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Abstract Apportiollment problem has Iwen focused UPOll for mort' tltiln LOO years by many applied matlt-
emat.icians and operations researchers. Billinski and )"onng haY<' done quite t'xtt'w;ivl' works for t.his prohlem. 

In t.his paper we propose a parilmetric divisor lIlt':hod for whiu!'. an apportionl1lent. problem. Our 
method is showll to ·'·.:over" IIIOSt. tradit.ional apportiolllllellt l1letho(b. First \\'e introduce the idea of stable 
regions for t.he allocation of seat.s to ,~ach political cOIL:itit uenc~, thell sho\\' the explicit rl'iiltioll b·,tween 
apportionment methods and corresponding stable regiolls. Then lVe look at t.hese apportionment methods 
from t.he viewpoints of constrained opt.imization probl"IlI, alld we shOl\' t.he cOl'l'esponciing optimIzation 
problem for our parametric divisor met.hod 

Finally using Jaran's lIollse of Represent.ative data, l\'t' shol\' the Illllllerical results for the applIcation 
of variolls apportionment methods. 'vVe conclude our p,' }cr by Sltsgcstins Clppropriat.e parcll11E'ter values for 
Ollr parametric appor :.ionmen t method. 

1. Introduction 

In Japan the issue of "weight of olle vote" has bC('1l COllt 1'01'ersial sincE' people began to 
recognize the gap between political constituencies with respect to the weight given to the 
number of seats per voter. In 198G our Suprellle Court gal'e a decisioll responding to the 
appeal that a gap of more than 2.0 mal' be lltlCOllstitutiollal. Siuce tlleu. sE'vera.! similar 
decisions have been given in various judicia.! courts. Om ruling Libera'! Democratic Party 
in the Diet has also recognized the importa.nct' of t his problem. It is considering reform 
of the election system, which has not been changed sinc(' the UJ.'iO's. Their plan includes 
reducing the total number of seats from the presellt 512. which was established in 1925. to 
471 and accepting middle size electoral districtlllg syst em (the llumlwr of seats assigned to 
each constituency should be between :3 and 5). 

Various types of "equity" problellls arise iu distri butiug Cl I·a.ila ble personllel or resources 
in "integral parts" to differen t su bdi visions. T,I :)ical exalll pies are the a.llocation of a set of 
available teachers to classE's in order to make timetablE'S. Ilw assignment of a set of individuals 
to certain jobs, which is the so-called classica.! as,ignment problem for operations researchers. 
and the distribution of seats in a legislature among different politica.! constituencies, Several 
solution methods have been proposed and establi,hed for some problems (e.g., the assignment 
problem), Others have not yet been "efficiently" solved (t.g .. the timetabling problem). 

The apportionment problem a.ims at allocating seats "fairly" alllong political const;tuen­
cies when the total number of seats and the di,tributioll of each cOllstituency's population 
are given. Mathelllatically, tlw apportiollllwnt. problem call 1)(' forlllltiated as follows : (~ivell 
the set of N political cOllstit.twllcies as .'). = {l. 2 ...... Y}. tll(' populillioll of political con-
stituency i E ::.:; as ]Ii. the t.otal pOPlIlatiull clS e. alld the totitlllllllJiwr of seats as h.'. t.he 
"ideal" number of seats allocat.ed t.o the cOllstituellcy i. i.r .. tile "exact quot.a" </" is given 
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by 

where 

Hence we have 

T. Oyamu. 

i E S 

P=LPi 
;ES 

Lq;=X 
IES 

(1.1) 

(1.2) 

(1.3 ) 

Then the apportionment problem is to partition a giYf'n positin' int.eger /\' into nonnegative 
integral parts {cl; liE S} such that 

L d; = J\' 
;ES 

d; 2: u. integer. i E S' 

(1.4 ) 

(1.5 ) 

and such that these parts c.re '"as near as possible" proportional. respectively. to a set of 
nonnegative integers {PI, P2, , , . , PN }.i .e., {ql. (12 ..... Cf,\, }. If the exact quotas {qj I I E S} 
were to be integers for a.ll i E.',", then the apportionment would 1)(' obtailwd by setting dj = q, 

for each i E S. But this is an extremely rare case, so uSllall,\' exact quotas {q, li E:: S'} all have 
fractional parts. Therefore, the problem becomes how to rOlllld the fractions {Ch li E S} to 
their "nearby" integral valUo's keeping their sum equa.] to a gin'll \'a.]lle h .. 

The apportionment problem may seem to he an easily soh'ed '"approximation" problem. 
However, this is not the caSE as hist.ory shows. The Congress of the U nit.ed States, for exam­
ple, has used four different :>ehemes to apportion the seats in the House of Representatives 
among the various states oV(~r the past 2UO years. and they have. on many occasions (begin­
ning in 1790), held lengthy debates on this issue. General descriptions of the apportionment 
problem and its history are given in e.g .. [8. 11]. 

Difficulties of the apportionnwn t problem occur Cl t s(-~\'''ra I points. Firstly. how should 
we express the measure of "Inequit.y·' to be l1linimized'? The}'e 111<1\' IWlIlall,\' definitions rep­
resenting both global and local "inequities" bet.ween various ('()]}sl it lWllcies. These include 
minimizing the sum of differences betweeJl given apportioJllll(,llts a11(1 tlte exact quota of ead! 
constituency or minimizing "Iocally" relative differences of til(, 11llllIiwr of seat.s allocated per 
voter. Secondly, the difficulty of the apportionment problf'l11 is rf'la.tecl to the property which 
we want our apportionment. method to satisfy. For example. we want the apportionment 
method to ha.ve the property that the number of seats given to each constituency is either 
rounded-up or rounded-dowll by an exact quota or we ma~' wallt that a constituency should 
not be given less representation if the total number of seals illcreases and the distribution 
of the population of each constituency remains the same. There are various "natural" re­
quirements for acceptable apportionment methods. Some of tlwse "requirement.s". however, 
are inconsistent. As yet, no method ha.s been found to sat.isfy them simultaneously in the 
general case. This means that no matter which apportiolllllent. method is accepted, it will 
possess certain "defects". Namely, we may have to decide in advance which properties must 
be satisfied, and which "defects" are acceptable before we employ our own apportionment 
method. 

Ba.linski and Young ha\'e clone extensive work in the area of apportionment problems 
(see e.g., [1, 2, 3, 4, .5. 6, 7]). EveJl though they have proposed Cl ut'w complicated scheme 
called quota method (see [1, 2]) satisfying certa.in properties Silllultil.lleously. they ha.ve been 
promoting a classical \Vebster method (see [8]) for its illljlarl.ialll(,ss alld silllpllcity. In this 
paper we propose Cl lIt'\\' sil1lple apportiOllllH:'Ilt. IIWt.llOci. whi('h \\'(' ('id 1 a jlaI'ilIlIf't.ric divisor 
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Parametric Divisor Method for Apportionment 189 

method. We show that our method is general enough to "cover" most traditional apportion­
ment methods so far employed in several countries. vVe theu propose a range of appropriate 
parameter values for our apportionment method in order to maintain our method's impar­
tialness and fairness with respect to the population size of each constituency. 

