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Abstract Apportionment problem has been focused upon for more than 200 years by many applied math-
ematicians and operations researchers. Baliuski and Young have done quite extensive works for this problem.

In this paper we propose a parametric divisor me:hod for solving an apportionment problem. Our
method is shown to “cover” most traditional apportionment methods. First we introduce the idea of stable
regions for the allocation of seats to each political coustituency, then show the explicit relation batween
apportionment methods and corresponding stable regions. Then we look at these apportionment methods
from the viewpoints of constrained optimization problem, and we show the corresponding optimization
problem for our parainetric divisor method.

Finally using Japan’s House of Representative data, we show the numerical results for the application
of various apportionnient methods. We conclude our paser by suggesting appropriate parameter values for
our parametric appor:ionment method.

1. Introduction

In Japan the issue of “weight of one vote™ has been controversial since people began to
recognize the gap between political constituencies with respect to the weight given to the
number of seats per voter. In 1986 our Supreme Court gave a decision responding to the
appeal that a gap of more than 2.0 mayv be unconstitutional. Since then. several similar
decisions have been given in various judicial courts. Our ruling Liberal Democratic Party
in the Diet has also recognized the importance of this problem. It is considering reform
of the election system, which has not been changed since the 1950’s. Their plan includes
reducing the total number of seats from the present 512, which was established in 1925, to
471 and accepting middle size electoral districting system (the number of seats assigred to
each constituency should be between 3 and 5).

Various types of “equity” problems arise in distributing available personnel or resources
in “integral parts” to different subdivisions. Tyoical examples are the allocation of a set of
available teachers to classes in order to make timetables. the assigniment of a set of individuals
to certain jobs, which is the so-called classical assignment problem for operations researchers,
and the distribution of seats in a legislature among different political constituencies. Several
solution methods have been proposed and established for some problems (e.g., the assignment
problem). Others have not yet been “efficiently” solved (e.g.. the timetabling problem).

The apportionment problem aims at allocating seats “fairlv” among political constituen-
cles when the total number of seats and the distribution of each constituency’s population
are given. Mathematically, the apportionment problem can be formulated as follows : Given
the set of V political constituencies as 5 = {1.2....,.V}. the population of political con-
stituency 1 € S as p;. the total population as £. and the total number of seats as I, the
“ideal” number of seats allocated to the constituency /. /.e.. the “exact quota™ ¢;, 1s given
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where
P = Z P (1.2)
€5

Hence we have

Zq,' =N (1.3)

€S

Then the apportionment problem is to partition a given positive integer A into nonnegative
integral parts {d; | i € S} such that

Z(l,‘ =Nk (1.4)
1€
d; > 0. mteger, 1 € 5 (1.5)

and such that these parts are “as near as possible” proportional. respectively, to a set of
nonnegative integers {p1,pa.....pn 1}, ice {q1. g2 qn ). I the exact quotas {¢; | 1 € S}
were to be integers for all 7 € 5, then the apportionment would he obtained by setting d; = ¢;
for each ¢ € S. But this is an extremely rare case, so usually exact quotas {¢; | 7 € S} all have
fractional parts. Therefore, the problem becomes how to round the fractions {¢; | i € S} to
their “nearby” integral values keeping their sum equal to a given value K.

The apportionment problem may seein to be an easily solved “approximation” problem.
However, this is not the case as history shows. The Congress of the United States, for exam-
ple, has used four different schemes to apportion the seats in the House of Representatives
among the various states over the past 200 years, and thev have, on many occasions (begin-
ning in 1790), held lengthy debates on this issue. General descriptions of the apportionment
problem and its history are given in e.g., [8, 11].

Difficulties of the apportionment problem occur at several points. Firstly, how should

9

we express the measure of “mequity” to be minimized? There may be many definitions rep-
resenting both global and local “inequities™ between various constituencies. These include
minimizing the sum of differeuces between given apportionments and the exact quota of each
constituency or minimizing “locally” relative differences of the number of seats allocated per
voter. Secondly, the difficulty of the apportionment problem is related to the property which
we want our apportionment method to satisfv. For example. we want the apportionment
method to have the property that the number of seats given to each constituency is either
rounded-up or rounded-down by an exact quota or we may want that a constituency should
not be given less representation if the total number of seats increases and the distribution
of the population of each constituency remains the same. There are various “natural” re-
quirements for acceptable apportionment methods. Some of these “requirements”. however,
are inconsistent. As yet, no method has been found to satisty them simultaneously in the
general case. This means that no matter which apportionment method is accepted, it will
possess certain “defects”. Namely, we may have to decide in advance which properties must
be satisfied, and which “defects” are acceptable before we employ our own apportionment
method.

Balinski and Young have done extensive work in the area of apportionment problems
(see e.g., [1, 2, 3, 4,5, 6, 7]). Even though they have proposed a new complicated scheme
called quota method (see [1, 2]) satisfying certain properties simultaneously. they have been
promoting a classical Webster method (see [3]) for its impartialness and simplicity. In this
paper we propose a new simple apportionment method. which we call a parametric divisor
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method. We show that our method is general enough to “cover” most traditional apportion-
ment methods so far employed in several countries. We then propose a range of appropriate
parameter values for our apportionment method in order to maintain our method’s impar-
tialness and fairness with respect to the population size of each constituency.

In Section 2 we review several representative apportionment methods and introduce the
idea of a stable region related to certain locally optimal assignments. In Section 3 we look
at those apportionment methods from the viewpoints of constrained optimization problems,
then consider what kind of objective function these apportionment methods are trying to
minimize. In Section 4 we explain our parametric divisor method with its relation to other
methods. In-Section 5 we give the results of our numerical experiments using Japan’s House
of Representative data, and compare these results with the apportionment methods described
therein. In the last Section, we conclude our paper by giving certain evaluations obtained
from our analysis and numerical experiments.

2. Apportionment methods and the stable region
2.1 Traditional apportionment methods

We explain several very common apportionment methods, some of which are employed
or have been employed in some European and American countries. First, we will give a
common scheme called the largest fraction method. This scheme is based upon remainders.
Next, we will show five divisor methods. These were based upon divisors and go by the name
of Huntington methods.
The largest fraction method, which we shall denote by LFM, was first suggested by
A. Hamilton at the United States Congress in 1791, and was used by the Congress from
1851 until 1910. The LF A first assigns each constituency ¢ € 5 its lower quota |gi], where
l¢] denotes the largest integer less than or equal to ¢. Then we define the fraction of each
constituency t; as follows.
b= qi — L] tES (2.1)

Sorting the set {t; | i € 5} from the largest, arbitrarily for the equal elements, we define the
set of suffices of the first N’ — ¥ ,c5¢i] constitnencies in the ordering by T'. Then the LFM
allocates an additional seat to the constituencies belonging to the set T: namely, the whole
allocation {d; | 7 € 5} by the LF A is given as follows.

{Lq,‘J +1 /€T
la:) tgT

Let us define the general divisor method. First, we give a divisor A in order to compute
the quotient of each constituency i € 5 with the population p, as ¢;(A) = &. Then, we
round the quotients according to values of the number of seats to each constituency. Let us
denote the integer value obtained from the quotient ¢;(A) = & by [¢;(M)], = [§],. Then, in
order that these quotients can be an apportionment the following must hold.

Yl = YR, = & (2.3)

€8 i€s 7

d; =

(2.2)

Now we generalize the rounding process by defining the divisor function v(d) as follows.
Let v(d) be a monotone increasing function defined for all integers d > 0 and also satisfy
d < v(d) <d+ 1. Then, for any positive real number . there corresponds a unique integer
d such that v(d — 1} < @ < v(d). We define the above rounding process by

[-—- s =d; 1 €S (2.4)
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where P
w(d; — 1) < TT <wv{dj) i€es (2.5)
The apportionment method described above is called the divisor method based upon the
divisor function v(d). The divisor method can be defined equivalently as follows. From (2.4)
and (2.5), the parameter A has to satisfy

Pi Di

i . . ,
—— < ————  for all S 2.6
v(d;) — < v(d; — 1) orallee (2:6)

This means that P D
> . < min ———— 2.7
i'JZO v(dy) — (IIT.l;lili o(d; — 1) (2.7)

where we permit dividing by 0 and assume that & > %’ if pi > p;. Defining the rank function
r(pi,d;) for 2 € S as

Pi .
(piod:) = . 2.8
r(pi.di) o(d;) (2.8)
then we can write the above relation (2.7) as follows.
max r(pi.di) < min rip,.d; —1) (2.9)

d, >0 d; >0

We denote the apportionment method based upon the divisor function v(d) by A(p, '),
which expresses a function giving N integral compouents dy. .. .. dy as an image of a given
population distribution vector p = (p1,...,px) and a total number of seats i'. The function
A(p, K{) can be written as follows.

