integers. With regard to RND,
the arc lengths are generated as uniform random numbers between 1 and 100. All figures
reflect average results of 20 trials.

Table 2-1 summarizes the results from which the following observations can be made:
1) There is a general tendency that as p increases, NB decreases when p gets greater than a
certain value. This is natural because instances become less symmetric as p increases, and
because the algorithm tends to work well for totally random and totally asymmetric ATSPs,
where each Cij is independent. Note that the maximum NB occurs when p is between 1 and
2. We emphasize the fact that NB is not uniformly decreasing as p increases. This is clearly
shown when N = 16.
2) The ratio AP /OPT increases almost uniformly as p increases.
3) The ratio BC/OPT deteriorates almost uniformly as p increases for the range of p less than
or equal to 2, contributing to the increase of NB as well as CPU.
4) As N exceeds 15, NB increases rapidly.
5) It may be possible to view that instances RND roughly correspond to instances SLOPE
with parameter p ranging between 3 and 10, from the standpoint of NB and CPU. Note,
however, that with respect to the strength of lower bounds such as AP /OPT and BC/OPT,
instances RND always yields stronger (i.e., higher) lower bounds than SLOPE, irrespective of
values of p.

The above observations would imply that the guideline which recommends to "use the
assignment relaxation for ATSPs" does not necessarily apply to all instances within the wide
class of ATSPs. More specifically, one can recognize within a class of SLOPE instances a
non-trivial subclass for which the superiority of the assignment relaxation is doubtful.

3 A Proposed Algorithm for Instance SLOPE
3.1 Minimum 1-arborescence relaxation

The computational experience shown in Section 2 indicates that the real-life instance
and SLOPE instances presented in this paper have properties similar to those of STSPs. It
then is natural to consider the introduction of the minimum l-arborescence relaxation, i.e.,
the directed version of the minimum I-tree relaxation which is known to work well for STSPs
[6). We thus develop in this section a branch and bound algorithm based on the l-arborescence
relaxation for the type of ATSPs which preserve some flavor of symmetry.

There exist few studies on the applications of the l-arborescence relaxation to solve
ATSPs. Smith [12] is the only one known to the authors to study such algorithms. He used
random instances for his computational experiments and concluded that the assignment relax­
ation works better for ATSPs than the 1-arborescence relaxation. It is not clear,however, the
assignment relaxation uniformly outperforms the l-arborescnece relaxation across the wide
variety of asymmetric instances.

In Section 3.2, we discuss a method for selecting a root node of the l-arborescence, and
then discuss in Section 3.3 the determination of Lagrange multipliers.

For completeness, we give definitions of some basic terminologies. An arborescence
rooted at node q is a spanning subgraph of a directed graph which contains no subtours,
exactly one edge directed into every node except q. A value of an arborescence is a sum of
its arc lengths, and a numinum arborescence is one whose value is minimum. A minimum

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems 239

1-arborescence rooted at node q is a minimum arborescence rooted at node q, plus a minimum­
length incoming arc to node q.

3.2 Choice of root node for the l-arborescence relaxation
Generally, any node can be chosen as a root to give a lower bound when the minimum

1-arborescence relaxation is used. It then is natural to select a root node so that the resul­
tant lower bound is higher. We can show that the strongest lower bound can be obtained by
selecting node 1, the node at the top of the slope, as the root node.
Theorem 1
The value of a minimum 1-arborescence becomes the largest when node 1 is chosen as the
root node under the conditions (2~3) and (2.4).
Proof
First we define the following.
arb(i) = the value of a minimum ar borescence rooted at node i
one(i) = the value of a minimum 1-arborescence rooted at node i
Note that the dummy node D is included in each case.
For arbitrary node q (#- 1, D),CqD = Cm = 0 from the definitions of (2.3) and (2.4), and thus

(3.1) one(l) = arb(l) + Cm.

In one(l), we call the arc which goes into node q as arc a, and define the length of the arc a
as c(a). Removing arc a from one(l), produces an a,rborescence rooted at node q (Figure:I-1),
which implies

(3.2) arb(q) ~ one(l) - c(a).

If we call the minimum-length incoming arc to node q as arc b, and define the length of the
arc b as c(b), the definition of a minimum 1-arborescence implies

(3.3) one(q) = arb(q) + c(b).

From (3.2) and (3.3),

(3.4) one(q) ~ one(l) - c(a) + c(b).

Since c(b) ~ c(a), we obtain

(3.5) one(q) ~ one(l).

Theorem 1 is valid even when some arcs that are not incident to dummy node Dare
fixed in a branch and bound procedure, and thus it is best to select node 1 as the root of a
1-arborescence throughout the process of a branch and bound procedure.

3.3 Improvement of lower bounds by the Lagrange relaxation
We now consider, based on Smith [13]' how the Lagrange relaxation can be applied to

instances SLOPE, where improvement of lower bounds is tried by putting the degree con­
straints of the 1-arborescence relaxation into the objective function.