In Section 2 we review several representativE' apportionrnent methods and introduce the 
idea of a stable region related to certain locally optimal assignments. In Section 3 we look 
at those apportiolllnent methods from the viewpoints of cOllstrailwd optimization problems, 
then consider what kind of objective function these apportiollnlf'llt lllethods are trying to 
minimize. In Section 4 we expl"in our parCl\1lC'tric divisor method with its re\"tion to other 
methods. InScctioJl .5 we give' the results of our llunwrical cxperi Il1cnt.s lIsing .Japan's House 
of Representative data, and compare these results with the apportionment methods described 
therein. In the last Section, we conclude our pa.per by giving certain evaluations obtiLined 
from our ana.lysis and numerica1 experiments. 

2. Apportionment methods and the stable regIOn 
2.1 Traditional apportionment methods 

We expla.in several vel',)" common apportionment methods .. SOlIle of which aTe employed 
or have been employed in some European and Americall couutries. First, we will gi.ve a 
common scheme called the largest fractioll method. This scheme is based upon remainders. 
Next, we will show five divisor methods. These were baseciupoll divisors and go by the name 
of Huntington methods. 

The largest fraction method, which we sha.!1 denote by LFM, was first suggested by 
A. Hamilton at the United States Congress in 1791, and was used by the Congress from 
1851 until 1910. The LFlU first assigns each cOllstituellcy i E S' its lower quota lq;j, where 
lqJ denotes the largest integer less than or equa.! to q. Then we define the fraction of each 
constituency t, as follows. 

i E ..,. (2.1 ) 

Sorting the set {ti liE ,)'} from the largest. arbitrarily for tll<' equell elemellts, we define the 
set of suffices of the first J\' - LiES l q;J cOllstituellcies in tlw ordering by T. Then the LF M 
allocates an additional seat to the constituencies belongillg to tlw set T: namely, the whole 
allocation {di liE :n by the LFM is given as follows, 

i E T 

i tt T 
(2.2) 

Let us define the general divisor method. First, we giv(> a divisor ,\ in orcler to compute 
the quotient of each constituency i E S' with the population Jil as q/('\) = zx.. Then, we 
round the quotients according to values of the number of seats to each constituency. Let us 
denote the integer ,'alue obtained from the quotient q,(.\) = ~ by [q, (,\ ll, = [zx.]r. Then, in 
order that these quotient.s can be all apportiollllwnt the followillg Illust hold. 

I:,[q;('\)]r = I:,ll~\;], = J-: 
tE.'> lES 

(2.3) 

Now we genera1ize the rounding process by defilling the di"isol' function v(d) a.s follows. 
Let v( cl) be a monotone increasing function defined for all integers d :::: U and also satisfy 
cl:::; v(d) :::; cl + l. Thell, for allY positive real number .1'. there COITf'SPOllds cl unique integer 
d such that v(d - l: < .f :::; u(d). \Vc define the above rounding process hy 

Pi [-], = rli 
,\ 

i E."· (2.4) 
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190 T. Oyama 

where 
]J 

')(d; - 1) < ; ::::; V(di) lE,S (2 . .5 ) 

The apportionment method described above is called t.he di\'isor method based upon the 
divisor function v( d). The divisor method can be defined equi \'aklltly as follows, From (2.4) 
and (2 . .5), the parameter). has t.o satisfy 

This means that 

]J' Pi -'- < ). < for all i E S' 
v(d;) -- v(di-l) 

mm 
c/,>II 

Pi 
t,(d, - L) 

(2.6) 

(2.7) 

where we permit dividing by 0 and assume that * > 4f if Pi > }JJ' Defining the rank function 
r{Pi' di) for i E S as 

Pi 
r(pi,d j ) =-­

u(cZil 

then we can write the above relation (2.7) as follows. 

(2.8) 

(2.9) 

We denote t.he avportiOllllWnt method ba.sed UpOll (he d i I'ism fUllction 1'( cl) by A( p,I{), 
which expresses a functioll giving N integral compollents cL 1 . ... ,dN as all ima,ge of a given 
population distribution vector p = (]l1,' .. ,]IN) and a total llllllliw]' of seats !{. The function 
A{p, J() can be writ.ten as follows. 

(2.10) 

where d denotes the allocation I'ector given by d = (cl], ... ,ds), 
There exists an alternative way of expressing the general a pportionment methods based 

upon the rank function v{p;, d;) recursively. Let. df be the llumiwr of seats allocated to the 
political constituency i E S gl veil the total nUlllber of seats /,' E {O. 1. ... , !\'}. Then an 
iterative algorithm for the gen(,ral divisor method can 1)(' II'ritten as follows. 

Algorithm (general divisor metlill.d.l 

~ df = o. j,. E {O,1,. .. , X}. i E .':l'. j,. = O. 

Step 2 

f d~'+1 = d~; + I 
'l dk,'+ 1 = (lk,' . .../. . IT t, lE,':>' 

Step 3 k = /,~ + 1. If k = K. then stop. Otherwise. go to step 2. 

(2.11 ) 

(2.12 ) 

As shown in the above algorithm, for j,. = 0, tIlt' allocation m1lst be zero for every 
constituency. Given that an allocation d k = (dt, ... , d\) has been determined for a total 
number of seats k, an allocation for a size k + 1 is found by gi\'ing one more seat to the 
constituency i for which t.he rank function l'(p;. cl;) is a lllaximulll. 

Based upon different divi~;or fUllct.ions we can define all infinit.e number of different. 
divisor methods (see (:.g., [1,:2 :3,4 .. S, 6.7, L.5]). There are fin' traditiollal divisor methods 
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Parametric Divisor Method for Apportionment 191 

shown in Table 1. The method of greatest divisors, which \Ye denote by GDM, was also 
called the Jefferson method in Balinski and Young's papers. The method of major fradions, 
which we denote by I'll FM. was called the Webster method in their papers. Balinski and 
Young called the equal proportion method (EPl"), the harmonic lllethod (HM M), and the 
smallest divisor meT-hod (SDM) after the nanws of their ad"ocatcs, i.f., the Hill method, 
the Dean method, and the Adams method, respe,:ti\'ely. 

From the computational aspects, three apport.iOllll1ellt lllethods, G D .~1, !vI F M and 
SDM can be separately described. First, apportionment by the GDJ1 can be obtained 
as follows. 