Alp, K)={d | > di = K. max r(p;.d;) < min r(p;,d; — 1 2.10
(p, ) ={ I;%,Su Y. max r(pj dj) < i r(pg,dy = 1)} (2.10)
where d denotes the allocation vector given by d = (di,....dx).

There exists an alternative way of expressing the general apportionment methods based
upon the rank function v(p;, d;) recursively. Let d¥ be the number of seats allocated to the
political constituency ¢ € S given the total number of seats k € {0.1...., R}, Then an
iterative algorithm for the general divisor method can be written as follows.

Algorithm (general divisor method)

Stepl d¥=0, ke {0.1...., Ky ies. k=o.
Step 2 ~
r(pi.dy) = max r(pisdi) (2.11)
ISh

[dith =df +1

e o (2.12)
ld, =d; tF L ES
Step3 k=F%+1. If k=K, then stop. Otherwise, go to step 2.
As shown in the above algorithm, for & = 0, the allocation must be zero for every
constituency. Given that an allocation d¥ = (d¥,. .., (/"\) has been determined for a total

number of seats k, an allocation for a size & + 1 is found by giving one more seat to the
constituency ¢ for which the rank function r(p;, d;) is a maximum.

Based upon different divisor functions we can define an infinite number of different
divisor methods (see e.g., [1, 2.3, 4,5, 6.7, 15]). There are five traditional divisor methods
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shown in Table 1. The method of greatest divisors, which we denote by GDM, was also
called the Jefferson method in Balinski and Young’s papers. The method of major fractions,
which we denote by M F'Af, was called the Webster method in their papers. Balinski and
Young called the equal proportion method (£ PA!), the harmonic method (HM M), and the
smallest divisor method (S DAl) after the names of their advocates, i.c., the Hill method,
the Dean method, and the Adams method, respectively.

From the computational aspects, three apportionment methods, GDM, MFM and
SDM can be separately described. First, apportionment by the GDM can be obtained
as follows.

(i) Find the maximum A = Agp such that

Pi . )
25z A (2.13)
ieS 7

(i) If (2.13) holds as equality for A = A¢p, then she allocation d is given by

di= L] ey (2.14)
/\G‘D
If (2.13) holds as a strict inequality, then let

R .
E={i|ies, L, integer} (2.15)
Aap

Since there exist more than one 7 such that XL)F 15 iteger valued. £ # ¢. Suppose
[

2 1

pi
i
ies GO

=h">NK (2.16)

then we must decids that A’ — A constituencies lose a seat. Hence let D be a subset of E
with | D |= K' — K (we can apply an ad-hoc rule to determine this), then the apportionment
can be given as

A”" igD.icE

d; = ]()',_D ' (2.17)
L E—— 1 € D
Aap

In the case of M FM the maximum A = Ay p can be obtained as satisfying
Pi

L\ +03] > N (2.18)
€S AME

The remaining parts in the above procedure (ii) are similarly obtained by changing :\%5 to
X% + 0.5. Similarly, for the case of SDAM the parameter Agp is obtained as the maxiraum
A such that ,
>+ 2 A (2.19)
es S0
The remaining parts in the above procedure (ii) ave also similarlv obtained by changing X%
to -+ 1.
here are several properties for cach apportioniment method to satisfy. If the allocation
{d; | 1 € S} given by the method M satisfies

di > g €S (2.20)
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then we say that apportionment method M satisfies the lower quota. Suppose the allocation
{d; | i € S} satisfies
d; < [qi 1€ S (2.21)
where [¢;] indicates the smallest integer larger than or equal to ¢;
then method M is said to satisfy the upper quota. If method A{ satisfies both the lower
and the upper quota properties, we say that method M satisfies the quota. Neither divisor
method described above satisfies the quota property, while the LFM does satisfy it.

An apportionment method M is said to satisfy the house monotone property if no po-
litical constituency ¢ € S decreases its allocation when the house size increases from k to
k + 1. The violation of this property is often referred to as the *Alabama paradox”. The
word “Alabama paradox” originates from the fact that when the U.S. Congress was using
the LFM in 1881, the state of Alabama was allocated 8 representatives, while they received
7 when the total went to 300 from 299. Therefore, the L F'A does not satisfy this property.
All other divisor methods satisfy it.

2.2 Local measures of inequity

Now we focus upon the local measures of inequity between pairs of constituencies. Let
the population in the constituency ¢ € 5 be p; and the nwmber of seats assigned be d;. We
say that constituency i is favored over j when the number of \(‘ats per individual in the

constituency 2 is greater than or equal to that in j; namely, ‘-]— > FL (1.€., f;—' < '—)-L). Hunt-

ington considered making ratios such as d)— or b— as equal as p()\\ll)le over all constituencies.
That these 1atlos are nearly equal means that, ideallyv. relative or the absolute differences
concerning ]—)L or Sf become zero. Generally, we denote the measure of inequity between
two constituencies ¢ and j as E(p;, d;;pj, dj). Then Huntington’s rule says that we should
transfer a seat from a more favored constituency 1 to a less favored constituency 7 when it

brings a smaller measure of inequity. Namely, when ;17’ > ;—[L and
] 1y
Elpr.dispydy) > E{prodi — Lip,dy + 1) (2.22)

we should transfer a seat [rom ¢ to j. The objective of Huntington™s rule is 1o minimize
the measure of inequity between pairs of constituencies. So the “desirable apportionment”
is obtained when no switching of seats between constituencies can improve the measure of
inequity between any such pair of constituencies. The attainment of this state is referred to
a stable assignment of seats.

Huntington’s rule was applied to several forms of the measure of inequity E(p;, d;; p;, d;)
as shown in Table 1. For each measure of inequity in Table | we can obtain a stable assign-
ment of seats. Moreover, the resulting stable apportionment obtained from each function of
Eep, Epr, Egp, Egy, and Egp indicating the measure of inequity, corresponds to the so-
lution for the apportionment methods GDM, A FAM.EPAM. HM M and SDAM | wespectively.
For example, the correspondence between function Egp(p;.di:p,.d;) and EPM is shown in
the following theoremn, which can be proved in a similar way to [8, p101]. [11, p378].

Theorem 2.1 For the pair of constituencies 7 and j with populations p; and p;, appor-
tionments d; and dj, respectively, the following holds.

Egp(pi,dispj,d;) < Epp(piodi — Lipy.d; + 1) i.jES (2.23)
if and only if
& L [.jES (2.24)

< 4ty
Vedildi + 1) 7 \Jdy(d, ~ 1)
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Table 1. Divisor method, divisor function and measure of inequity

Divisor method | Divisor function | Measure of inequity
v(d) E(pi, di; p;, d;)
GDM d+1 | E2 g
4 4
MFM d+0.5 | n " h |
b— %4y
EPM Jd(d + 1) vy
min {3, g+ )
d d+1 P P
HMM é—%—TSl l di j; |
SDM d | di ~ ?;jﬁ |

Using the above theorem, suppose that the relation (2.23) holds for all7 € S and j € S.
Then the assignment corresponds to the optimal convergent apportionment. Hence, compar-
ing (2.23) or (2.24) with (2.7) or (2.9), we can conclude that the above case in Theorem 2.1
is equivalent to the case that the divisor function is given as o(d;) = /d;(d; + 1). In other
words, the pairwise transfering procedure given by the criterion in Theorem 2.1 gives the
same apportionment solution as KPM. Similarly, we can prove that the measure of inequity
functions Egp, Eyr, EEp, Egar. and Esp ave equivalent to GDM. MFM, EPM , HMM,
and SDM, respectively.