To put those relaxed degree constraints into the objective function, we consider an ar­
bitrary multiplier vector {-Iri liE V}, and transform arc lengths Ci] into c:] = Ci] + 'lri. The
lower bounds L is obtained by subtracting LiEV 'lri from the value of a 1-arborescence based on

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

240 S. Kataoka & S. Morito

1

D

Figure 3-1: Arborescences rooted at node 1 and at node q

the transformed c:j' This lower bound forms a piecewise linear convex function with respect
to{ 7ri liE V}, based on which we obtain a new and improved multiplier vector {7r: liE V}
by the following formula:

(3.6) 7r: = 7ri + t(di - 1) i E V.

Here di (i E V) denotes the out-degree of the 1-arborescence of node i. The step size t can be
obtained by:

(3.7) t = .\(U - L)/ 2:(di - 1)2 o < .\ ::; 2,
iEV

where U stands for an upper bound for the value of the optimal tour.
Smith [13] states that the algorithm for the l-arborescence cannot be used when some

arc lengths are negative, and thus forces those Lagrange multipliers which become negative
to be 0 as in (3.8):

(3.8) 7r: = max{O, 7ri + t(di - I)} i E V.

Those nodes whose degree is zero should have negative Lagrange multipliers, but be­
cause of (3.8) the actual multipliers assigned by Smith's method are zeros. This leads to the
solution of the l-arborescence not increasing the out-degree of those nodes whose associated
multiplier should have been negative. The restriction of nonnegativity of arc lengths in the
1-arborescence algorithm is noted also by Suzuki [14]. However, the following simple result
holds:
Theorem 2
Given a graph, add a given constant M to all arc lengths. Then a minimum l-arborescence
for the original graph gives the same minimum l-arborescence for the transformed one, and
VIce versa.
Proof
Suppose that G is the given graph and GM a graph where a constantM is added to length of
each arc on G. Let T be an arbitrary l-arborescence, and z(T) the value of T on G. Let T*
be a minimum l-arborescence. If N denotes the number of nodes in G, any l-arborescence
T consists of N arcs, and thus the value of T* on graph GM would be z(T*) + M N. If there
exists an optimal minimum l-arborescence T;A=I- T*) on GM, then

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems 241

(3.9) z(T~) + MN ::; z(T*) + M N,

which implies

(3.10) z(T~) ::; z(T*).

Unless the inequality in (3.10) holds, however, this contradicts that T* is a nummum 1-
arborescence on G. Therefore, T* is also the same minimum 1-arborescence on GM' 0

The above theorem shows that even if some arcs have negative lengths, one can add
some (possibly big) constant M to all arc lengths to make them nonnegative, and apply a
1-arborescence algorithm. The value of the 1-arborescence is the optimal value obtained for
the transformed graph minus M N.

To see the effect of adding constant M instead of forcing negative multipliers to () as
done by Smith, the following experiments are performed:
1) >. in (3.7) is fixed to 1.25. This is based on the knowledge obtained from the experiments,
where various values of >. are tested ranging from 0.25 to 2.0 with a step of 0.25.
2) An initial value of 7r is set to O.
3) The termination criteria is as follows:
a. When lower bound exceeds or is equal to an upper bound.
b. Maximum of 100 repetitions if the above condition is not satisfied, where iterations corre­
spond to the number of times 7r is updated.

With regard to the reason why the number of repetitions is limited to 100, we performed
experiments on the real-life instance to see the effect of changing the limit, which showed that
the upper limit of 100 repetitions outperforms the other cases with limits ranging from 40 to
160. Refer to computational results given in Table 4-2.

As preliminary computational experiments, lower bounds obtained by the following four
cases are compared:
(1) a proposed method based on Theorem 2
(2) the Smith's method
(3) the BC procedures
(4) the assignment relaxation

Evaluations are made based on the ratio beltween the lower bounds obtained and the
optimal value. The instance used is the real-life one in Appendix A. For this instance, the
optimal value is known, which is used as an upper bound U in (3.7). The results are shown
in Figure 3-2.

The results show that the Smith's method could not improve the lower bounds to the
level of the BC lower bound even after 100 iterations, whereas the proposed method domi­
nates the BC lower bound with approximately 20 iterations, and moreover, yields lower bounds
which is around 99 % of the optimal value after roughly 80 iterations.

4 Computational Experiments
Computational experiments are performed to see the effectiveness of the proposed al­

gorithm. First we describe the results for instances SLOPE, and then for the real-life instance.

4.1 Computational experiments with instances SLOPE
Experiments are performed under the following conditions:

1) A root node is defined to be node 1 as discussed in 3.2.
2) Lower bounds are improved by the Lagrange relaxation as discussed in 3.3. In the algo­
rithm, an initial upper bound is calculated by the heuristic algorithm explained in Appendix
C.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

242 S. Kataoka & S. Morito

Ratio

---------(1) r-r-

_I ~.95-

0.9-

0.85
(3)

~.8 1'------------

(2) ,: 1-----1
0.75 (4)

.... .. ~
.. --_.-------------

(l)proposed method (2)Smith's method (3)BC procedures (4)assignment

Figure 3-2: Increase of lower bounds

3) The branching rule is the same as that of Smith [13].
4) Problem sizes of N =15,20,25 are tested.