(i) Find the maximum A = ACD such that 

(2.13) 

(ii) If (2.13) holds as equality for ,\ = '\CD, thenJw aliocClt ion cl is given by 

P, 
el, = l '\CD J (2.14) 

If (2.13) holds as a ,trid inequality, then let 

E { . I' ,JJ,. } = I lE,), -- : ll1tegn 
,\(; j) 

(2.1.5 ) 

Since there exist. more t.han olle i such that )\~';D is illtegn \"duecl. E f:. 9. Suppose 

(2.16 ) 

then we must decide that 1{' - X cOllstituencies lose' Cl seal. Hellce let D be a subset of E 
with 1 D 1= X'-X (we can apply an ad-hoc rule to determille' this), thell the apportionment 
can be given a.s 

d; = { /]:;D 
-"--1 
'\GD 

i tf- D. i E E 

i E D 

In the case of 1\} F 111 the maximum A = '\.1/ F can be obtailled as satisfying 

(2.17) 

(~:.18 ) 

The remaining part:3 in the abo\'f? procedure (ii) 'Ht-' similarl:-' obtained by changing ~; to 
~ + 0 . .5. Similarb', for the case of SDM the 1)<lra11)('t('r ,\,'D is obtaineci as the maximum 
AMF' '. 
A such that 

L l~ + 1J 2:: 1\'. 
lE.') '\SD 

(:2'.19) 

The remaining parts in the above procedure (ii) MP also silllilarh' obtaincd by changing ~ 

to !;-;; + 1. 
141ere are severa.l properties for each a pportiolllllt'lIt 11 wt lwd to sa t isfy. If the allocation 

{dj 1 i E S} given b~' the method J1 satisfies 

i E ... ; (2.20) 
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192 T. Oyama 

then we say that apportionment method Al satisfies the lower quota. Suppose the allocation 
{di liE S} satisfies 

i E 8 (2.21 ) 

where r qi 1 indicates the smallest integer larger than or equal to qi 
then method !vI is said to satisfy the upper quota. If method 1'1 satisfies both the lower 
and the upper quota properties, we say that method 1H satisfies the quota. Neither divisor 
method described above satisfies the quota property, while the LFM does satisfy it. 

An apportionment method Ai is said to satisfy the hOllse 1ll0llo(one property if no po­
litical constituency i E 8 decreases its allocation when the house size increase:3 from k to 
k + 1. The violation of this property is often referred to as the "Alabama paradox". The 
word "Alabama paradox" originates from the fact that when (Ill' ll.S. Congress was using 
the LFlv! in 1881, the state of Alabama was allocated 8 rcpres('ntatiycs. while (lte.y received 
7 when the total went to :300 from 290. Therefore. the L F.\J does not satisfy this property. 
All other divisor methods satisfy it. 

2.2 Local measures of inequity 

Now we focus upon the local measures of inequit\· Iwt\\'eeu pairs of cOllstituencies. Let 
the population in the constituency i E S' be Pi alld tIlt' nllllllwr of seats assigned be d,. We 
say that constituencyi is fayorecl over j whell the nUllllwr of s('ats per illcliviclua.l in the 
constituency i is greater tha1 or equal to that ill j; namel.\·. !lJ. :::: <!:.J... (i.t., l!!.," ::; uj' ). Hunt-

P, Pi (I () 

ington considered making ratios such as !h or l!.!.. as equal as possible over all cOllstituencies. p, d, 
That these ratios are nearly equal means that, ideally. relat.ive or the absolutE' differences 
concerning 5b. or l!.!.. become zero. Generallv. we denote tbe measure of inequitv between 

PI el t '" .J 

two constituencies i and j a, E(p,. cl,; PJ. clJ ). Then Huntington \ rule says that we should 
transfer a seat from a more favorecl constituency i to a less fa\'ored constituency j when it 

brings a smaller measure of inec[uitv. Namelv, when !lJ. > iL ilnd 
• ,1 ., p, - J!) 

(2.22) 

we should transfer a scat ft·,ml i t.o j. The oi>jectiH' of llulltingtoll's I'lde is~o mlllll1lize 
the measure of inequit.y between pairs of constittwllcies. So tlJ(' "desirable apport.iollment" 
is obtained when no switchilg of seats betweell constituellcies call illlpro\'(' (he measure of 
inequity between any such p,iir of constituencies. The attailllll(,llt of this state i:; referred to 
a stable assignment of seats. 

Huntington's rule was applied to several forms of the measure of inequity E( Pi, di;}JJ' dJ) 
as shown in Table l. For each measure of illequity in Table 1 \\'(' can obtain a stable assign­
ment of seats. Moreover, the resulting stable apportiollnwllt. obtained from ead function of 
EGD, E/I1 F, EEP, E HM • and £SD indicatillg the measure of ille<jui(.\·. correspollds to the so­
lution for the apportionment. nwthocls GDM, M FM. EP.IJ.II.II ,I} ami ::U)Jl,·espectively. 
For example, the correspondence bet ween function EEP(P,. rI,: PI' ri,) and E P!1i is shown in 
the following theorem, which can be proved in a similar way to [So plUl]. [11, p378]. 

Theorelll 2.1 For the pair of constituenciesi and j with populatiolls p, and p)' appor­
tionments di and dj, respectively, the following holds. 

EEP(Pi,di;lij,dJ )::; EEf'(p"d, -l:PJ,d, + J) i.j E ," (2.23) 

if and only if 
jli < ]I) 

Vd,(d,+l) Vd,(ill-J) 
I. j E." (2.24) 
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Table 1. Divisor method, divisor function and measure of inequity 

Divisor method Divisor function Measure of inequity 
v(d) E(p;, d;i Pj, dj ) 

GDM d+1 I d;pj 
Pi 

- dj I 

MFM d+O.S 14i._~ I Pi pj 

d t!L 
EPM Jd(d + 1) 

I~- p' I 
min {12 h } 

di'dj 

HMM d(d+l) 112_Ei. I d+O.5 di dj 

SDM d Id. _ Pidj 
• Pj I 

Using thE' ahow' thE'OrPllL suppose that t.hE' rE'latioll (2.2:~) holds for all i E ,':>' and j E S'. 
ThE'n thE' assignll1E'1l t. corn'sponds to t hE' optimal cOl1\·E'rgenl i1 pport.ioll mcn t. HE'Jlc(', compar­
ing (2.23) or (2.241 with (2.7) or (2.D), WP can conclude tllat tlI(' aboVt' casE' in Theorem 2.1 

is equivalent to the case that the divisor functic'n is gi veil as u( rI,) = d, (di + 1). In other 
words, the pairwise transfering procedure givell by the criteriOll in T leorem 2.1 gives the 
same apportionment solution as EPAl. Similarly, we can prow' that the measure of inequity 
functions EGD,E.~fF,EEP,EHM. and ESD are equi,·alent to G1JJ{,MFM,EPM,HA1M, 
and SDM, respectively. 