From the computational points of view, pairwise comparisons are very inefficient since we
probably have to consider each of the —l\;ll combinations several times. The above equiv-
alent relations between measures of 1neqmty turctions and rank functions indicate that we
can apply divisor methods to compute the appoitionment method based upon Huntington’s
criteria,

Huntington examined 64 different measures of inequity including 32 relative and 32 ab-
solute differences (see [10]). All of the relative differences and two of the absolute differences
lead to EPM. For example if we define another relative differences with respect to 5- and
BJL instead of ;1’ and l—f- in Erp, we again obtain the same result as Theorem 2.1. Various
absolute differences brought other four methods GDM. M F A, HMAM and SDM. There
are also some absolute diflerences for which the measure of inequity function does not work.
In [10] an example of the measure of inequity function £(p;. d;: podi) = |iL %| for which
an unstable assignment appears is shown.
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Theorem 2.2 Let the measures of inequity be as follows.

(PP
max{%.ﬁf

Eypidiipy,d;)) = —————2— 2.25
l(ll i Py 1) lnm{f])"'-!j}'} ( )
+ d,
max{"—mf[i}
P p 2.2
Ey(pi, di; pj, dj) = YA (2.26)
mm{p—’,ﬁ

Then the apportionment by the EPM gives a stable solution when the Huntington’s rule is
applied to the above measures of inequity Fy and FEoa.

Proof By subtracting 1 from each of the functions £ and E':. we obtain the exror functions
Egp(pi, di; pj,d;) in Table L. From the equivalent correspondence between the function Egp
and the method EPM, we can conclude that apportionment by the FPM gives a stable
solution to the measure of inequity in (2.25) and (2.26). 0

Similarly, we can obtain the {ollowing corollary.

Corollary 2.3 Let the measures of inequity be as follows.
771.111,{5—: L

}
mar {4t —;L}

mi'n{i'-. ;—{i}
nar {P - =11

Then the apportionment by EPM gives a stable solution when Huntington's rule is applied
to the above measures of inequity E3 and Ejy.

Ls(pi.divpy,dy) = —

Eq(picdiip,.dy) =

2.3 The ARPT rule

We consider a new rule, which we call the average ratio pairwise transter (A RPT") rule, for
transferring a seat from one constituency to another. Our new rule provides deep insights
to traditional apportionment methods and it is also very useful for investigating our new
apportionment method proposed later. Our ARPT rule is based upon the measure of inequity
E(pi,di;p;,dj). Let r be the average number of seats per individual, i.e.. r = —%, then
the ARPT rule says that, for any two constituencies ¢ and j such that—l—j- <r < %ﬁ we
should make a transfer of one seat from the more favored constituency ¢ to the less favored
constituency j if it reduces the measure of inequity, r.e.. if E(p;.diip;.d;) > E(p; d; —
1 ipy>d;+1). Our transfer rule is different from Huntington’s one in that we add a restriction

=L <y < ‘l,, which possibly implies that our stable region is “larger than™ Huntington’s one.
Appl) ing ARPT rule to several types of measures of inequity. we can obtain the following
theorems. In the following we always assume constituency / is favored over constituency j,

e, f> 4
P TP

Theorem 2.4 Let the measure of inequity be

d; d
Es(pisdispj,dj) = | = —r[+ [+ =1 (2.29)
Pi Py
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Then applying the ARPT rule to the above measure Eg(p;.d;:p;.d;). a stable assignment
can be obtained as satisfying

o' + )
‘QZL—L7Q (2.30)
p= b,
sgn(pi — pj) - vk 2 sgnlpi — p;) - (r + ——) (2.31)
where z; = %IF,.T,]‘ : I%j-,pi = pi,,p'j = pl—J, and k =i if p} > pli=j if pi < pj; and sgn(t) = 1

ift>0;=—1ift <0

. . L.p . g \ .
Proof Since constituency 7 is tavored over j, we have ;—)L <r< %l So we need to consider
J D
the following three cases (i)-(iii). In each case we show the condition that the measure of

inequity after a transfer of one seat from ¢ to j is larger than or equal to that before the
transfer.

di—1 {,+1
() &= 520

{ 1 {; — 1 { 1
b ditt
Di Py Pi Py

di - % < 4+ l’

P TPy
p'- + )
2 a2l (2.32)

ﬂ (/_J (/,,j—l___r+(/,_,‘+l_r

Pe P, Y24 P
,/’" — ‘)I
T >+ ‘i_' —+ ) (233)
oy i1 dyt1
(i) &= <7, =<1
ﬂ;ﬁgryd"wi_}_,»md!+l
PPy P Py
h—
L§r+lfﬁ (2.34)
From (2.32)-(2.34) we obtain (2.30)-(2.31). O

[lustrating a stable region given by (2.30, and (2.31) on the &; — v plane, shaded

areas are obtained as in Fig. 1. Namely the point (1;.0;) = (%L %J') i the shaded area
. Ry

indicates that the corresponding apportionment does not decrease the measure of inequity
by transferring a seat from a more favored constituency ¢ to a less favored constituency j.
Let us define the allocation of seats {d; | i € 5} is stable if the assignment {d;,d;} is in the
stable region for any pair ¢ and j in 5 when ARPT rule is applied. Then, from the above
Theorem 2.4 we can obtain the following corollary.
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Xj Xj
r r
d N
) r+; O3] — : \
R e 5 :
r-l(Pi'+Pj') ------------- . r "%‘(Pi'*'pj,) """"""" :
r:\\ i )xz : -)Xi
O Tr‘f'%(p;,‘i'pj’) 0 r r+pl
r+dpi-p)
(a) p; > p; (b) p; < pj

Fig. 1 Stable region for the case Eg(p,,d;; p;, d;)
Corollary 2.5 The allocation of seats obtained from M £ M is stable for the application
of ARPT rule.

Proof The allocation of seats {d; | ¢ € 5} obtained from M F'M satisfies

P;

< min
;ody -

max
i d : +

R

[N

Therefore the relation (2.32) can be satisfied for any pair of ¢ and j in S. Hence the
allocation given by the M F M is stable for the application of the ARPT rule. 0

Applying the ARPT rule to the measure of inequity function defined by maximizing the
absolute biases {rom the average ratios, we obtain the following results. whose proofs are
given in the Appendix.

Theorem 2.6 Let the measure of inequity be

d; d;
En(pis di; pjy dj) = max{|= —r| | ‘p—J —ri} (2.35)
J

?

Then applying the ARPT rule to the measure Eyr(pi.d;:p;.d;). a stable allocation can be
obtained as satisfying
;2> a; — max{p't-.p;} {2.36)
if sgn(p; — p}) - (xi + 2j) < sgn(p) — p) - 2r
1
sgn(ph — p'j) cry < sgn(pl — p;v) e 1’11ax{p’,',p3v} (2.37)

if sgn(p; — pj) - 2r < sgn(p; — pj) - (@i + ;) < sgn(p} — pj) - (2r + pi — p})
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xy > @ — min{p;, pj}
if sgn(p) — p'j) Axi 4 ;) > sgn(p; — 113) (20 + ph = 1)3-) and
either p; < p; < 21); or 2p) > 1)3- > 1”1
where suffix k£ and function sgn(p) are defined as in Theorem 2.4.
Mustrating a stable region given by (2.36)-(2.38) on the a; — v; plane, shaded areas are

obtained as in Fig. 2. while other cases p, > 21)Ii and 2p} < p’, can be reduced to degenerate
ones.

Xj

Xj
2r+p,~’—p,"A A ,
2r 2r
2r+pi-pj
’ r
Di : r f
r+ T-Pj' ------------ 4 ’ :
’ : Pj :
Pilbeoaaae M r-SL )i o :
r-5" R\ 2 e foe e PO :
r-pi A P r=pi ". :
-pi Rl P , R )
A il e —>xi
A *’ tP;j (,) T r+pj
Pj ol pi P ”"’ +pi pj’
- i . r+pi/-=L
._p‘_’ r+ 2 _pj/ pl 2

(a) 2p; > p; > pj

Fig. 2 Stable region for the case Ep(p;, di;py.d;)

(b) 2p} > p; > p;

Corollary 2.7 Suppose that both of the two apportionment methods GDM and SDM
give an identical assignment of seats. Then it is a stable allocation for the application of the
ARPT rule to the measure of inequity K.