Results are shown in Table 4-1. The performance measures shown include the num­
ber of branches(NB), the ratio of the value of the minimum 1-arborescence to the optimal
value (ARB/OPT), the ratio of the final lower bound after the Lagrange relaxation to the
optimal value (LAG/OPT), and CPU time. Moreover, Table 4-1 shows the total number of 1-
arborescence problems solved (TN1A) including the number of repetitions needed to increase
the lower bounds with the Lagrange relaxation, and the average number of 1-arborescence
problems per subproblem (AN1A), where AN1A = TN1A/NB. For comparisons, figures in
parenthes~s provide corresponding results obtained from the algorithm given in Section 2.
Dashes (-) indicates the fact that 20 instances could not be solved within the time limit of
3 days.

Following observations are in order from Table 4-1.
1) With respect to NB (i.e., the number of nodes or subproblems in a branch and bound
tree), the proposed algorithm uniformly dominates the assignment relaxation with the only
exception of N = 20, p = 10.

The l-arborescence relaxation generally yields stronger lower bounds than the assign­
ment relaxation. Specifically, in the range of p :::; 2 of instances SLOPE with N = 15, the
lower bounds generated by the 1-arborescence relaxation (ARB/OPT) are stronger than those
by the assignment relaxation (AP /OPT). For N =20 and 25, the similar trend is expected,
even though these ratios are unknown because too much computation time was required for
these cases. Recall that instances SLOPE with smaller p(> 1) tend to be difficult. More
importantly, the final lower bounds as measured by LAG/OPT are uniformly stronger than
those generated by the assignment relaxation after the BC procedures. Obviously, this con­
tributes to the superiority of the 1-arborescence relaxation to the assignment relaxation.

On the other hand, one can easily observe that the ratios AP /OPT as well as BC/OPT
are very high for instances RND, indicating that instances RND are substantially different
from instances SLOPE with even large values of p. This would imply that instances RND fall

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems 243

Table 4-1: Experiments for instances SLOPE with the 1-arborescence relaxation
N p ND TNIA ANIA Ann/OPT (AP/OP'f) LAO/OPT (DC/OPT) CPU

1.0 18.00 (1003.15) 493.90 27.44 0.9023 (0.808~! 0.9797 (0.9333) 18.812 ~17029!
1.2 25.05 (1161.65) 109.85 28.38 0.8898 (0.8132) 0.9792 (0.9252) 26.202 (190456)
1.4 28.15 (852.60) 851.00 30.14 0.8753 (0.8192) 0.9801 (0.9208) 26.891 (13.731)
1.6 31.40 (773.05) 957.30 30.19 0.8032 (0.8233) 0.9802 (0.9187) 28.313 (12.570)

15 1.8 37.70 (757.95) 1193.20 31.65 0.8530 (0.8258) 0.9712 (0.9127) 33.875 (12.378)
2.0 43.55 (691.25) 1355.60 31.13 08427 (0.8297) 0.9685 (0.9077) 36.920 (11.2:30)
3.0 34.55 (515.65) 1097.90 31.78 0.8062 (0.8121) 0.9709 (0.8916) 30.186 (8.14G)
5.0 22.00 (9n.l0) 719.50 32.70 0.7631 (0.8648) 0.9850 (0.9073) 17.709 (1.828)

10.0 13.80 (19.00) 439.10 31.82 0.7022 (0.8921) 0.9885 (0.9180) 9.908 (0.445)
RND 50.05 (61.55) 1478.00 29.53 0.7057 0.9612 0.8941 (0.9702) 37.270 0.93~
10 62.05 () 2314.20 37.30 0.9050 () 0.9716 () 141.293 (-)
1.2 67.25 (-) 2507.00 37.28 0.8947 (-) 0.9721 (-) 148.087 (-
1.4 86.95 (--) 3754.55 43.18 0.8834 (-) 0.9716 (-) 187.806 (-
1.6 141.95 (._) 5275.85 37.17 0.8715 (-) 0.9684 (-) 267.317 (-

20 18 176.85 (.-) 6658.60 37.65 0.8611 (-) 0.9650 (-) 335.660 (-
20 192.35 (._) 7392.40 38.43 0.8503 (-) 0.9664 (-) 363.356 (-
3.0 103.95 (514550.40) 1184.50 40.25 0.8023 (0.8289) 0.9648 (0.8974) 188.456 (15082.950)
5.0 43.70 (102:34.25) 1779.65 40.72 0.7391 (0.8561) 0.9704 (0.9062) 70.710 (328.350)
10.0 47.95 (24.30) 1998.50 41.68 06616 (0.9027) 0.9820 (0.9319) 67.499 (1.181)
nND 100.50 (14l.85 3166.60 31.51 0.6873 0.9449) 0.8652 (0.9514) 133.990 (3.080)
1.0 224.85 (-) 8826.15 39.25 09016 () 0.9739 () 835.458 -)
12 316.80 (--) 12289.35 38.79 0.8895 (-) 0.9696 (-) 1140.250 -
14 843.65 (--) 32699.35 38.76 08759 (-) 0.9636 (-) 2912.100 -
16 1031.45 (--) 40903.60 39.66 0.8606 (-) 0.9621 (-) 3599.900 -