From the computational points of view, pairl"ise comparisons are very illefficient since We 

probably have to consider each of the N(;\-l) combinations seyeral tirnes. The above (:'quiv­
alent relations between measures of ineql;ity fULctions and rail!.: functions indicate that We 
can apply divisor methods to compute the appOl tionnwnt method based upon Huntington's 
criteria. 

Huntington examined 64 different measures of inequity including :32 relative and 32 ab­
solute differences (see [10]). All of tlw relative differences alld two of the absolute differences 
lead to EP M. For example, if we c\enlw allotlH'· relati,·e diffcu'llces with respect to J~ and 

1!.J..d' instead of <b. and <iL in EEP, \Vc agaill obtaill the samE' re.~lllt as Theorem 2.1. Vmious 
J P, p) 

absolute differcnce, brought. other four method:; G LJ .11 . .11 F .11. jj .H .\1 alld S D J1. There 
a.re also some absolute differences for which the ll1t'a"urc of ill('qui(,· fUlIctioll does not \\'ork. 
In [10] an example of the lllf'(1S11rf' of inequity flll:ctioll E(jJj. ilj: /1,. iI,) = 1-"-'.,' - hi for \,'hich 

<. (') jJ) 

an unstable assignment appears is shown. 
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Theorem 2.2 Let the measures of inequity be as follows. 

max{ l!..!.. U} 
E( "" .,.)_ d,d} 

I P'.(·I,]I}.c) - . {n. J} } . mlll c. U 
d, d) 

(2.2.5) 

max{!!"".:!.L } 
E (. . l.. . d ) - p, 1') 

2 PI, (I, ]I), ) - . I d 
mll1{!..:t. --"-} p, p) 

(2.26) 

Then the apportionment by the EP1\1 gives a stable solutioll when the Huntington's rule is 
applied to the above measures of inequity El and £2. 

Proof By subtracting 1 from each of the functions El and L'J. we obtain the e:'1'or functions 
EEP(Pi, di; Pi, dj ) in Table l. From the equivalent correspondence between the ['unction E EP 
and the method EP!vI, we can conclude tha.t apportionment b~i the EP Iv! gives a stable 
solution to the measure of ll1equity in (2.25) and (2.2G). 0 

Similarly, we can obta.in the following corollary. 

Corollary 2.3 Let the measures of inequity be as follo\\·s. 

(2.27) 

(2.28) 

Then the apportionment b~' E P!lf gives a stable solu tioll WilCll H untington's rule is applied 
to the above measures of inequity £3 and £4' 

2.3 The ARPT rule 

We consider a new rule, which we call the average ratio pairwise transfer (ARPT) rule, for 
transferring a seat from one constituency to another. Our new rule provides deep insights 
to traditional apportionment methods and it is also ver~' useful for investigating our new 
apportionment method proposed later. Our ARPT rule is based upon the measure of inequity 
E(Pi, dl;pj, dj). Let T be the average number of seats j)f'r individual i.t.. " = If,, then 

the ARPT rule says that, for any two constituencies i and J' such tha.tiz. < r < &. we 
" p) -- - PI 

should make a transfer of one seat from the more fa vared cOllsti t uency i to the less favored 
constituency j if it reduces tile measure of inequity. i .t .. if E(ji;. d;: p). rI,) > £(Pi, di -
1; Pi, elj + 1). Our transfer rule is different from Huntingt.oll's Olle ill tltat IVP add a restriction 

~ :::; r :::; ~, which possibly implies that our stable region is "IM!!,er tha.ll" HUlItillgt.on's one. 

Applying ARPT rule to sew'ral types of measures of inequity. \H' can obtain the followillg 
theorems. In the following we always assume constituency i is faxo['ed o,,{'\' constituency j. 
i.e. 4.. > ~ 

, p, - PJ 

Theorenl 2.4 Let the mea.surt" of inequity be 

(2.29) 
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Then applying the AR PT rule to the ahove measure ES(Pi. cli: I'). d;). a stable assignment 
can be obtained a, sa tisfying 

I I 
,I)i + P, 

r /> T - ._--' . } - . , :2 

I I P - jJ 
sgn(pi - p}) . ·/'k 2:> sgn(p; - Ji)) . (I" + T) 

(:2.30 ) 

(2.31 ) 

h ' -!!i ,- ~ I - 1 '. - 1 I I, -- .. 'f' I > I. -"f I I d (t) 1 werex l - .,.1:)- ,pi--,p)--,anch--l1 p,-p,.-JI Pi <p);a.n sgn. = 
p. j)l p. Pl . 

if t > 0; = -1 if t ::; O. 

Proof Since constituency i is favored over j', we have ~ < I" < !!i. So we need to consider 
j)l - - p. 

the following three cases (i)-(iii). In each case we sho\\' the condition that the measure of 
inequity a.fter a transfer of one seat from i to j is larger than or equaJ to that before the 
transfer. 

(i) d,-1 < I' dJ +1 > r 
PI -, Pl -

(ii) d, -1 > r :!.L±..~ > /' 
p, 'PJ-

(iii) d.-l < r ~.! < r 
PI -, }JJ 

el, cl 7 rl; - 1 cl, + 1 
- - I" + I" - --'- < 1" - .-- + -' -- - ,. 
Pi p) - Pi P, 

d; - ~ il] + ~ --- <._--
Pi JI.I 

I I 
Pi + P, 

.r}· > .r, - ._--' 
- :2 

cli d) di - 1 d, + 1 
---<-----1'+-.---,. 
Pi p} - Pi p) 

f I 
Pi - P 

.r· > r+---) } - :2 

cl; d, cli - 1 _ cl} + 1 - - --'- < I" - --- + f' 
]i, 1') - 1', Ji) 

pi - Ji' 
.f, < 1"+ ---.I 

- :2 

From (:2.3:2)-(2.34) we obtain (:2.30) (2.:n). D 

(2.32) 

(2.33) 

(:2.:34 ) 

Illustrating a stable region given by (:2.30: and (:2.:31) 01] the ,fi - .rj plane, shaded 

areas are obta.ined as in Fig. 1. Namely the [Joint. (,ri. ,c,) = (!!..c. iL) in the shaded area 
. I), }Jj 

indicates that the corresponding apport.ionment does llot decrease the measure of inequity 
by transferring a ;;eat from a more favored constituency i to a less fa\'ored cons tit ue:1CY j, 
Let us define the dlocation of seats {di liE S} is stable if the assignlllent {cl;. cl)} is in the 
stable region for any pair i and j in .,' \yhen ARPl' rule is applied. Then, from the above 
Theorem 2.4 we can obtain the following corolla,ry. 
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r 

r+~/-p 

Xj 

r-~/+p/) r-~/+p/) 
----~~--------~~--~----~~Xi ----~~--------"---"----------.. Xi 

r+p/ o r 

Fig.l Stable region for the case E S (P"cl j ;PJ,dj ) 

Corollary 2.5 The alloca.tion of seats obtaillf'd from M F.11 is stahle for t\l(' application 
of ARPT rule. 