Theorem 2.8 Let the measure of inequity be
d d

Ep(pi, dizpy. dj) = = =[]~ 7|
Pi P

(2.39)

Then applying the ARPT rule to the measure Ep(p;.d;:p;.d;). a stable allocation can be
obtained as satisfying

X, 2 X -1 for0<X; <1 -1<X,<0 (2.40)
2}(,',\,1' + X, - X;—-120 for X;>1. -1< X; <0
and 0 < X —~1 > X (2.41)

where X; = di — ¢i, Xj = dj — ¢j,¢i = rpi and ¢j = rp;.
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The shaded areas in Fig. 3 serve to illustrate a stable region given by (2.49) and (2.41)
on the X; — X; plane.

X;

A

X;j=Xi-1

01 12

Xi
2X;X; +X; -X;-1=0

S
0

N

2Xin +X; -—Xj -1=0

Fig. 3 Stable region for the case Ep(p;. di:p;.d;)

Corollary 2.9 Suppose X = % be a parameter satisfving the MW FAM condition (2.6) for
v(d;) = d; + +. Then the solution of the M EF M is a stable assigument for the application of

the ARPT rule.

3. Global optimization aspects of apportionment methods

In this section we look at apportionment methods from the viewpoint of constrained
optimization problems. In this respect, as far as we know, very few investigations have been
done so far except that some preliminary results have been obtained and seen in (8, 11]. The
various kinds of constrained optimization problems with respect to the unknown variables
{di | € S} have the same constraints as follows.

Y di=N (3.1)
€Y
di > 0. mnteger, F=aNN (3.2)

So from now on we abbreviate the above constraints. showing ouly the objective func-
tion for each constrained optimization problem. First. the following theorem shows the
constrained optimization preblems for which an optimal solution is given by the LFM.

Theorem 3.1 The LFM gives an optimal solution for the following constrained optimiza-
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tion problems.

Pl:min > d; — ¢l (3.3)
d =
€S
P2 : min max |d; — ¢| (3.4)
d 1ES
P3 : min Z (d; — qi)* (3.5)
d 65

The above theorem can be easily proved, so it is omitted here. Incidentally, the LFM gives
an optimal solution to all constrained optimization problems with objective functions with
the form of ly-norm of {d — q| (see [9]).

Regarding the GDM and the A F'A, we have the following results.

Theorem 3.2 The GDM gives an optimal solution for the following constrained opti-
mization problems.

d;
P4 : min max — (3.6)
d €5 )y
. P .
P5:max min — (3.7)
d €S d;

Proof If an assignment {d; | ¢ € 5} is optima.., then for all d;.d; with i # j and d; > 0, a
transfer from ¢ to j cannot improve the objective criterion. That is, let

dy. d;
L mex — (3.8)
Pk €5 Py
then we have to have the following
d; +1 _ dy {; L L
it >k > il anv i € 5. some j € 5 (3.9)
Pj Pk P

Hence the following relation has to be satisfied.

i - oo . .
A < djp, 1ES.JES (3.10)

The above inequality 1s equivalent to the following relation.
1 3 1 g
D; )

Pi . . .
max < min £ (3.11)
) y (1,
(1,2“ h

J
tlj>ll

which is the max-min inequality that characterizes the GDA .

Conversely, if {d; | ¢+ € S} is an assignment solution obtained from the GDAM, then
it satisfies the relation (3.11). Suppose {d} | / € 5} is avother assignment different from
{d; | 7 € S}, then we define sets of suffices as follows.

St={iesS|d>d}. 5 ={jes] d < d;} (3.12)
Let

d’z =d; + q, ITES+
(3.13)

di=dj—3, jes
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then positive parameters {a;}, {3;} satisfy

Yoai= Y fBi=15 (3.14)

1EST JES™
Then we need to show _ ,
o DPi 4l Pk by
max — = — 2 —— = max —- (3.15)
v d; d, dy. s d

Hence there are two cases we need to consider.

Case 1: kg STus . lest
Case2:ke€ S™, lgstus™

Casel : Sincek¢g STUS™ and € ST, we have

P P pi e ,
_— = > — any it S UuS 316
dy di+ap T d; any ¢ ¢ ( )

Hence we obtain

Pk b1 -
- £ — (3.17)
diy = di+

which is equivalent to (3.15).

Case 2 : Since k€ S™ and [ € ST U ST, we have

po_n
dy dp T di - 3

[€ ST (3.18)

Hence we obtain
Pk Pk < Pl

LA QT LI 4

dy 7 dr— 3 T d
which is equivalent to (3.15) again. Thus the criterion P4 is shown to be satisfied by the
GDM. The case P5 is equivalent to P4. O

(3.19)

Similarly we can obtain the following results whose proofs are given in the Appendix.

Theorem 3.3 The M FM gives an optimal solution for the following constrained opti-
mization problems.

l.
P6 : min [(—l — (3.20)
{d} ;5 P
d; )
P7 : min Z pil— —r)” (3.21)
} €S 2

Theorem 3.4 The FPAM gives an optimal solution for the following constrained optimiza-
tion problem.

. ) :
P8 :min ) (1,'(11—' — s)? (3.22)
{a} €S @y
where s indicates the average number of individuals per seat. i.c.. s = 1 = Lf,

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Parametric Divisor Method for Apportionment 201

Theorem 3.5 The HMAM gives an optimal solution for the following constrained opti-
mization problem.

mm Z 1— — 5 (3.23)

Interestingly enough, Theorem 3.3 shows that, when the measure of inequity is given as
the bias of the number of seats per individual from its mean. both their absolute sum and
weighted squared sum are minimized by the A/ F'M . However. when the measure of inequity
is expressed as the difference of the number of individuals per seat {rom its mean, their
weighted squared sum is minimized by the FPAJ, while the H A M minimizes their absolute
sum. We believe that the M £'A{ is more sensitive to the fairness of seat per individual ratio,
i.e. seat per individual oriented, rather than tke EPM and the HM M, which are more
individual per seat oriented.

4. Parametric divisor method
Using a parameter ¢ such that 0 < ¢ < 1, the divisor function of the parametric divisor
method, which we denote by PD M, can bhe written as follows.

UPD(d,t)::d—l-t (41)

Comparing the above function vp(d,t) with those in Table 1. we find that ¢ = 0,1/2, and 1
correspond to those functions of the SDAM, M FM and GD M, respectively.
Now the apportionment method based upon the P DM can be described as follows. Let

the parameter for PDM be A = App, then App can be determined as the maximum A
satisfying
) .
21Q+1—1>A (4.2)
€S A

If (4.2) holds as an equality for A = App, then the allocation {d; | i € 5} is given by

. S

Gi=[Z+1-1) e (4.3)

The case that (4.2) holds as an inequality is dealt with similarly as described in (2.15)-(2.17)

for the GDM. Also parameter App satisfies
P Pi . .

< A < — S 4.4

TR e (44)
Hence we have P
i J

max < m _— 4.5

i od+t d; — 1+t (4.3)

In order to look at the parametric nlethod from the viewpoint of applying the ARPT
rule, we define the measure of inequity function Esy (p,,d;;p;.d;; v) using a parameter v as
follows.

d; d
Esv(pi.diypj,djiv) = |— = |+ v|=L — ] V<o <l (4.6)
Pi I
Then we obtain the following theorem.

Theorem 4.1 Applying the ARPT rule to the measure of inequity Fgy-. a stable region
can be obtained as follows. If pi > p'], then we Fave

i /
op; + P, d
tj 2= e il g Sy s (4.7)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



202 T. Oyama

(1 —v)a; < —(14v)a; +2r 4 vp; — p;

/
X . v
if max{0,r — 1—21 — (1 + 5)1)3} <y < — p"z (4.8)
P ol vy
£ < —- if 0 < a; < max{0.r — - — (1 + ;)p}} (4.9)

where @, 25, p; and p); are as defined in Theorem 2.4. If p} < p). then the following has to
hold. . ,

vp; Py L, ,
>z — —# ifr <ay <o+l (4.10)
(14 v)x; > (1 —v)a; + 2vr + vp) — pl',v

7

e P,
if 7'+p'z~<.1:i§7“+(1+7)]>',-+% (4.11)
20 2
p— vp']- - 1, p’l , ,
rjp >4 — 5 if (1 + ;;)Pi + 5 < and p; < ep; (4.12)

If p} > vp']-” then only (4.10) and (4.11) have to hold.

. . . 1
Proof Let the constituency ¢ be favored over j, then we have ;—)L <r < ;{—’ So we need to
) :

consider the following cases (i)-(ii1). In each case we show the condition that the measure
of inequity after a transfer ol one seat from 7 to j does not decrease.