25 1.8 1438.20 (--) 58622.25 40.76 0.8477 (-) 0.9546 (-) 5030.700 -
2.0 1890.30 (--) 78272.80 41.41 0.8328 (-) 0.9486 (-) 6527300 -
3.0 1002.75 (--) 46167.95 46.04 0.7796 (-) 0.9460 (-) 3268.900 -
5.0 719.85 (--) 35648.80 49.52 0.7087 (-) 0.9542 (-) 2162.000 -

10.0 168.75 (191.55) 7670.75 45.46 0.6263 ,:0.8883) 0.9782 (0.9130) 342.518 (12.1~3)
nND 168.35 (3390.75 5933.45 35.24 0.7147 ',0.9762) 0.8557 0.9804 412.359 (11.248)

into a very special, and peculiar, class of ATSPs.
Note also that values of lower bounds improved by the Lagrange relaxation are relatively

independent of the value of the slope parameter p, and give good(i.e., large) lower bounds.
2) These results together with Table 2-1 indicate that, irrespective of the algorithm used,
difficult SLOPE instances which require much computational time are those whose parameter
values are around p = 2. It is interesting to note that as p is increased from 1, instances
SLOPE first become more difficult to solve, and as p exceeds 2, they become easier. For
those difficult SLOPE instances, the increase of computational time for the proposed algo­
rithm based on the l-arborescence relaxation is not as substantial as that for the assignment
counterpart.
3) As will be expected from the computational experiments given in Section 2, the compu­
tational time requirement of the assignment relaxation exploded even for p = 3 or 5 when
N = 25. When N is 20, the assignment relaxation took excessive time for p ::; 3. As N
increases, the assignment relaxation becomes inefficient even for large values of p.
4) When the assignment relaxation is used for instances SLOPE, NB increases rapidly as N
exceeds 15 as shown in Table 2-1. The proposed algorithm, on the other hand, indicates much
preferable characteristics in terms of the growth of NB as N increases.

Computational time requirement per subproblem (i.e., a node in a branch and bound
tree) is not so heavy when the assignment relaxation is used even with the BC procedures.
However, because of the weakness of the resultant lower bounds for instances SLOPE, NB
tends to grow rapidly, resulting in an excessive overall computational time.

The l-arborescence relaxation together with the Lagrange relaxation, on the other hand,
requires more time per subproblem, because many l-arborescence problems must be solved

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

244 s. Kataoka & S. Morito

repeatedly as the Lagrange multipliers get modified. The subgradient optimization, however,
yields comparatively better lower bounds, which helps reduce NB.

4.2 Computational experiments with the real-life instance
Two branch and bound algorithms, one based on the assignment relaxation with the

BC procedures, and the other based on the 1-arborescence relaxation discussed in the present
paper, are compared, and the results are shown in Table 4-2.

In Table 4-2, RX denotes the type of relaxation problem to be used, and with regard to

T bl 42 E a e - : xpenmen t £ th or ere al n . t - I e Ins ance
RX NB TN1A RX/OPT LB/OPT CPU

assignment 3030831 0.7231 0.8786 971223.000
1-arb(160) 475 28130 0.7675 0.9493 3149.611
1-arb(140) 475 25330 0.7675 0.9493 2845.613
1-arb(120) 475 22530 0.7675 0.9493 2512.327
1-arb(100) 478 19946 0.7675 0.9493 2242.828
1-arb(80) 547 21309 0.7675 0.9493 2653.280
1-arb(70) 654 25287 0.7675 0.9493 3438.836
1-arb(60) 887 34624 0.7675 0.9403 5163.555
1-arb(50) 3798 155181 0.7675 0.9306 25251.000
1-arb(40) 18705 635209 0.7675 0.9174 93882.000

the 1-arborescence relaxation, the value kin "l-arb(k)" is the maximum number ofrepetitions
allowed for a subproblem in the process of the Lagrange relaxation. Two ratios, RX/OPT and
LB/OPT are nothing but AP /OPT and BC/OPT, respectively, for the assignment relaxation
(see Table 2-1), and ARB/OPT and LAG/OPT,respectively, for the 1-arborescence relaxation
(see Table 4-1).

The results suggests the following observations:
1) The proposed algorithm solves the real-life ATSP instance more than 400 times faster than
the algorithm that uses the assignment relaxation. Also, the number of branches required
for the assignment relaxation algorithm is more than 6000 times of that for the proposed
algorithm. Though the 1-arborescence relaxation takes more time for solving a subproblem,
the better improvement of lower bounds contributes more to yield an efficient algorithm.
2) Even within the 1-arborescence relaxation, one can observe the dramatic dependence of the
strength of lower bounds on the algorithmic efficiency. A small difference of 0.01 in LB/OPT
could change CPU time by one digit. This indicates that the proper selection of the iteration
limit k is important for the 1-arborescence relaxation. Setting k too small would likely to hurt
the computational efficiency, as seen from Table 4-2.

5 Conclusions and Future Researches
This paper is motivated by a real-life instance of the asymmetric TSP, for which an

algorithm based on the assignment relaxation fails to provide good performance, despite a
widely believed guideline which recommends to "select the assignment relaxation for ATSPs,
whereas the I-tree relaxation for STSPs".

It is a matter of course that solution algorithms should take full advantages of structure
and/or characteristics of the problem of interest. This is especially true for computation ally

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems 245

tough (say, NP-hard) combinatorial optimization problems such as the TSP studied in this
paper.

