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Abstract In this paper we propose a simplicia1 algorithm to find a core element for balanced gal1les without 
side payments. The algorithm subdivides an appropriate simplex into smaller simplices and generates from 
an arbitrarily chosen point a sequence of adjacent simplices of variable dirnellsion. Within it finite number 
of iterations the algorithm finds a simplex yielding an approximating core element. If the accuracy of 
approximation is not satisfactory, the algorithm can be restarted with a smaller mesh size in order to 
improve the accuracy. 

1. Introduction 

It is well-known that a cooperative game need not to ha\"(:, an outcome which cannot be 
improved upon by any sub'let of players. In case of a game with side payments the core, 
consisting of all outcomes \\hich cannot be improved, is nOllempty if and only if the game is 
balanced, see Bondareva [f and Shapley [8]. A core element in a balanced game with side 
payments can be easily calculated by solving a sequence of linear programming problems. 

Games without side pa~rments were introduced by Aumanl1 and Peleg [2], iI.nd Aumann 
[1] developed the core concept for such games. Scarf [i] proved the 1I0nemptine:;s of the core 
for such a game if it is balanced. Scarf gave a constructive proof based on the complementary 
pivoting technique introduced by Lemke and Howson [6]. Shapley [9] generalized the well­
known Knaster-Kuratowski-Mazurkiewicz Tlworem 011 the ullit simplex ill order to give a 
constructive proof of the nonemptiness of the core. In an arbitrary subdi\'ision of the (unit) 
simplex into simplices, a sequence of adjacent simplices is generated, which is initiated at 
one of the corners of the big simplex. The terminal simplex .yields an approximating core 
element. 

In this paper we propOSf~ a simplicial algorithm which can be initiated at any point of the 
unit simplex. From that point the algorithm generates a sequellce of adjacent simplices of 
varying dimension. The algorithm leaves the starting point along one out of 2" -- 2 directions 
in case there are n players. This number corresponds to the nurnber of proper coalitions in 
the game. The algorithm is based on the simplicial algorithm developed by Doup, van 
der Laan and Talman [.s] for computing economic equilibria. Along the path of simplices 
generated by the algorithm, coalitions are added and sometillles deleted until a balanced set 
of coalitions has been found. Once such a set is obtained, an approximating cort' element has 
been found. If the accuracy of approximation at that point is llOt satisfactory, the algorithm 
can be restarted at that p,)int with a smaller mesh size of the triangulation in order to 
improve the accuracy. Within a finite number of restarts allY a.ccuracy of approximation can 
be reached. 

In Section 2 we describe a balanced game and define the corf'. Section :3 gi\!es the steps 
of the algorithm for finding a core element. Concluding remarks are made ill Section 4. 
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2. Balanced game and core 

Let N denote the set {I,·· . , n} and 2N the set of all nonempty subsets of N. We call 
the elements of N 2,nd the elements of 2N , players and coalitions, respectively. A gamE' is a 
pair (N, t{J where v is a mapping from 2N to the set of subsets of the n-dimensional euclidean 
space, R . The se': v(S) represents the set of payoff or utility vectors that the players of 
coalition 5 can ensure by themselves, regardless of the actions of players outside the coalition. 
For 5 in 2N , let R S denote the ISI-dimensional Sll bspace of RN with coordinates indexed by 
the elements of S. [f x E RN and 5 E 2N. then .rs E RS' will denote the projection of x on 

5 R. 

Assumption 2.1: for each 5 E 2N , the set 1,(8) satisfies 
i) if x E v(S') and Xi = Yi for all i E 5, then y E u(S). 
ii) if x E v(S) and Y :::; x, then Y E v(S'), 
iii) v(S) is closed, 
iv) {x S I x (= V(SJ) is nonempty and boc,nded from above. 

Without loss of generality we assume that eitch set u( {i}), i E N, has been normalized 
to the half space {a: I Xi :::; O} and that the other v( S)'s have been shifted accordingly. The 
core of a game represents the set of feasible utilit:; "ectors that cannot be improved upon by 
any coalition. 

Definition 2.1: The core of the game (N. v) is the set C(S, (.) = {;t. E vUV) IllS E 2N and 
yE v(S) such that Vi > :r:i for alIi E S}. 

Under Assumption 2.1, the core is a closed and bounded set but may, however, be empty. 
It is a well-known fact that every balanced ganw has a nonE'mpty core. 