Proof The allocation of seats {cl; liE S} obta.ined frolll M F1\J satisfies 

Pi Pj 
max --1 :S mm ---

cli + '2 j d) - ~ 

Therefore the relation (2.32) can be satisfied for any pajr of i and j in S. Hence the 
allocation given by the M F M is stable for the application of the ARPT rule. 0 

Applying the ARPT rule to the measure of inequity fumtioll defim'd by maximizing the 
absolute biases from the average ratios, we obtaiu the followillg results. whos\'· proofs a.re 
given in the Appendix. 

Theorenl 2.6 Let the measure of inequity be 

(2.35) 

Then applying the ARPT rule to the measure EM(]J,.dj:p,.dJ ). a stable allocation can be 
obtained as satisfying 

.. > . .{ l '} .i) _ .l, - max Pi']).! (2.36) 

if Sgll(p; - Pj)' (:1:; + ,Cj) :s: sgn(p; - pJi )· 21' 

( ' ') (' ') 1 {' '} sgn Pi - PJ . XI.;:S sgn Pi - p) .,. + 2111ax Pi'P) (2.37) 

if sgn(p; - Pj)' 21' < sgn(p: - Pj)· (Xi + .1:j):S: sgn(p: - ]/,). (21' + p; - pj) 
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:1'.1 2: :fj - min{p;,p',} 

if sgn(p~ - Pj)' Cri + .1')) 2: sgn(p: -1/,)' (2,. + p; - pi,) and 

eit her pj :S P~ :S 2pj or 2Ji~ 2: JI', > jJ: 

where suffix k and function sgn(p) are defined as in Theorem 2.4. 

197 

(2.38) 

Illustrating a ,table region given by (2.36 )-( 2.:38) on tl1f' .1'; - .1'.1 plane, shaded areas are 
obtained as in Fig. 2. while other cases pi > 2p', a.nd 2Pi < pi, can be reduced to degenerate 
ones. 

X' J 

2r+p/-p/ 

2r 

, r 

Xj 

2r 

2r+ p/-p/ 

Pi r---------~~~~~------­r+--p 
2 , 

r t-----~~~~~~------­

Pi r--
2
-

r-
p / 
2 

r-Pi 
, 

------t~___::-_:_'_--"___T----......... --,-~ Xi 

-pI 
-p/ +

p/ 
r -

2 

( a) 2 pj 2: pi 2: pj 

-Pi 
, 

-pI 
, p/ 

r+pi--
2 

Corollary 2.7 Suppose that both of the two avportiolllllell t lllethods Cl D j)1 and S'D lVI 
give an identical a;;signment of seats. '1'11('n it is a sta ble allocation for the application of the 
ARPT rule to the measure of inequity EM. 

Theorem 2.8 Let the measure of inequity 1)(' 

(2.39) 

Then applying the ARPT rule to tlte measure Ep(p;. d;: p). cl)). a stable allocation can be 
obtained as satisfying 

2XiXj + Xi - X.J - 1 2: 0 for Xi > 1. -I :S X) :S 0 

and 0 :S Xi. -l > X, 

where Xi = cl; - Cji, X) = clj - qj. qi = rpi and 11, = I'p). 

(2.40) 

(2.41 ) 
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The shaded areas in Fig. :3 sen'e to illustrate Cl s\dbk It'gioll g)\TIl I)\" ("2.~IJ) dnd (2.41) 
on the X; - X.I plane. 

------------------~~~~~~~~~~~~~~~~~~Xi 

- .......... ~~~~~~~ 2XjXj +Xj -Xj -1 =0 

2XjXj +Xj -Xj -1 = 0 

Fig.3 Stable region for the case EA1(Pi.di:PJ,dJ) 

Corollary 2.9 Suppose'\ = ~ be a parameter satisfying li)(' .\1['-"1 conditioll (2.6) for 

v(dil = d; + *. Then the SOllltioll of tlw .\1 F:\1 is a ~(,ahle as.~igll!llent for the application of 
the ARPT r~lc. 

3. Global optimization aspects of apportionment methods 

In this section we look at apportionment methods from the viewpoint of constrained 
optimization problems. In this respect, as far as we kllO\l", \"('ry few inyestigations have been 
done so far except that some preliminary results have been obtained and seen in [8, 11]. The 
various kinds of constrained optimization problems with respect. to the unknovvn variables 
{di liE S} have tIlt' same c<)nstraints as follows. 

L cl, = I": 
lE.'" 

di 2: 0, illteger, i E'; (:3.2) 

So from now OIl we abhrc\'iate the above constraillts. shO\\"illg ollly the objective func­
tion for each constrained optimization problem. First. t he following tlworem shows the 
constrained optimization problems for w hicb all optima.! soil! lioll is gi yen by the L F 1\11. 

Theorem 3.1 The L FM givcs all optimal solution for t.ht' following constrained optimiza-
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PI : mm 
cl iES 

P2 : min max Id; - (/i I 
cl ,ES 

P3 : min L (di - qj)" 
cl iES 

199 

(3.3) 

( 3.4) 

(3 .. 5) 

The above theorem can be easily proved, so it is omitted here. Incidentally, the LPIv! gives 
an optimal solution to all constrained optimizat ion problems with objective functions with 
the form of lp-norlll of Id - ql (see [DJ). 

Regarding the GDM and the M FAI, we have the follo\\'iug results. 

Theorem 3.2 The G D M gIves an optimal ~;ollltioll for Ill(' following constrained opti-
mization problems. 

cl; 
P4 : luill llIax 

cl IES jI, 

P.5 : Illax II1Ill I); 
dIES di 

(3.6) 

(3.7) 

Proof If an assignment {cli liE .'n is uptil1la. t heu for alJ el" ell with i I: j and cli > 0, a 
transfer from i to j cannot improve the objecti\(:, criterion. That is, let 

cl; 
(3.8) me . .:\: 

iE " jl, 

then we have to have the following 

cl) + 1 cl I. d; 
--- > - > - all." i E.". SOllW j E S (:3.9) 

Pj P, 

Hence the following relation has to 1)1' satisfied. 

I E S. j E.'" (3.10) 

The ahove inequality is equivalent to tlw following relatioll. 

Pi" PI lllax -- '-. llUll 
I d, + 1 --- I cl} 

d,;:O:O d
J 

>11 

(:3.11 ) 

which is the max-min inequality that characterizes the G [) .\1. 
Conversely, if {d, liE S'} is all a.ssignnwnt solutioll vbtilillecl from the CDil1, then 

it satisfies the relatioll (:Lll). Suppose {cl; I I E S} is allot Iter assignment differem from 
{di liE S}, then we define sets of suffices as follows. 