It is natural that problem instances reflect characteristics of a real problem scenario.
Since information concerning a TSP instance is condensed in its distance matrix, characteris­
tics and structure of the problem would be hidden in the distances. As in the case presented
in this paper, even rough ideas known about how distances are "defined" would help identify
any potential problem structures. Knowledges of problem structures can be, and should be
exploited to determine suitable solution strategy such as the selection of relaxation problems
used within the branch-and-bound framework.

For TSP instances of a particular application, the distances (Cij) reflect relative "undesir­
ableness" of going from one node to another. Each node normally corresponds to a particular
"entity" in a real world and entities have their own "properties". Distances between two
nodes are often defined as some functions of their properties, reflecting the underlying prob­
lem structure. This implies that so-called asymmetric TSP instances often used to evaluate
ATSP algorithms are very peculiar problem instances in the sense that individual entries in
the distance matrix are totally independent of each other, which may be difficult, if not im­
possible, to find in real world.

The above argument leads us to believe, without proof nor definite evidence, that many
of real-life instances of TSPs are some deformations of Euclidean TSPs, without regard to
whether they are synunetiric or not. In fact, many such problems are expected, as in our ex­
ample, to retain flavour of Euclidean TSPs. For much wider range of real-life ATSPs than we
anticipate, it is estimated that the I-tree or I-arborescence relaxation provides much stronger
bounds than the assignment relaxation.

Whether a TSP is symmetric or asymmetric is certainly one characterization of the
problem. Standard references (say, [11]) suggest to base the selection of relaxation problem
on this symmetric/asymmetric dichotomy. This paper warns that this dichotomy should be
taken with caution. Moreover, the discussions given here imply that one should pay more
attention, in selecting relaxation problems, to whether or not a problem maintains strong
flavour of Euclidean TSPs.

We have not yet come up with definite measures obtained from given distance data of an
ATSP nor with a formula that tells us which relaxation problem to choose, even if we restrict
our attention to the assignment relaxation and the I-arboresence relaxation. We guess that
independence/dependence of Ci/S play a key factor to come up with some measures. More
concretely, the independence/dependence of c;/s can be measured by, say, 1) the ratio of dis­
tances Cij and Cj; between two nodes, and 2) relative relationship of nodes. The former gives
a local (i.e., pair wise) measure of the independence/dependence, whereas the latter a global
measure.

With regard to the local measure, when the variability of these ratios Cij/Cji is higher,
distances CiJ and Cji can be regarded as more independent. Our results show that for ATSPs
with high variability of the ratios, the assignment relaxation dominates the 1-arborescence
relaxation.

On the other hand, global measures try to extract some "geometric" structure based
on the global and relative relationship of nodes. Recognition of certain forms of "directional­
ity" might lead to a good potential measure. One possibility for recognizing a directionality
would take an original (complete) graph, and transform it by removing a longer arc (i.e., an
arc with max{ Cij, CJi}) between each pair of nodes. The sum of in-degrees and out-degrees
of each node of the resultant graph would be constant N, where N is the number of nodes.
If the out-degrees of the transformed graph are distributed uniformly, i.e., N, N - 1, ... , 1,
this would imply the existence of a certain directionality, as this is the case for SLOPE. For
instances RND, however, the out-degrees of the tarnsformed graph may not be distributed

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

246 S. Kataoka & S. Morito

uniformly between 1 and N.
In the mean time, one quick and dirty, yet easily implement able, test before selecting the

type of a relaxation problem would be comparisons of the relative strength of lower bounds,
without following blindly unproven criteria such as "use the assignment relaxation for ATSPs,
whereas the I-tree relaxation for STSPs".

In summary, the inherent problem structure is a key factor for selecting a proper so­
lution strategy. More research will be needed to associate problem structures with solution
strategies, which allows us to design a mechanism for an "automatic" identification of a proper
solution strategy.

Acknowledgements
The authors would like to express their appreciations to the referees and the editor for their
comments which greatly improved the readability of this paper. A part of the work of the
second author was done while he was visiting School of Industrial Engineering, Purdue Uni­
versity. He would like to express his appreciations to Professors Bruce Schmeiser, Ron Rardin,
Don Wagner and Ferdinand Leimkuhler.

References

[1] Balas,E. and Christofides,N., "A Restricted Lagrangean Approach to the Traveling Sales­
man Problem", Mathematical Programming, Vo1.21(1981), pp.47-69.

[2] Carpaneto,G. and Toth,P., "Some New Branching and Bounding Criteria for the Asym­
metric Travelling Salesman Problem", Management Science, Vo1.26(1980), pp. 736-7435.

[3] Chu,Y. and Lin,T., "On the Shortest Arborescence of a Directed Graph", Scientia Sinica,
Vo1.4(1965), pp.1396-1400.

[4] Fulkerson,D.,R., "Packing Rooted Directed Cuts in a Weighted Directed Graph", Math­
ematical Programming, Vo1.6(1974), pp.1-13.

[5] P., 1., Hammer, "Algorithms and Codes for The Assignment Problem" ,Annals of Oper­
ations Research, Vol.n(1988), pp.193-223.