(1) di—1 <, d,+1 >

p: Py
1 { 1 +1 L, — 1
(—1—7'+'U("“(_J)§(]+ —r—l—'v(z'—(l )
Iz Py Py Pi
di ~ 2= d; + ——
L e o) T (4.13)
Y4 P,
/ !
op; + 7y
> g 4.14
e (4.14]
oy di—1 L dl o
(i) oo, o2
If i'Lp?-l— < i;)il’ then we need to have
: 3
d; d d; +1 /i — 1
= —r4oolr—-2L)< s —r+'v((' —r)
i Py Py Pi
(M +v)r; 2 (1 —v)r; + 20r 4 epl — [)_'l (4.15)
Otherwise, i.¢., 4’};—1 > L;—l, the following needs to be satisfied.
d; d d; — 1 d; + 1
2 rpor- L)< 2 -r'+('(j+ —r)
D1 Py P Py
2va; > 2ur + ph— ('1)./1' (4.16)
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oy die dy+1
(111)9’-*5-—1—<7’, —JI:—<7

If i‘p_—l < ‘%J"—l, then we need to have
¢ 7

i ; 1+ 1 I, — 1
i~7‘+17(7‘—d—])§7—(—“+—+v(r—( )

P p; Py Pi

(1 —wv)e; < (1 +oja; +2r+ vpl — /’_I/ (4.17)

Otherwise, 1.c., %L > 51'1;—1, the following needs to be satisfied.
' )

d; a d, — 1 ([ 1
T N . R P L
Pi p.) P [).l
g o0yl )
Summarizing the above results, we obtain the relations given by (4.7)~(4.12). O

The shaded areas in Fig. 4 illustrate stable regions given by (4.7)-(4.12) on the r;-z;
plane. Note that Theorem 4.1 is a generahzation of Theorem 2.4 iu the sense that v =1 in

4.6) corresponds to Eg in (2.29).
p

X

% vpi+pj
Xj::xi_.ill;vp_}
// oxi=xi=lp 4 )

r

r~pj' ---------------- ","'
r—pj'—l(p;'+vpj') ------------ --\\."' (1-v)xj =-(1+v)x +2r+vp;’-p;’
2 §/ ;
5 & : > X
" redpivpy)
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Xj
A .. vpi+p/
Xi=xis 1+v
/.,.'x,-=x,~—(p,-'+p,-')

r -

e CIRES)) —
-y Vo ()xj =(1v)x+2v+vpip;”
r+T_+1;(Pi'p}) /'/ E E
: ; : >» Xi
° rrapi re pietpievp))

(b) p; < vpj
Fig. 4 Stable region for the case Egy
From Theorem 4.1, the following corollary can be easily obtained.

Corollary 4.2 The assignment obtained from the PDA gives a stable solution for the
application of the ARPT rule to the measure of inequity Egy-.

Proof The assignment {d; |7 € S} given by the PDM satisfies (1.5). Hence let ¢ = liv,
then we obtain i ).
max —1——1— < min bi - (4.19)
t di + v J (1} ~ Tr¢

which implies (4.13) for all pairs of 7 and j in 5 as given in Theorem 4.1. Thus the solution
given by the PDM is a stable allocation of seats for the application of the ARPT rule based
upon the measure function (4.6). g

Regarding the measure of inequity with the form
Ess(pisdipy,dy) = |5- = s+ 12 = | (4.20)

we obtain a stable region for the application of the ARPT rule including the state (p;, d;; p;,
d;) satisfying

pildi +3) _ pjldy = 3)

di(di +1) = dj(d; — 1)
The above condition is obtained by the HMM since its allocation satisfies the following
relation.

pildi + 3) )
max ————=—
v di(dy + 1) )
Therefore, by defining a parametric divisor function similarly as the measure of inequity
with the form (4.6)

pild; —

— e —

< min (4.21)

7 dj dj' -

: »
Esw(pi, dis pj, djiw) = b _ s+ u‘|1—‘} — s (4.22)
d; d,
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we obtain a stable region satisfying

pildi+ ) _ wlds — )
dildy +1) = dj{d; —1)

Suppose for a given parameter w such that 0 < w < 1. we have

p(dy + )i(d; — ——
max L’(_HQ < min l’_ﬂ_) (4.23)
1 di(d; +1) 7 di(d; - 1)

Then we determine that a convergent assignment is obtained. Let us call this apportionment

method a parametric harmonic mean method (PHM M ). Following similar procedure as in
Theorem 4.1 and Corollary 4.2, we cau obtain the following theorem.

Theorem 4.3 The allocation of seats by the PHM M gives a stable assignment for the
application of the ARPT rule to the measure of inequity Egy.

From the viewpoint of global optimization. regarding the apportionmeunt method PDM,
we can obtain the following theorem.

Theorem 4.4 Tle PDA{ gives an optimal solution for the [ollowing constrained optimiza-
tion problem.

L+t—1 ,
Gtz (4.24)

P10 : min Pil
{d} ,62:5 L pi

Proof Criterion cf the problem P10 can be written as follows.

(di +t—1)* |
min { 2 (di +1 — =)+ Pr- }
{d} lez;, pi ,; ' 2
: di +t—31)? ) | 5
= min { Z ('——‘—)— = 2Nr(t — =)= Pr-} (4.25)
4 ies P 2
Hence minimizing the criterion (4.24) of P10 is equivalent to minimizing the first term
ZzES(_d%z_)‘ in (4.25).

If an assignment {d; | i € S} is optimal, then for all d;.d; with / # j and d; > 0, a
transfer of a seat from any constituency ¢ to j cannot improve the ohjective criterion, that
18,

3 2 1 2 1y 1
di -5+ 8" di+ 5+ 1) di+t—3) di+1-35
( 4 2 ) +(1 2 ) 2( i _) +( -) (42())
Pi P Pi Py
Hence the following relation has to be satisfied for any 1. j € 5.
P < Pi
dy+t =~ di—1+1
Therefore, the above inequality is equivalent to the following relation.
max —2— < min —b (4.27)

4,20 di+1 T d>0 di— 1+t

which is exactly the same criterion as (4.5) for the PD AL,
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Conversely, if {d; | 7 € S} is a solution obtained from the DM, then it satisfies
the relation given by (4.27). Suppose {d. | 1 € S} be another assignment different from
{d; | i € S}, then we define sets of suffices S* and S~ as in (3.12) and denote {d; | i € S}
as in (3.13). Then we need to show the following relation.

(di +1—3%)°

itz g) o) (4.28)

i€S D €S P

Namely, we have

(di + i+t = )’ (dj = B+t =)’ (di+t~5)
> , + ¥ , . .
€S+ Pi JES— Py ESHUS— P

a','((l,'+t—%+%’) 3(d; + 1t — % '—j_,L)

2 23 -

ies+ Pi jes- Py
From (4.26) we have
|

di+t+9=l gyt —1 drt—1_ d 4+t 2 o
1 + + 2 1 + Z (J + > (‘[ + 2 [ E ,5+.J E ,5_
P Pi Py Py

Therefore, the inequality (4.29) can be obtained just by adding 5 inequalities with the
following form.
d,;+i+9J{—l dj+1 -2
D Py

Thus the theorem is proved. O

re st esT (4.30)

In the next section we investigate a PDM described in (4.3) using Japar’s HOR data,
then compare this with other traditional apportionment methods.

5. Numerical experiments

Japan’s House of Representative (HOR) has 130 political constituencies, each (CNST.)
of which has a population (PPL.) and a current allocation (CRT) of representatives as shown
in Table 2. Applving six apportionment methods (G DA M EX L EPM. HAM M, SDM and
LFM) to Japan’s HOR data based upon the 1985 Census. we obtain the results given in
Table 2. First we recognize that Japan's current allocation of HOR seats to each constituency
does not reflect the “proportionality to the population™ and moreover smaller constituencies,
which are mostly in rural areas, are favored over larger constituencies, which are mainly in
urban areas. The results in Table 2 show that the apportionment methods GDM, M FM,
EPM, HMM and SDM are, in this order, relatively more favorable to these constituencies
with larger population, and Japan’s current allocation of HOR seats is rather close to that
of the SDM. The apportionment method LFM always satisfies the quota property since
the allocation by the LFA{ is either rounded up or rounded down of the exact quota. i.e.,
stays within the quota. We believe that the LF M is the most unbiased method although it
violates the house property unfortunately. The result in Table 2 also shows that the method
LEM gives similar apportionment to MM or £FPM. 1y the 1910's and 1920's in the
United States there had been very severe controversy over the bias between the M FM and
the EPM regarding which method should be more unbiased (see, e.g., [8], ch.6). From our
numerical results and historical arguments done so far, we can say that “impartial (unbiased
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to both larger or smaller constituencies) and appropriate” apportionment methods should
be either M FM or EPM, or between or around these methods.