Let B be a collection of nonempty subsets of 2N. and let B, = {S E B liE S}. The set 
B is said to be bale,nced if there exist nonnegati\'e numbers bs. ,,:.; E B, such that 

L bs = 1 for all i E .V. 
SEB. 

A game (N, v) is said to be balanced if for every balanced set B 

n u(S) C u(N). 
SEB 

Theorem 2.1 (Scarf [7]): Every balanced game has a nonempty core. 

Let U be the (n - 1 )-dimensional subset of RN defined by LT = conv{ -Mne(j) I j = 
1" . " n} where e(j) is the j-th unit \'ector in RN and the number M > 0 is such that 
x E v(S) implies a:i < A1 for every i E S. Let E be the n-vector of ones. The function 
T : U --t R+ is defined by 

T(U) = max{l' E R Iu + rE E U l'(S)}. 
S'CV 

Clearly, T is a continuous function on U. for example see Berge [:3]. For ,')' E 2N we now 
define the set Cs by 

Cs = {tl Eel tl + T ( tl ) t E 1'( ,':; ) } . 
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Since v( S) is closed, the set Cs is also closed. The algorithm will compute a point u* in U 
such that for some balanced collection B' 

u' E n Cs· 
SEE' 

Then x* = u' + r(u*)e E n v(S) c v(N) and x* lies in the core since x* lies on the 
SEE' 

(upper) boundary of U v(S). 
ScN 

Lemma 2.2 (Shapley [9]): For all u E U, ifu E Cs then S' C {i E 1'1 I Ui =J O}. 

Proof: Let u E Cs and l' = {i E 1'1 I Ui =J O}. The lemma is trivial if l' = N. So assume 
that 11'1 < n. Because Uj = 0 for all i ~ 1', we have L Ui = -lvln, so there exists a k E T 

JET 

for which Uk < -M. Since U + r(u)e E R~, we have Ilk + r(u) :2 0, and hence r(ll) > M. 
On the other hand, Il + r(v.)e E v(8), so for every j E 8,1l) + r(u) < M. Therefore Ilj < 0 
for every j E S, from which it follows that 8 C T. 

Q.E.D. 

The lemma will guarantee the algorithm never hits the bouudary of the se'; U. 

3. The algorithm 

To describe the algorithm, let p be an arbitrarily chosen starting point in the relative 
interior of U. Next, let s be a sign vector in R'IV, i.e., S J E {O, -1, + I} for all j E:: N. We call 
a sign vector s feasible if s contains at least one -1 and one + 1. For a feasible sign vector 
s let the subset A( s) of U be defined by 

Uj/PJ = m~lluljph if ") = +1}. 

Clearly, the dimension of A(s) is equal to t = 11°(s)1 + 1 where 

10(s) = {i E NIsI = O}. 

In particular, if the sign vector s does not contain zeros then A( s) is a I-dimensional set, 
being the line segment connecting p and the point p( s) in the boundary of U given by 
Pj(s) = 0 for all j with Sj =; +1 and JI)(s) = -Mnp.l/ L Ph for all j with 8) = -1. For 

sh=-l 

17. = 3 the subdivision of U into sets A( 8) for an arbitrary jJ is illustrated in Figure 3.1. Next 
U is subdivided into (17. - 1 )-dimensional simplices such that each A.( 8) is triangulated into t­
dimensional simplices, for example see Doup, van der Laan and Talman [5]. A t·dimensional 
simplex or t-simplex a can be represented by its t + 1 vertices w 1, ... ,wt+1 . To each vertex 
w of the simplicial subdivision we assign a vector label a(S) corresponding to some fixed 
coalition S for which w lies in Cs, where aj(S) = 1 - 181/n for j E S' and aj(S) = -181/17. 

n 

for j ~ S. Notice that L aj(8) = O. For g = t or t - 1, let a( w l , ... , wg+ 1 ) be a g-simplex 
j=1 
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with vertices W 1, ... ,wg+1 in A( s) for some feasible sign vector s. Let a( Si) be the vector 
label of vertex wi , then we call a s-complete if the system of linear equations 

g+l 

L Ai [ a ( t )] - L It h s h [ e~!)] = [~] 
j=1 Sh#O 

(3.1 ) 

has a nonnegative solution A;, j = 1, ... ,g + 1, I~h for h ~ IIJ (s). In particular, for t = 1 and 

9 = 0, the zero-dimensional simplex consisting of the point p is sO -complete with s? = + 1 
if i E SO and s~ = -1 if i ~ So, where SO is such that a( So) is the vector label of p. If SO 
equals N, the point p + T(p)e lies in the core. Suppose now that Sa unequals N. Clearly, sO 
is feasible and does not contain zeros. Notice that there are 2/1 - 2 feasible sign vectors not 
containing zeros and that each such sign vector corresponds in this way to one of the 2n - 2 
proper coalitions. 