[6] Held,M. and Karp,R.,M., "The Traveling Salesman Problem and Minimum Spanning
Trees: Part 2", Mathematical Programming, VoLl (1971), pp. 6-25.

[7] Ibaraki,T., Combinatorial Optimization (in Japanese), San-Gyou Tosho (1983).
[8] Kobayashi,T.,Network Programming Problem (in Japanese),Baifukan (1981).
[9] Konno,H. and Suzuki,H., Integer Programming Problem and Combinatorial Optimization

(in Japanese), Nikka-Giren Shuppan (1982).
[10] Kubo,H. and Okino,N., "An Algorithm for Large Scale Traveling Salesman Problem" (in

Japanese), Journal of the Operations Research Society of Japan, Vo1.19 (1976), pp.272-
285.

[11] Lawler,E.,L., Lenstra,J.,K., Rinnooy Kan,A., H.,G. and Shmoys,D.,B., The Traveling
Salesman Problem, Wiley (1984).

[12] Smith,T.,H.,C., Srinivasan,V., and Thompson,G.,L., "Computational Performance of
Three Subtour Elimination Algorithms for Solving Asymmetric Travelling Salesman
Problems", Annals of Discrete Mathematics, Vol.1(1977), pp.495-506.

[13] Smith,T.,H.,C., "A LIFO Implicit Enumeration Algorithm for the Asymmetric Travelling
Salesman Problem Using a One-Arborescence Relaxation", Mathematical Programming
Study, Vo1.12(1980), pp. 108-114.

[14] Suzuki,H., "A Shortest Path Problem with Visiting Order Constraint" ,Proceedings of the
7th Mathematical Programming Symposium of Japan, (1986), pp.127-142.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems

A A Real-Life ATSP Problem Instance

Figure A-I shows the numerical data of a real-life instance.

10
11

" 13
14

" " 17

" " 20
21

" 23
H

" 2.
27

" " 30
31
32
33

" " 3.

10
11

" 13
14

" " 17

" 19
20
21

" 23

" " 2.
17

" " 30
31
32
33

" " 3.

1
9999
IUO
11'80
1116
1176 . " HO
'72
•• 0
.20 .0.
.00
,.2
'70 , .. , ..
'.0
'06 .9. .9.
.. 0
• 60

." .5O
• 20
'00
39.
390
3 ..
370
372

"0
12.

7'
32

°

19
9999

3 .. ". "0
399

2"
101
141

H
'9
'0

120
107 ,.

95
93
91
13

9999
20

" '9

" 10.
147 ,.6
121
2"
3'7 ." ". "9 ."
.82 ". ".

9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999

20
9999

3"
3.9
3.3 ."
260

".
182

" 82
62

'" 142

" 130 ".
12.
2.
13

9999
107 ..
137
17.

'" 100
201

"0 ".
.37
2 ••
•• 3

'" '" ,.7

3
9999

" 9999
10
19

3.7

." ," ," ,.9

.03

.0'

.03
•• 0
.27
.31 ." .83
7o,

'" 7"
726
H7

14'
7 ..
'03
82'

1083
1162
12 .. 0
1318

936
1071
1119
1163
119S

21
9999

42'
372

".
3"
17'
130

96

".
120
172

66 ,.
187 ..
" .0
• 2
99

".
9999

.0
137

30

••
" 23'
'" 903

1053

120'"
270

" . .0. ...
"0

9999
14

9999
17

" . •• 3

'" "7
"9
.93
.12

'" .30
635
639
643
673

•••
71'
723
71.
741

"3
792

'" 81.
10019
1128
1206
121H
92.

t079
l127
1171
1203

" 9999
372
3 •• ". 3"
211 ,.7
133
102

" 9.
10.

93 .,
01
7.
77
2 •

" '0
37

9999
31
37
7.
95

100
333

."
490 , ..
210
3.3
.11

'" ,.7

9999

" " .0
9999 ".
43.
'0'
.12
60'
679

"2
'" 73. .0.
'12 . ,,
719
7 •• ."
.95
H.
.33
72.
7.2
701
932

IH7
1.599
174.9
1900

9"
1052
l100
11H
1116

" 9999
371
383
377 ." 2.,
,,7
183
101

97
77 ".

H3
72

131
129
127
.0
" 31

" 19
9999

" '" 133
.9

209

2.'
3 •• ...
217
.01
H9
.93

'"

9999

2"
19. ".
17.

9999

" ".
26' ".
331
23.
23.
3 ••
2.0
2 ••
2 ••
371
420
.73 ". .0. .. ,
37,

."
'33 ".

1099
1'251
HOl
l.552

618
70.
H2
796

'"

H
9999
.H
387
.03
363
18'

'" 111
171

'" 187

" 71
202

>9

" ,.
77

'" 161

" " 110
9999

36 ,.
206
721
.73

1023
llH

HO
326
37.
H.
"0

9999
29'

2" ". ". ..
9999

" 176
170
H3

H'
H'
300
172
176
180
283

"2
3"
260
320
397
290

'" 3"
'9'

1011
1163
1313
146i
'30
61' ". 70.
HO

" 9999

"0
H' .32
387
213 ,.9
'" 200
16.
216

90
os

231

" 01
79

10.

'" 190
39
H

139

" 9999

" 190
736 , ..