Applying the PDM given in section 4 to our HOR data we obtain the apportionment
results as given in Table 3 using the values of a new parameter s, which equals 1-¢ in
(4.3). The results in Table 3 indicate that the PDM with a smaller parameter value s is
more favorable to larger constituencies while that with a larger parameter value s is more
favorable to smaller constituencies.

Comparing the results of Table 3 with the allocation by the LF M in Table 2, we can
easily recognize that if the parameter value s satisfies s < 0.5, larger constituencies get more
seats and smaller cnes have less, while if s > 0.7, smaller constituencies obtain more seats
and larger ones less. Thus we can conclude that the P DM should be taken into account for
the parameter s such that 0.5 < s < 0.7 since a »arameter s less than 0.5 makes the PDM
too favorable to larger constituencies and s larger than 0.7 makes the method too favorable
to smaller constituencies.

Let us look at the relation between apportionment results and the parameter s for
0.5 < s < 0.7 into more detail. Firstly, we denote the apportionment results obtained
from the PDAM with parameter s by the row vector A(s) consisting of nine elements such
that A(s) = (i9,28....,11) where i} indicates that i-th largest constituency is the small-
est one such that & seats are assigned. Based upon this notation. we obtain A(0.5) =
(1,5,16,22,42, 70,99, 127,130), A(0.6) = (1,5.15,22,40.70,101.128,130), A(0.7) = (1,4,12,
21,39,70,106,129,130). Also defining the apportionment results by the methods MFM,
EPMand LEM by AMFM), A(EPM) and A(LFAM). respectively, we obtain A(MFM) =
(1,5,16,22,42,70,99,127,130), A(EPM) = (1,5,15.22.40,70.101, 127, 130), and A(LFM)
= (1,5,15,22,41,70,101,127,130), respectively.

From the definition of the vector notation of A(s) and A(m) where 0.5 < s < 0.7
and m € {MFM, EPM, LFM}, we can define the difference between two apportionment
methods A(z) and A(y) where 2,y € {s | 05 < s < 0.7} U{MFM. EPM, LFM} as
follows.

A(x) — Aly) = (8,8 = (LY
= (&=l =Y

and the distance between these two methods by

9

|A(x) = A()] = Y i — 1]

b=l

Obviously, the distance [unction is symmetric s nce |A(w) — A(y)| = |Ay) — A(2)] aud it
gives an even number since Z%zl(ii —) = 0.

From the results of Tables 2 and 3 we have |A(MFM) — A(EPM)| = 6,|A(LFM) —
A(EPM)| = 2, and |A(LFM) - A(MFM)| = 4. We know from the definition of distance
that +|A(z) — A(y)| indicates the number of constituencies such that two apportionment
methods A(z) and A(y) give different assignments. Therefore, there exist 6 different assign-
ments between M F'M and EPM, 4 different assignments between M FM and LFM, and
only 2 between LFM and FPM. .

Let us look at the apportionment results A(s) by the PD M into more detail. We know
that A(0.5) = A(MFM). Our numerical experiments show that A(EPM) = A(s) for the
range of 5,0.543 < s < 0.6, 1.e., the apportionment method EPAM corresponds to the PDM
for the approximate parameter value s such that 0.543 < s < 0.6. Also A(HMAM) = A(s)
for the range of 5,0.64 < s < 0.645. i.c.. the apportionment method HMAM corresponds
to the PDM for approximately 0.64 < s < 0.645, while A(LL7M) = A(s) for the range
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Table 2. Political constituency and final apportionments

CNST. PPL. GDM | MFM | EPM | HMM | SDM | LFM | CRT
HKID-1 2169716 10 9 9 9 8 9 6
FKOK-1 19397838 9 8 3 3 3 3 5
TKYO-11 | 1875744 8 8 8 8 n 3 5
KNGW-2 1828593 8 8 3 8 7 3 5
CHBA-1 1790189 8 8 8 7 n 3 5
HYOG-2 1755079 8 7 7 7 7 7 5
OSAK-3 1720428 8 7 7 7 7 7 5
KNGW-4 1711045 8 7 7 n T ¥ 4
KYOT-2 1707152 8 7 7 T n 7 )
CHBA-4 1683125 8 7 7 T T 7 4
OSAK-5 1637539 7 7 7 T T n 4
MIYG-1 1599740 7 7 T T [§} 7 5
TKYO-7 1565417 7 7 7 7 G T 4
TKYO-10 | 1556469 7 7 7 T 6 7 5
KNGW-3 1542055 7 7 7 6 6 7 <4
SITM-2 1526507 7 7 6 6 6 6 4
OSAK-4 1496406 7 6 6 6 6 6 4
HYOG-1 1410834 6 6 6 [§ 6 [§3 5
AITI-2 1381305 6 6 6 6 6 6 4
SZOK-1 1370523 6 6 6 [§} 3 6 5
SITM-4 1369057 6 6 [5} 6 [5} 6 4
NARA-1 1304366 6 [} G 5 B) [} 5
KNGW-1 1281381 6 5 5 5 5 5 <|
GIFU-1 1263739 6 5 5 5 D 5 b
AlITI-4 1236959 5 5 5 5 ) b 4
HRSM-1 1203166 5 5 5 5 5 5 3
OSAK-2 1201348 5 5 5 5 5 5 5
SITM-5 1190106 5 5 5 5 5 5 3
SZOK-2 11831457 5 5 5 5 5 5 5
OKNW-1 1179097 5 5 5 5 5 5 5
OSAK-7 1177473 5 5 5 5 5 5 3
SITM-1 1177247 5 5 5 5 5 5 3
MIEE-1 1172473 5 5 5 5 5 5 )
SIGA-1 1155344 5 5 5 5 5 5 I3}
HKID-5 1131904 5 5 5 5 5 5 5
TKYO-4 1118220 5 5 5 5 5 5 h
IBRK-1 1107626 5 5 5 5 5 5 <
KMMT-1 1097730 5 5 5 5 5 5 5
TKYO-3 1080170 5 5 5 5 4 5 4
KNGW-5 1068100 5 5 5 5 4 5 a
AITI-6 1058380 5 5 4 4 4 5 E}
AlITI-1 1057501 5 5 4 4 < 4 4
TKYO-2 1054133 5 4 4 4 4 4
TCHG-1 1036612 4 4 4 4 1 4
HKID-4 1034361 4 | 4 4 4 4 b
SZOK-3 1020712 4 E 4 4 4 4 4
AITI-3 1010934 4 4 4 4 4 4 3
FKOK-2 996563 4 4 4 El 1 El 5
AOMR-1 987405 4 4 4 4 4 4 4
OKYM-2 976010 4 4 4 4 { 4
IBRK-3 967446 4 4 4 4 4 4 5
NGSK-1 964759 4 4 4 4 4 4 5
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CNST. PPL. GDM | MFM | EPM | HMM | SDM | LFM “RT
OKYM-1 940896 4 4 4 4 4 4 5
HYOG-3 931342 4 4 4 4 4 4 3
HRSM-3 907690 4 1 4 4 4 4 5
FKOK-4 900537 4 1 4 4 4 4 4
FKOK-3 882371 4 4 4 4 4 4 5
SAGA-I 880013 4 4 4 4 4 4 5
KYOT-1 879422 4 4 4 4 4 4 5
CHBA-3 876419 4 4 4 4 4 4 5
TKYO-9 873135 4 4 4 4 4 4 3
TKYO-5 866342 4 4 4 4 4 4 3
KGSM-1 851854 4 ! 4 9 4 4 4
HYOG-1 851743 4 4 4 4 4 4 4
YMGC-2 848828 4 4 4 4 4 4 5
IWTE-1 846892 4 4 1 4 4 4 4
KOTI-1 839784 3 4 1 4 4 4 5
TKSM-: 834889 3 4 1 4 4 4 5
YMNS-: 832832 3 4 4 4 4 4 5
TCHG-2 829454 3 4 4 4 4 4 5
FUKI-1 817633 3 3 3 3 3 3 4
OITA-1 316464 3 3 3 3 3 3 4
TRYO-6 808974 3 3 3 3 3 3 4
CHBA-Z 798430 3 3 3 3 3 3 4
SIMN-1 794629 3 3 3 3 3 3 5
ISKW-1 789142 3 3 3 3 3 3 3
FKSM-1 771072 3 3 3 3 3 3 4
NIGT-3 768503 3 3 3 3 3 3 5
HKID-2 767974 3 3 3 3 3 3 4
GIFU-2 764797 3 3 i) 3 3 3 4
YMGC-1 752799 3 3 o 3 3 3 4
FRKSM-2 747622 3 3 3 3 3 3 5
AKTA-1 746675 3 3 a 3 3 3 4
MYZK-1 745710 3 3 K 3 3 3 3
NIGT-1 743154 3 3 A 3 3 3 3
KMMT-2 739967 3 3 3 3 3 3 5
GNMA-3 725265 3 3 3 3 3 3 4
OSAK-1 724129 3 3 3 3 3 3 3
YMGT-1 715822 3 3 3 3 3 3 4
OSAK-6 710772 3 3 3 3 3 3 3
AITI-5 709593 3 3 3 3 3 3 3
HRSM-2 708344 3 3 3 3 3 3 4
GNMA-1 659408 3 3 3 3 3 3 3
IBRK-2 649933 3 3 3 3 3 3 3
WKRYM-1 | 639756 3 3 3 3 3 3 3
NGSK-2 629209 2 3 3 3 3 3 4
TOYM-1 627226 2 3 K1 3 3 3 3
TOTR-1 616024 2 3 3 3 3 3 4
SITM-3 600761 2 3 3 3 3 3 3
IWTE-2 586719 2 2 3 3 3 3 4
NGNO-1 585569 2 2 3 3 3 3 3
TKYO-1 577806 2 2 2 3 3 2 3
MIYG-2 576555 2 2 2 3 3 2 4
HKID-3 574984 2 2 2 2 3 2 3
MIEE-2 574838 2 2 2 2 3 2 4
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CNST. PPL. GDM | MFM | EPM | HMM | SDM | LFM | CRT
NGNO-3 571726 2 2 2 2 3 2 4
FKSM-3 561610 2 2 2 2 3 2 3
NIGT-2 560065 2 2 2 2 3 2 3
KAGW-1 | 557122 2 2 2 2 3 2 3
EHIM-2 555415 2 2 2 2 3 2 3
YMGT-2 | 545840 2 2 2 2 3 2 3
AOMR-2 | 537043 2 2 2 2 2 2 3
GNMA-2 | 536586 2 2 2 2 2 2 3
EHIM-1 517401 2 2 2 2 2 2 3
AKTA-2 507357 2 2 2 2 2 2 3
NGNO-4 505719 2 2 2 2 2 2 3
TOYM-2 491143 2 2 2 2 2 2 3
NGNO-2 473913 2 2 2 2 2 2 3
KGSM-2 468450 2 2 2 2 2 2 3
KAGW-2 | 465447 2 2 2 2 2 2 3
EHIM-3 457167 2 2 2 2 2 2 3
TKYO-8 452653 2 2 2 2 2 2 3
WKYM-2 | 447450 2 2 2 2 2 2 3
OITA-2 433750 2 2 2 2 2 2 3
MYZK-2 429833 2 2 2 2 2 2 3
NIGT-4 406748 1 2 2 2 2 2 2
ISKW-2 363183 1 2 2 2 2 2 2
KGSM-3 345904 1 1 2 2 2 1 2
HYOG-5 329052 1 1 1 2 2 1 2
KGSM-4 153062 0 1 1 1 ) 1 1
Total 512 512 512 512 512 512 512
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of 5,0.51 < s < 0.54, i.e., the method LFM is equivalent to the PDM for aporoximately
0.51 < s <0.54.