-3Me(3) 

Figure 3.1 

The starting point p of the algorithm is .:tn end point of a uniquely determined 1-
dimensional simplex a(p, pI) in A( so) and therefore a(p, pI) is also sa -complete. Let a( SI) 
be the vector label of pI then the algorithm is initiated by making a linear programming 
pivot step with (a(SI )T, I)T in the system 

\ [a(SO)] _ ~ ,0 [e(h)] _ [0] 
/I 1 ~ Ith

S
" ° - 1 

h=1 

(3.2) 

If by this pivot step A becomes first 0, the algorithm moves to the I-simplex a(pl, p2) in 
A(sO) adjacent to a(p,pl) and contillues with making a pivot step with (a(S2)T, I)T, where 
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a(S2) is the vector label of p2. Otherwise, one of the Ilh'S must become first O. Suppose that 
Ilk becomes zero first. Then the algorithm terminates in casf' there are only two players. 
If there are more than two players, the algorithm continues with the 2-dimensiona.l simplex 
a(p,pl,p2) in A(s) containing a(p,pl) as a facet, where Sk = ° and Sh = s% for h =I- k. 

In general the algorithm generates, for varying feasible sign vectors s, a sequence of 
adjacent t-dimensional simplices in A( s), having s-complete common facets. In each simplex 
a( w 1 , ... , w H1 ) a linear programming pivot step is made with one of the variables in (3.1) in 
order to determine which other variable becomes first o. To prevent degeneracy we perturb 
the right hand side of (3.1). If for some j E {1, ... , t + I}, '\j becomes 0, then the facet T 

opposite to wj of a is also 8-complete. If this facet does not lie in the boundary of A( s), 
there is exactly one t-simplex 77 in A( s) having T also as a facet. Let w be the vertex of 77 
opposite to T, then the a.lgorthm continues by making a pivot step in (:3.1) with (a(S)T, 1)T, 
where a(S) is the vector label of w. If T lies in the boundary of A(.~) then either T IS a 
(t - I)-simplex in A(s) with 1]°(5)1 = l]o(s)l- 1 or T lies in the boundary of U. 

Lemma 3.1: An s-complete facet in A(s) does not lie in the boundary of l:. 

Proof: Suppose that T is an s-complete (t - 1 )-simplex in A( oS), lying in the)oundary of 
U. Clearly, Xi = 0 for all X E T and all i for which 5; = +1. Let yl, ... , yt be the vertices of 
T. Therefore yi = 0 for all i for which Si = + 1. Let a(,S'J) be the vector label of vertex yl, 
i.e., yi lies in C S'J, j = 1"" . i. According to Lemma 2.2. we must have I rt S'), j = 1", . , t, 
for all i for which 5, = +1. On the other hand, T is .'-('ompiC'te. Therefore 

",.t \. [a(SJ)] _ "'. '. [e(h)] _ [0] L ' .1 1 L PI! 8 h 0 - 1 
)=1 sh#lI 

(3.3) 

has a nonnegative solution ;'.j,j = 1,···, t,P;' for h rt ]0(.,). For alII with 5, = +1. since 

i rt Si, we have that ai(SJ) = -18i l/n,j = 1"", t. Consequently, for i with -"i = +1, the 
i-th equation at the solution of (3.3) is equal to 

f 

- L AjIS)I/n - pi = 0. 
)=1 

t 

Since LA; = 1, at least OnE' of the A~'S i" positive and hence for alli for which Si = +1 we 
i=1 

obtain pi < 0, which contradicts pi 2: o. 
Q.E.D. 

An s-complete facet of a i-simplex in ,{( s), lying ill the bounda.ry of A(.5), must therefore 
be a (t -I)-simplex in A(5) with 5,7 =I- 0 for some j E ]°(5) alld SI! = 8h for all h =I- j. Then 
the algorithm continues witb making a pivot step with s)(t(j)T.U)T. 