1038
1189
22.
30.

3"
397
429

9999
330
27,
292

"2 7.
34

9999
10 •
102

'" " .0
232
10.
10.
112

",
26.
317
192

2"
329
222

'" 277 ". 9"
1095
llU
1396
.62

'" ,.6
.. 0

"2

" 9999

"9 ."
HI
39'

"2
178 , ..
209
173

'" 99
10<
2<1 .,

90 ..
"' '" 200 ..
.3

149
33

9999
170
716 ".

1018
1169

20.

2"
333
377
<09

9999

"9
281

'" 31'
H'
100

66
9999 ,.
" 100
99

" 123
127
131
HO
H6
167
211

" . 199
2H
280
2.9

". "3 "2
610

'" 39.

"7
'" ,,9
691

" 9999
<0.
<2,
."
.92

3" ".
HO
138
134

'" 213
200

93

'" 18'

'" 77 ..
" , ..
" 129

123
113

9999
.0

"9 2"
316
173
377 ."
469

'0'

10
9999

2"
286
2.0
31,
137

93 ,.
18

~999

33

" 61
71

" .9
93

'" '" '" 173
162
187
203

2"
262

'" '" ". "2
711
372

"9 "7
621

'"

" 9999

'" ,.0 ...
'34
"0 51.
"2
260
279
20' ". "2
160

"0 ". ".
2"
17.
117 ".
210
129

'" ...
'" " 9999

20
.0
61

'" 707

'" 799

'31

11
9999

29.
30'
300 ".
18.
HO
106

" 20
9999 ..

87

" 111

'" 119
113
112
122
199
161

'" 229

" .
287

2"
363 ." "0
>99
371
,SS
'03

'" 679

29
9999

'" '" 620
934
760
71. ." 312
330 ".
'" '" 211
.30
62.

'" '" 22'
16. ...
"2
181

'" SO,

'" 10.
12

9999
20
.0 ".

7 •• ..,
'90
922

12 13
9999 9999

380 310
326 316
3t2 33:1
291 292
123 118

19 14
U iO

110 100
H 6i

126 116
9999 10

11 9999
1H H2

U H
U 28
i9 32

H7 135
205 184;
259 231
129 112
19i 112
271 H9
U9 H2
180 178
199 197
310 H8
916 863

1068 IOU
1218 1165
1369 1316

4.0t 382
485 i68
533 516
S71 560
609 592

30 31

9999 9999
633 684
693 7H
671 722

1033 1133
859 959
81.5 915
Hl1 881
363 U4
381 433
309 360
11.5 875
141 8it
262 314
729 USl
721 827
725 825
326 371
271 328
219 211
6135 785
313 364
232 2133
670 110
685 185
675 175
155 206

25 38
11 25

9999 12
20 9999

iOO H2
888 919
936 1021
980 1011

1011 1103

H U
9999 9999

314 382
326 328
320 3H
391 30i
217 130
173 86
139 52

U 111
iD 76
20 128

112 22
99 11

9999 H3
102 9999
106
110 8

91 111
90 160
8i 213

190 88
139 148
132 22S
220 188
259 154
219 173
185 3:H
281 839
365 991
H3 1H1
522 1292
Ji9 H8
H6 Ht
59i i92
638 536
610 568

32 33
9999 9999

H7 60i
469 550
i63 566
490 526
316 352
212 308
238 214
207 3H
188 298
201 350
211 2H
198 2H
196 365
186 221
184 220
18l 218
131 240
140 211
155 314
H2 1.78
10.5 208
114 273
127 163
121 154
111 1H
l1l 291
333 194
403 931
412 1018
HI 1220

9999 103
153 9999
201 HI
145 92
211 114

Figure A-I: Numerical data of a real-life instance

247

16 17 18
9999 9999 9999

384 386 H6
330 332 H3
H6 H8 337
306 308 362
132 1H 19i

88 90 UO
54 56 116

1H 116 76
78 80 .57

130 132 70
14 26 89
H 16 76

1U 147 65 ..
9999 2 62

9999 60
101 103 9999
U6 1.52 21
209 205 i2

84 80 59
1H 140 is
221 211 14
1H 110 89
1.50 H6 118
169 165 147
320 316 143
835 831 364
981 983 443

1137 1133 521
1288 1284 599
3H HO 2S8
HO 436 415
488 iS4 463
532 528 507
56i 560 S39

34 35 36
9999 9999 9999

628 650 666
5H 596 612
590 612 628
550 572 588
376 398 414
332 354 370
298 320 336
358 380 396
322 3H 360
37i 396 412
268 290 306
258 280 296
389 U1 421
246 268 284
2H 266 282
2t2 264 280
264 286 302
301 323 339
H8 370 386
202 2'H HQ
232 2.54 210
297 319 335
181 209 225
118 200 216
168 190 206
31.5 331 H3
818 840 856
961 983 999

1102 1124 1140
1244 1266 1282

127 149 165
2i 46 62

9999 22 38
it 9999 16
76 32 9999

B Different Versions of "Deformed" Euclidean TSP
If we consider road traffic, we often encounter a situation where going into the center

of a city takes more time than going out, thus resulting in asymmetric cost matrix. Since
vehicles can be assumed to move on a two-dimensional plane, distances would be same and
the resultant "cost" tends to preserve some Euclidean properties, or symmetry.