Let 
i E S+ 

j E')'~ 

(3.12) 

(3.13 ) 
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then positive parameters {Oi}, {/3j } satisfy 

Then we need to show 

L °i = L Il) = I 
iES+ jES-

_11) max 
) ri, 

Hence there are two cases we need to consider. 

{

Case 1 : k tJ. s+ u .''';-. I E ,)'+ 

Case 2 : k E S-, l tJ. s+ u S'-

Case 1 Since k tJ. s+ U S- and I E .S+, we ha.ve 

PI PI Pi 
-- :c= --- > - any I tJ. s+ U 'i-
d; dl + Ltl - el, 

Hence we obtain 
Pk PI -<---cik - dl + etl 

which is equivalent to (:3.1.5). 

Case 2 Since k E S- and l tJ. s'+ U .';-. we hav~' 

Hence we obtain 
~ < JIk < PI 
elk - (h -)k - ell 

( 3.14) 

(3.1.5 ) 

(3.16 ) 

(3.17) 

(3.18) 

which is equivalent to (:3.1.5) again. Th liS the criterion p.~ is sllOII"JI to be sat isfied by the 
CDJ';f. The case P.5 is equivalent to P4. 0 

Similarly we can obtaill the following results whose proofs are given in the Appendix. 

Theorem 3.3 The 111 Fkl gives an optimal solution for tIlE' following constrained opti­
mization problems. 

. ~Idi I PG : mill L.. - - T 

{d} iES Pi 
(3.20) 

~ di ) 
Pi : min L.. Pi( - -- rJ-

{d} iES Pi 
(3.21 ) 

Theoren13.4 The E P.M gives all optimal solution for the folloll"ing constrained optimiza-
tion problem. 

) . ~ p, .) 
P;-; : 111111 L.. !li( - -- .-)-

{d} iES el, 
(:3.22 ) 

where s indicates the averag<' number of individuals per seat. i.r .. . " = ~ = f. 
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Theorem 3.5 The H A1 A1 gives an optimal solution for the following constrained opti­
mization problem. 

P PI) : min L I-I' - si 
id} iES (, 

(3.23) 

Interestingly enough, Theorem 3.;~ shows that, when the measure of inequity is given as 
the bias of the numher of seats per individual from its l1lca.u. both their absolute surn and 
weighted squared Sllm are minimized by the AI FM. However. whcn the measure of inequity 
is expressed as the differencc of the number of individuals per seat from its mean, their 
weighted squaTed sum is minimized by the E P lU, while the H M Jj minimizes their a.bsolute 
sum. We believe that the A1 FlU is more sensitive to the faimcss of seat per individual ['atio, 
i.e. seat per individual oriented, rather than tJe EPJ1 and the H AI M, which are more 
individual per seat oriented. 

4. Parametric divisor method 

Using a parameter t such that 0 ::; t ::; L the divisor functioll of the paTametric d;visor 
method, which we denote by P D.'1, can he written as follows. 

vPD(d,t)=d+t (4.1 ) 

Comparing the above function u p( d, t) with thaee ill Tabl" 1. we filld that t = 0, 1/2, and 1 
correspond to those functions of the 3DJ!, 1H FM alld G DJ!. re~pectively. 

Now the apportionment method based upon the P f) M can be described as follow~ .. Let 
the parameter for PDA1 be ,\ = '\1'D, then '\1"D can be cletenllined as the maximum A 
satisfying 

L lP, + 1 - t J 2: A' 
IES ,\ 

If (4.2) holds as an equality for ,\ = ,\p D, then tile allocation {el, liE .'l} is giyen by 

Pi 
cli = l- + 1 - f J 

A 
i E :-/ 

(4.2) 

(4.3) 

The case that (4.2) holds as an inequality is dealt with similarly as descrilwd in (2.1.5)-(2.17) 
for the GDA1. Also parameter '\PD satisfies 

p, < \ < __ 1_)1 __ 

d; + t - . P D d, - 1 + t ( 4.4) 

Hence we have 
Pi Pj 

max ::; min I 
di + t j (j - 1 + t ( 4 . .5) 

In order to look at the paramet.ric method ['rom the ,·iewpoillt of applying the ARPT 
rule, we define the mea.sure of inequity function ESF(PI,d':P.I,d,: c) using a parametel' v a.s 
follows. 

U < l'::; (4.6) 

Then we obtain the following theorem. 

Theoren14.1 Applying the ARPT rule to the measure of illc(juit.y F.)\". a sta.blc region 
can be obtained a.~ follows. If pi 2': pi" then we 1 aYe 

upi + ]J~ 
x) 2: .1'; - -----"-

1 + v 
if r -}/ ::; .!') :s; I" 

.I 
(4.7) 
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(1-['):1') ::::: -(1 + v)x, + 21' +1'11; - p', , 
ifmax{O.r - Pi - (1 + '!!..)p'} <.r < r - p' 

2 2.1 - ./ .I 

llj -- vp' 
.r < r+---) ,- 2 

/ t' 
if 0::; .r)::; max{O.r- :2' - (1 + 2)11~} 

(4.8) 

(4.9) 

where Xi,Xj,pi and pj are ai, defined in Theorem 2.4. If pi < p~. thell the following has to 
hold. 

vpi + pj 
:1:) 2: Xi - if l' ::::: ·I'i ::::: ,. + pi 

1 + l' (4.10) 

(1 + v):rJ 2: (1 - V)Xi + 2vl' + upi -1/, 

·t· , < (1 l), p') I r + Pi < Xi _ r + + ~ Pi + ~ _I _ 
(4.11) 

J , 
p - vp· 

x) >}' + -.-:-.--.1 
- :2v 

. . 1, p' , 
I1 (1 + -:-) ,)Pi + -:-)./ < .1", ami Pi ::::: t'j/ 

_1 ~ ./ 
(4.1:2 ) 

If pi> vpj. then only (4.10) and (4.11) have to hold. 

Proof Let the constitucncv i be fa.vored over J., thcn we hill'<' ~ < 1" < ~. So we need to . P; - - jJ} 

consider the following cases (i)- (iii). In each case we sho\\" the conditioll t.bat the measure 
of inequity after a transfer 01" one seat frolll i to j does llot cle("l"eC)se. 