From these results we can conclude that the correspondence between PD A and other
traditional apportionment methods M FAM, EPM, HMAM, and LFM can be illustrated as
in Fig. 5.

6. Summary and conclusion

In this paper we proposed apportionment method P M based upon the parameter ¢
given in (4.3). As mentioned in sections 4 and 5, the parametric method PDAM covers all
six traditional methods GDM, MFM, EPM, HM M, SDM, and LFM by changing the
parameter ¢ from 0.0 to 1.0. The PDM satisfies the house monotone property for any ¢ such
that 0 <t <1 as it belongs to a divisor method. It does not guarantee the quota property
as do other apportionment methods (with the exception of the LF'M ). From the results of
our numerical experiments as llustrated in Fig. 5 we can conclude that the apportionment
method LF M is located between M FAM and EPM from the viewpoint of biasedness to the
population size of the constituency. As history shows (see .g. [8. 9]). there vas a harsh
controversy in the U.S. Congress in 1950's over whether the M /4 or the £PM should be
accepted. Although Balinski and Young [8] says that the M £ M is the only unbiased divisor
method, we believe that generally the M F'Af is still more favorable to larger constituencies
since most numerical examples violate the quota property (sec e.g. [8. 12, 13, 14]).

In conclusion, we believe that the method LFM, which of course satisfies the quota
property, gives a most reasonable assignment of seats to the constituency although it does not
satisfy the house monotone property. We would like to strongly recommend the PDM with
the parameter value 0.52 < s < 0.54 since it gives almost the same assignment as the LFM as
shown in section 5. and importantly, it satisfies the house monotone property. Interestingly
enough, the method PD M provides a solution to the local and global optimization problems
given in Corollary 4.2 and Theorem 4.4.

Presently we are investigating other properties of population monotonicity, constituency
and so on (see e.g. [5, 8, 11]) for the PD M to see if this method can be made to more closely
satisfy these properties.
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Appendix

Proof of Theorem 2.6 Let constituency i he tfavored over j, then we have —L <r<d o
So we need to consider the following two cases (i)-(ii). ln each case we show Lhe condltlon
that the measure of inequity after a transfer of one seat from 72 to j is larger than or equal

to that before the transtfer.

(i);—ff~r>7'~—i

Suppose ') L < and i]f;l >r. I dfpil -7 20— ‘11%1 we need to have
: : ; ,

d { 1
< o+t (A.1)
i Dj

Otherwise, 1.¢., -L + —i < 2r 4 IT — I)L we need to have
d; 1
— < — (A.2)
pi 2p;

Suppose ‘1—1-1_—1 > roand &t > If 4Ltl s Ll—_—l the condition can be reduced to {A.1).

P, -

Otherwise, a transfer has to be made since r < i‘p—— < ;—f*
)

1 /,+1 _ 1 - .
Suppose &=L < r and Ll o pp =l < <—'i-—, the condition can be reduced to (A.2).
PE Di P; P = P,
. . . 1, +1 {
Otherwise, a transfer has to be made since r > ‘—in— > %J-
J 7

v d o “_g‘J_
(11);‘L r<r -
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_ / . _ !
Suppose L}——l— < r and ‘—‘ﬁ# >r. Itr — ‘['Tl > 4L we need to have

-
di —1 _d
- / (A.3)
Pi P
Otherwise, 7.e., & L5941 L weneed to have
PP T
d 1
- 2 Y- (‘A’l)
P 2p;
Suppose “— ‘l < r and Lil— <r. If 4'7)_—1 < dpil— the condition can be reduced to (A.3).
Otherwise, a tlansfel has to be made since %j— < %—1 <.
Suppose d‘p—l > 7 and ipil‘ >r. I d'—l < &2 the condition can be reduced to (A.4),
Otherwise, a transfer has to be made since r < d _1 < %

Summarizing the above two cases, if ij >l 2 pj, then the following has to hold

xy 2wy - P i +ay <2 (A.5)
/
2, i
o<+ 171 W2r <+ <2 p— p./,‘ {A.6)
rp> - 1’.// i+ =220+ P 1’.11 (A7)

and if p} > 2p), only (A.5) and (A.6) have to hold. If p; < p < 2p}, then we must have

x> @ — ) if w4y > 2r (A.8)
/
p]' o p o . ! /
Xy 2T - = i 2r > a4 a; 2 2r 4 p, - p; {A9)
R i+, <20 4 ph - />_/, (A.10)

and if 2p; < pj, only (A.8) and (A.9) have to hold.
All relations above have to be cousidered within the region of @; < r and r < ;. Thus
the relation (A.5)-(A.10) can be written as (2.36}-(2.38). a