Consider a "center" on a plane. There is an extra penalty associated with approaching
the center, whereas regular Euclidean distance is (lccessed when going away from the center.
This, as opposed to instances SLOPE, may be c('Jled instances CONE, as it requires E'xtra

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

248 s. Kataoka & S. Morito

efforts or costs to go toward the top of a mountain or a cone. Details of the definition of
"distance" between two points i and j on a cone will not be explained here.

The above discussion implies the existence of many TSP problems which are not sym-

Table B-1: Computational experiments with instances CONE

NB RX/OPT LB/OPT CPU
N p assignment l-arb assignment l-arb assignment l-arb assignment l-arb

1.0 1086.05 15.40 0.7823 0.8744 0.9167 0.9988 17.3349 16.3490
1.2 693.95 21.35 0.7858 0.8759 0.9128 0.9956 11.6626 22.4133

15 1.4 497.85 19.55 0.8627 0.8411 0.9132 0.9968 8.7810 18.3576
1.6 364.10 23.20 0.7887 0.8230 0.9126 0.9924 5.9230 20.1919
1.8 263.00 29.25 0.7906 0.8057 0.9137 0.9931 4.8492 26.3282
2.0 232.65 30.90 0.7908 0.7898 0.9104 0.9910 3.5679 26.8591
1.0 (-) 56.65 (-) 0.8775 (-) 0.9935 (-) 128.7699
1.2 (-) 63.40 (-) 0.8584 (-) 0.9919 (-) 139.5196

20 1.4 (-) 50.80 (-) 0.8414 (-) 0.9913 (-) 109.2427
1.6 (-) 79.70 (-) 0.8223 (-) 0.9853 (-) 150.4980
1.8 (-) 99.65 (-) 0.8048 (-) 0.9829 (-) 189.2531
2.0 (-) 100.70 (-) 0.7894 (-) 0.9866 (-) 190.8522

metric, yet closer to symmetric TSPs than those whose arc lengths are totally random. Our
computational experiments for other types of "deformed" Euclidean TSPs show that our find­
ing here would apply equally well to other such cases.

C Heuristic Algorithms for Instance SLOPE
Since instances SLOPE are based on the two-dimensional Euclidean TSPs, it appears

natural to consider heuristic algorithms originally designed for the Euclidean TSPs. Heuris­
tic algorithms for the Euclidean TSPs can be classified into two categories, namely, l)tour
construction procedures, in which a subtour is gradually expanded to come up with an initial
tour, and 2)tour improvement procedures, where a tour is replaced with an another improved
tour [11]. In many cases these two procedures are used in combination, as will be done here,
too.

Tour construction procedures start with an initial subtour, and consist of two basic
steps, a}node selection step which determines a node to be included in the current subtour,
and b)node insertion step which decides where in the existing subtour the selected node will
be inserted[11]. Repeated applications of a node selection and a node insertion steps would
eventually produce a tour.

To come up with a heuristic algorithm for our instances, the following two approaches
are considered as candidates for the node selection step:
(l)Farthest Insertion (FI) method, which selects a node farthest away from the current sub­
tour, and
(2)Nearest Insertion (NI) method, which selects a node closest to the current subtour.
FI is known to work well for the Euclidean TSPs. See, e.g., Chapter 7 of [11]. NI, on the other
hand, tries to include nodes easier to include in the existing subtour based on the geometric
image.(Fig.2-1)

In order to adopt these methods to our asymmetric instances, we introduce the following

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Selection of Relaxation Problems 249

concepts of "distance":
(i) Distance between a subtour and a selected node is defined as the minimum of distances
between those nodes in the subtour and the selected node.
(ii) Distance dij between two points i and j which is used in the selection step is calculated
by one of the following three methods:

(C.1) d'J = min{ciJ' Cji) - choose the shorter distance

(C.2) diJ = (Cij + cji)/2 - use the average of the two distances

(C.3) d;j = max{cJi, Cji) - choose the longer distance

Criteria used in the insertion step is to choose the location such that the cost increase is kept
minimum.

After an initial tour is obtained based on the framework just outlined, 3-opt will be
performed to improve the tour, and the resultant !lour will be used as an initial tour.

Table C-1 compares three different methods to come up with "distances" of tours ob­
tained by the heuristic algorithms against the optimal value for the averages of 20 instances
with N = 15 and p == 2.0.

Table C-1 shows that a combination of NI with 3-opt where distances are calculated

Table C-1: The accuracy of heuristics
d 'J FI FI+3-opt NI NJ+3-opt

(C.1) 1.174 1.124 1.079 1.063
(C.2) 1.078 1.057 1.051 1.042
(C.3) 1.073 1.056 1.112 1.061

by (C.2) gives the best heuristic solutions, and thus the initial tours used for our algorithm is
generated based on the above combination.

Seiji KATAOKA : Department of Comput.er
Science, the National Defense Academy,
1·10-20, Hashirimizu, Yokosuka,
Kanagawa 239 Japan

Susumu MORITO : Department of Indust.rial
Engineering and Management,
Waseda University, 3-4-1, Okubo, Shinjuku,
Tokyo 169 Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