(i) d,-l < l' d)+l > ,. 
p, -, jJj -

d, d d . + 1 el, - 1 - - ,. + v(,. - --L) ::::: _J __ - ,. +1'( /. - --) 
M ~ ~ 0 

rI; - 1+"" d· + _1-
__ -"-!.-'- <.I 1 + " 

Pi ])./ 

,'pi + l)~ 
.r j 2: .r, - -----"-

1 + l' 
(ii) d,-l > r d,+l > r 

Pi 'PJ-

If d j -l < d)+I. then we need to have 
p, - l'J . 

cl; d) dJ + 1 el, - j 
- - l' + V( l' - -) ::::: -- - ,. +1'( -- - r) 
Pi ]Jj p) jJi 

(1 +1' );/'./ ~::: (1 -1').l'i + "LPI' + rpi - p', 

O 1 " -I .1,+1 1 f' 11' I I . f· I t lerwise, i.e., "-1-!. > , t 1(' 0 owmg lleec s to W satls wc. 
PI }Jj 

(4.13) 

(4.14 ) 

(4.15 ) 

(4.16) 
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(iii) \~I < T, 

If dj-I < dJ+I then we need to have 
Pt - Pl ' 

cli cl] d; + 1 (/, - 1 
-- - l' + V(I' - -) ::; T - -"-- + ['(I' - --) 

Pi Pl pj Pi 

(1 - V):l'j ::; -(1 + v):r, + 21' + up: - fl'J ( 4.17) 

Otherwise, i.e., ~~ > d,+I, the following needs to 1)(' satisfied. 
1', ]1) 

cl; cl, ri, - 1 d, + 1 
-- - l' + vi l' - -'-) ::; l' - --- + d /' - -'--) 
~ ~ ~ ~ 

0·18) 

Summarizing the above results. we obtain the relations gin'll by (4.7)--(4.12). o 

The shaded areas in Fig. 4 illustrate stable regions given by (4.7 )-( 4.12) on the r,-x 1 

plane. Note that Theorem 4.1 is a gelleralization of Theorelll 2.1 ill the sense that u = 1 in 
(4.6) corresponds tu Es in (2.29). 

v p {+p.' 
X ,-- x . _ J 

J -- I 
l+v 

j == X i - (P { +p }) 
r ~ ________ ~~~~ ___ ~~ __ __ 

r-p/ 

. .¥ (1-v) x j == - (1 +v) x i + 2r +v Pi' - P j' 
· · · --'--~r-------~~~~--------~~Xi 

(a) pi 2: pj 
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X' J 
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r + p / +fv{ p / +v p 

(b) p~ < vpj 

Fig. 4 Stable region for the case E5\' 

From Theorem 4.1, the following corollary can be easily ohta.ined. 

Xi 

Corollary 4.2 The assignment obtained from the P D Jj giH's a stable solution for the 
application of the ARPT nlle to the measure of inequity E')'I" 

Proof The assignment {d, liE S'} given by the PDJi satisfies (1.:'5). Hellce let t = l~v' 
then we obtain 

Pi <. Pj 
max 1 - 111m 1 /' 

d; + I+V J (J - -r:tr 
(4.19) 

which implies (4.13) for all pairs of i and j in S as given in Theorem 4.1. Thus the solution 
given by the P DJl1 is a stable allocation of seats for the applicatioll of the ARPT rule based 
upon the measure function (4.6). 0 

Regarding the measure of inequity with the form 

Pi P 
ESS(Pi' cl,; Pj, cl)) = 1- - si + I----L - si 

cli d, 
(4.20) 

we obtain a stable region for the application of the ARPT rule including the state (pi, d;; PJ' 
dj) satisfying 

Pi(di + ~) pj(clj - ~) 
~----~"- < " 
di(di + 1) - dj(dj - 1) 

The above condition is obtained by the H MM since its allocatioll satisfies the following 
relation. 

(4.21 ) 

Therefore, by defining Cl pa.rametric divisor function similarly ctS the measure of inequity 
with the form (4.6) 

(4.22) 
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we obtain a. stable region satisfying 

Pi(di + y:fu) < pJ(d1 - Tiw) 
ddd,+l) dj(dJ -1) 

Suppose for a given parameter w such that 0 <I,) S I. we have 

11((/ +~) )·(d - _1_) 
, , I+w < . I}) 1+((' max llllll 

i di(di+1) - .I dJ(d,-I) 
(4.23) 

Then we determine that a convergent assignment is obtained. Let us call this apportionment 
method a parametric harmonic mean method (P H Jl "1). Following similar procedure as in 
Theorem 4.1 and Corollary 4.2, we can obtain tlte following theorem. 

Theorem 4.3 The alloca.tion of seats by the P HM M gives a stable assignment for the 
application of the ARPT rule to the measure of llleq1\ity EST!'. 

From t.he viewpoint of global optimization. regardillg the avportionmellt method PD.M, 
we can obta.in the following t.hcorelll. 

Theorenl 4.4 Tie P 1):\1 gi\'cs an opti IlIa.1 soln LiotJ for t 1)(' l'ollO\\·i nl!, constrained optimiza-
tion problem. 

. '" d, + t - ~ ) 
PlO: nlln L Pi(----- - 1)-

id} iES Pi 
(4.24) 

Proof Criterion cf the problem PlO can be wri Hell as follows. 

. {'" (d; + t.- H! 
mm L -
id} iES p, 

- 21' 

(cl;+t--t)" . I) 
= min { I: ----=-- - L\' 1'(1 - -) - P1'-} 

id} iES Pi 2 
(4.25) 

Hence mlmmlzmg the criterion (1.24) of PlO IS equi\'alellt to minimizing the first term 
'\'. (d.+t_~)2. (4 ')5) 
L...ES Pi m._. 

If an assignment {cl i liE S} is optimal, then for a.! I d,.dJ with i i:- j and cl; > 0, a 
transfer of a seat from all}' constituency i to j (,<lllllOt illlprOH-' the objective criterion, that 
IS, 

(di--4+tj" (dJ+~+t)2 (r/,+t_~)2 - + - > -
Jli ]1.1 - P, 

1 .) 
(d,+t-,,)-+ . . -

p) 
(4.26) 

Hence the following relation has to be satisfied for am' i. j E')·. 

ji, Pi --'-<---
cl) + t - di .-. I + t 

Therefore, the above inequa.lity is eqlliva.lent to the follo\\'ing relation. 

ma.x ~ < t1lin Ji, 
dJ ~o dj + t - d, >11 d, - 1 + I (4.27) 

which is exa.ctly thE same criterioll as (4.'i) for t Iif' P D Jl . 
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Conversely, if {cli liE S} is a solution obtained from the C; D M, then it satisfies 
the relation given by (4.27). Suppose {di liE S} be another assignment. different from 
{cli liE S}, then we define sets of suffices S+ and :S- as ill (:3.1:2) ami denote {di liE S} 
as in (3.13). Then we need to show the following relation. 