Proof of Corollary 2.7 Let the identical assigninent of seats by GDAM and SDM be
{di 1 1 € S}. Then it should satisfy the following max-min conditions.
Py

max < mm L]
i (/,,‘ + 1 ;o d;

Pi
max — < mm

v d;

Yy

¢
J
Therefore the conditions of hoth (A.1) and (A.3) can be satisfied for all pairs ¢ and j in

S. Thus the allocation gives a stable solution. a

. { . . .
Proof of Theorem 2.8 Since we have 2 < 1 < 4 we consider the following three cases
po= " = pi g

{(1)-(iii) in order that a transfer of one seat from a more favored constituency 7 to a less
favored constituency j should not decrease the measure of inequity.
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(1) di—1 r d;+1 >
pi Yopy —
d d di -1 d 1
e -y [ AL
P: Py Pi Py
The above relation can be written as follows.
dy—qj 2 di —q —1
Hence using X; > 0 and X; <0, we obtain
X; >N -1 for0<X;<1.-1<X,<0 (A.11)
(i) =L > p, 2t oy
d; 1 d; —1 ) 1
(S =)= L) < (B (e )
Pi Py P Py

(di —gi)qy —dj) < (di ~ ¢ — 1)(d; —q; + 1)

Hence rewriting the above using X; and X, we obtain

XX < (X=X 1) for X, > 1 -1 < X; <0 (A.12)
(iii) dp;lgrff—l <r
d; d; di -1 [+ 1
L= L) < (- )+ )
Pi Py M Py

(d; — ([1)((/1 - dj) < (¢ — di + l)(‘1_/ - d./ -1

Hence rewriting the above using X; and X, we obtain
=XiX; < {1 - X)) (-1-X)) for 0 < X -1 > X (A.13)
Thus the relation (2.40)-(2.41) is obtained. |

Proof of Corollary 2.9 The parameter f— catisfies the M F M condition for the case
o(di) = d; + % Hence

Dy
d]' +

Pi

<< .
1 (Zi—';

1 . .
- foralli.jes (A14)

o=

and we obtain the following relation.

| —

Xi=di—q¢; < (A.15)

N

t

, 1
Ny=dj—q¢; 2~ (A.16)

Considering X; > 0 and X; < 0 for applying the ARPT rule. the region given by (A.15)
and {A.16) is a stable region. a
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Proof of Theorem 3.3 We show that the M F M solves the problem P6. If an assignment

{d; | © € S5} is optimal, then for all &;,d; with ¢ # j and d; > 0, a transfer of a seat from
constituency ¢ to j cannot improve the objective criterion, that is,
d; — 1 d; +1 d d,
| =l = =l 2 = e (A.17)
Pi ] Pi Pj

Suppose that the constituency ¢ is favored over 7, the inequality (A.17) can be written
as follows.

di—1 dj+1 d; d,

r—— + s —r>—=—r4r--=

Pi P; Pi Py
b5 P (A.18)

d,‘-—%—dj%—%

The above inequality indicates that an optimal assignment {d; | 1 € 5} satisfies

. P > max Py A 19
min T 2 maxX —— (A.19)
d>0d; — 1+ T a>0d; 4+ 4

which is the max-min inequality characterizing the M F M.

Conversely, suppose the assignment {d; | i € S} satisfies the M FM max-min inequality
(A.19). Let {d} | ¢ € S} be another assignment different from {d, | i € 5}, then we define
sets of suffices ST and S~ as in (3.12) and denote {d, | i € S} as in (3.13). Then we need

“to show the following relation.

d! d;
P ety = D (A.20)

wes Pi s P

From (A.19) we have

Log d—1 d+l dito
-8 -3 dity dita ie st jesT (A.21)
Py Py pi P
Using the above relation and also using
d; -1 Cd 44
max S < min 2
' D1 J Py
we obtain the following.
d d,
PO R B Dl Rty
€5 ies Pi
di - a dj — g, {
:Z|14 1_'1|+Z|j /J_T|_ Z IQ*"
ics+ D jes-  Pi igstus- Pi
DT S

ies+ Pi o jes- Py

Thus the relation (A.20) can be obtained. That the M "M gives an optimal solution to
the problem PG can be proved in a similar way. a
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Proof of Theorem 3.4 If an assignment {d; |« € 5} is optimal, then for all d;, d; with
i # j and d; > 0, a transfer of a seat from any constituency ¢ to j cannot improve the
objective criterion, that is,

2 2 2 2
Py Py b b .
-+ = A.22
d,‘—1+dj+1“dz‘+dj ( )
Namely,
A
di(d; — 1) ~ d(d; + 1)
Vedildi = 1)~ \Jfdy(d; + 1)
Thus we obtain the following.
max ———2t < in P (A.24)

20 Jdi(d; +1)  4>0 . /d,(d; — 1)
I\

Conversely, suppose the assignment {d; | 7 € S} satisfies the FPM max-min inequality
(A.24). Let {d} | ¢ € 5} be another assignment different from {d; | i € S}. Defining sets of
suffices ST and 57 as in (3.12) and denote {d, | i € S} as in (3.13), we need to show the
following relation.

2 )
i P

> (A.25)
o —
Sd T d
Namely, we need to have
1" Pi
e O o
ies+ @ + o s d iestus-
2 2
PP B 1/ (A.26)
iegr dildi + o) s di(d; — 3;)
From (A.24) we have
P pi P, r)

< < < -
di(d; + o) T di(dy + 1) T dy(d; — 1) T dy(d; = 35)

Thus the inequality (A.26) is obtained just by adding ~ inequalities with the following form.

2 2
b P

<
di(d;i + a;) — d_,((li, -3

restjes” (A.27)
Thus the proof is complete. O

Proof of Theorem 3.5 If an assignment {d, | ¢ € 5} is optimal, then for all d;,d; with
i # 5 and d; > 0, a transfer of a seat from any constituency 7/ to j cannot improve the
objective criterion, that is,

| Pi

5| > n”’
d; -1 -

— s IR R
oA+ 17t - 15—l
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Without loss of generality, we can assume that 51 > s > Bt ie. constituency 7 is favored
7 i

over j. Then we have

_]_).L__ — — ﬁ._ > g — & _p_j -
d; -1 st di+1~ " d,‘+d] )
(di—3)pi (45 +3)p) (A.28)
&(di—1) = 4(d; + 1) '
The above inequality implies that for any 2,5 € S
(dz + %) . ( 7 PJ
< A.29
FREA) rnnd(d_1 (A.29)

which is the max-min inequality that characterizes the H M M method.

Conversely, suppose that {d; | ¢ € S} satisfies the EPM max-min inequality (A.29). Let
{d; | : € S} be another assignment different from {d; | i € S}. Defining sets ol suffices St
and S~ as in (3.12) and denote {d} | ¢ € S} as in (3.13), we need to show the following

relation.
Z\ DY %—Sl (A.30)

€S ’ €S T

Namely, we need to show

2

€5t d +

by P .
s| + — 5> 2

iESHUS -
S sl Y R
€St €St d
p P
< Z |ﬁ—51— Z 71)~| (A.31)
ies- Y T2 ies-

Pi Pi
di + ai

ie st jes” (A.32)

Hence the above inequality (A.31)} can be written as follows.

> T L 1<y {d s —s-s- 2} (A.33)
J

€5+ d; d +Q JES™

Namely, we have

(i +3)p0 oo (=30 | o+
20 L s < T sl (A.34
,§+ di(d; + ;) > jEzS:— dy(dy = 3)) 1571 )
From the max-min inequality (A.29) for the HM M. we have for a; > 1 and 8, > 1

(di+%)pi _ (di+ 3)pi i3 (4 - F)
dildi+ i) = dildi+ 1) T dj(d; — 1) T dy(d; - 3))

I/'\
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Hence we also have the following relation.

(di + %")pi (d] 'L)p] . . _

——t— g iesStjes A.35

G+ a) == GG~ ) / (33
Therefore, by adding |St| inequalities from the left and |S~| inequalities from the right, we
obtain the relation (A.34). O
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