Finally, by making a pivot step in (:3.1) for a i-simplex (J' ill .'1(5), one of the fLJ,'S may 
become first o. Because of the perturbation of the right hand side Wf' may assurne that only 
one of the Ph'S, say Pk, becomes O. If.si.; is not the only positive or negative component 
of s, then T is a facet of just OIle (t + I)-simplex 77 in A(:<:), where:<:k = 0 and :<:h = Sh for 
h =I- k. Let w be the vertex of 77 opposite to a and let a(S) be the vector label of W, then 
the algorithm continues by making a pivot step with (a(S)T, I)T. Suppose now that Sk is 
the only positive or the only negative component of 8, then system (3.1) implies that when 
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we disregard the perturbation and add up the first· 11 equations that all Ph'S must be zero. 
Therefore the system 

~ ,\) [ a(.fJ
)] = [~] 

J=l 

has a nonnegative solution Aj,j = 1"", t + l. For j = 1"", t + 1, let 8; be defined~y 

then we get 

t+1 

8; = ,\;/CL: )\:151 1/n), 
i=l 

L 8; = 1 for; = 1" .. , 11 . 

iESJ 

Hence, the subset B* = {51, ... ,5t+1} is balanced. \Ve remark that some of the Ai'S and 
therefore some of the 87's might be equal to zero. In that case we restrict ourselves to 

t+1 
the balanced subset of coalitions 5J for which A.I > O. The point u* = L AjwJ can be 

j=l 

considered to approximately lie in n Cs in the sense that u* lies close to a point in Cs for 
SEB' 

any 5 E B*. Hence, the point u* + T(u*)e can be taken as an approximating core element. 
For u E U, let TN(u) be defined by 

TN (u) = max{r E R 1 u + rf E u(N)}. 

As a measure of accuracy of approximation at 1[' olle could consider the nonnegative number 
T(U*) - TN (u*). If the latter number is too large OIle may restart the algorithm with a 
simplicial subdivision of U having a smaller mesh size and with p equal to u*. Now, let 
(Cl, C2 , .•. ) be a sequence of triangulations of U with mesh size tending to zero and let 
uk* + T( uk')e be the approximating core element found with the algorithm applied for the 
triangulation C k

, k = 1,2,···. Let Bk' be the set of balanced coalitions corresponding to 
the vertices of the final simplex (Jk containing It h', for all k. Thell there exist::; a subsequence 
k1, kz, .. " such that Bk; = B* for some balanced set B* and uk; converges to some u* in l./. 
Since the vertices of (Jk on this subsequence ab-o conyerge to u* and each Cs is closed, we 
obtain that u* E n Cs and hence that tt* + TI. tt*)e lies in the core, due to the ba,lancedness 

SEB' 

of B*. Notice that T(U*) - TN (u*) must be zero. 
Because the number of simplices of any triangulation C;k in the sequence is finite and 

due to the perturbation to avoid degeneracy, the algorithm cannot visit a simplex more than 
once and therefore finds for each k within a finite number of iterations an approximating 
core element. Mo:eover, within a finite numbel of restarts. any a.ccuracy of approximation 
will be reached. 

4. Concluding remarks 

In this paper we presented an algorithm for computing all approximating core element 
of a balanced game. The algorithm can be considered as an adjustment process. During 
the process, the payoffs for the players are adj11sted simultaneously, in order to make every 
player balanced. At the starting point players in the coalition SlI can be considered to be 
overbalanced whereas the players outside 5 11 ale undcrbala,llcecl. Overbalanced players are 
given more payoff and underbalanced OIlE'S less pa.yoff. As SOOIl (\·S a llew coalitioll is added to 
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the current one, one player becomes balanced and he is kept balanced. In general, when the 
g+1 

algorithm operates in A(s) at the vector x = L Ajyj obtained from the solution of system 
j=1 

(3.1), we call a player h overbalanced if Sh = +1, underbalanced if Sh = -1, and balanced 
if Sh = O. During the process the payoffs of the overbalanced (underbalanced) players 
are in principle increased (decreased) in order to make them (more) balanced, whereas the 
payoffs of the balanced players are adjusted to keep them balanced. When a new coalition is 
added to the set of current coalitions, a not-balanced player becomes balanced. Sometimes 
a coalition is deleted from the current set, making a balanced player not balanced anymore. 
This property guarantees that the process will terminate with a set of coalitions such that 
all players are balanced and hence an approximating core element has been found. 

When we apply the algorithm to market games or exchange markets, the adjustment of 
the corresponding process seems to be very natural and intuitive in terms of economics. 
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