(4.28) 

Namely, we have 

Pi 

o i (cli + t - t + (~' ) 
---'-----=--~ > (4.29) 

Pi 

From (4.26) we have 

cl; + t + ¥ > di + t - 1 > d) + t - I > ri, + t - ¥ i E ,)+. j E S'-

P, ~ ~ ~ 

Therefore, the inequa.lity (4.29) can be obtained jllst b\ adding ; ineqllaJities with the 
following form. 

cl + t + 0,.:-1 d· + t _ 11)+1 
, 2 > ) . 2 i E ''''+. j E S-

p, 

Thus the theorem is proved. o 

(4.:30 ) 

In the next section we investigate a PDN! df'scribecl ill (4.:3) using Japar\ HOR data, 
then compare this with other traditional apportionment met hod~. 

5. NUluerical experiluents 

Japan's House of Representative (HOR) has 1:.~U political constitucncies, each (CNST.) 
of which has a population (P PL.) and a current allocatioll (CHT) or l"f'presf'lltati\'es as showll 
in Table 2. Applying six apportionlllcnt methods (GDJ! . .\I F.I/. HP,I/. HJI M, SDM and 
LF AI) to Japan':; HO R dat.a based upon the 1 ~)8.s Census. ,,'(' ohtaill the I"f'sults given ill 
Table 2. First we recognize that J apa.n 's current allocation of 1-10 I{ seats t.o each constituency 
does not reflect the "proportionality to the population" and Illoreoyer smaller constituencies, 
which are mostly in rural a.reas, are favored over larger constituellcies, which are mainly in 
urban areas. The results in Table 2 show tha,t t.he apportiolllllent methods GDM, M Fl\l!, 
EP M, H M AI and S D At are, in this order, relatively more faxora ble t.o these constituencies 
with larger popula.tion, and Japan's current alloca.tion of H OR sea.ts is rather close to that 
of the SD~f. The apportionment method IFAI always satisfips the quota property sincf' 
the allocation by the LF Al is either rounded up or rounded dOWIl of the exact quota.. i.e., 
stays within the quota. W'2 believe that the IF!\{ is the 1l10::.t unhiased method although it 
violates the hOllse property unfortunately. The result in Table "2 also shows tha.t the method 
LF M gives similar a.pportiollment to .H FM or E PM. III \ lie 191U's aIld 1920\ in the 
United States there had bf~en very severe controversy over tlw bia~ betweell the Ai F!H and 
the EPAI regarding which method shonld Iw more unbiased (see. c.g., [8], ch.6). From our 
numerical results and historical argumpnts done so far, we can say that "impartiaJ (unbiased 
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to both larger or smaller constituencies) and appropriate" apportionment methods should 
be either M F11vf or EP M, or between or around these methods. 

Applying the PDM given in section 4 to our HOR data we obtain the apportionment 
results as given in Table 3 using the values ot a new parameter 8, which equals 1-t in 
(4.3). The results in Table 3 indicate that the P D JJ with a smaller parameter value s is 
more favorable to larger constituencies while tha.t with a larger parameter value s is more 
favorable to smalle~' constituencies. 

Comparing the results of Table 3 with the aJlocatioll by the LF AJ in Table 2, we can 
easily recognize that if the parameter value s satisfies 8 < U.5, larger constituencies get more 
seats and smaller ones have less, while if s > 0."1, smaller constituencies obtain more seats 
and larger ones lesE. Thus we can conclude that the P D.M should be taken into account for 
the parameter s such that 0 .. 5 :S 8 :S U.7 since a)aramcter .s less than 0.5 makes the PDM 
too favorable to larger constituencies and 8 larger tha.n U./ makes the method too favorable 
to smaller constituencies. 

Let us look at the relation between apponionment. results and the parameter s for 
0.5 :S "" :S 0.7 into more detail. Firstly, we denote t.he apport.ionlllent results obtained 
from the P D AI wi th parameter .' by the row \·('Ctor A (-') cOllsisting of nine elements such 
that A(8) = (i9, i tl •... , id where i" indicates that i,,-th largest cOllstituency is the small­
est one such that k seats are assigned. Based upon this notation. we obtain A(0 .. 5) = 
(1,5,16,22,42, 70, DD, 127,130), A(0.6) = (1, 5, 1~), 22,10. 70,101. 128, 130), A(0.7) = (1, 4c, 12, 
21,39,70,106,129,130). Also defining the apportionment results by the methods MFM, 
EPM and LFM by A(MFM),A(EPM) and A(LFM), respectively, we obtain A(MFM) = 
(1,5,16,22,42, 70, DD, 127,130), A( EP 111) = ( l ,e •• 15,22, 4U, 7U. 101,127,130), and A( LF M) 
= (1,5,15,22,41,71).101,127,130), respectively. 

From the definition of the vector notatioll of .-l(.s) alld .-l( m) where 0.5 :S 5 ~; 0.7 
and mE {1'vIF1I1, EP1H, LFA!}, we call define the difference between two apportionment 
methods A(x) and A(y) where :/;,y E {.'> I 0 .. 5 :S .s :s U.7} U {MFM. EPM, LFM} as 
follows. 

A(x) - A(y) = (i~. i~, ... ,in - (i0· i~ ..... if) 
= (i~ - i0,i~ - i~ ... ., il - in 

and the distance between these two methods by 

9 

1.'1(·1') - A(1/)1 = L lit: - if I 
(,=1 

Obviously, the distance function is symllletric ~ !lee IA(.I") - .1(.11)1 = 1.4(.1/) - ,-l(.r)1 amI it 
gives an even number since LL=l (iJ; - if) = o. 

From the results of Tables 2 alld :3 we h<l\(' 1.-t(JJ F.\1) - .-l(l:'P,ll)I = 6, IA(LFM)­
A(EPM)I = 2, and IA(LFlvI) - A(M FM)I = L vVe kno\\' from the definition of distance 
that ~ IA( x) - A(y) I indicates the number of constituencies such that two apportionment 
meth~ds A( x) and A( y) give different assignments. Therefore. there exist 6 different a.>,sign­
ments between AIFM and EPM, 4 different assignments bet\\"een MFJJ and LFM, and 
only 2 between LF M and EP M. 

Let us look at the apportionment results A( i;) by the P J).\J into more detail. We know 
that A(0.5) = A(MFM). Our numerical experimellts show that A(EPM) = A(5) for the 
range of 5,0.543:S 8:S 0.6, i.e., the apportionment method EP1H corresponds to the PDM 
for the approximate parameter value .~ such that o.:")n :s ., :s 0.6. Also A( H 1\1 "~1) = A( 5) 
for the range of 8,0.64 :s ,'; :s U.645. i.t .. the apportiullllwllt lllethod H M M corresponds 

,to the PDM for approximately 0.64 :s ' :s O.G45. while .-l(LFJ1) = A(.,) for the range 
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Table 2. Political constituency and final appOl'tiolllllents 

CNST. PPL. GDM lIfFM EPM HMM "Dill LFM CRT 
HI(lD-1 2169716 10 9 9 ,) K 9 () 

FKOK-l 1939788 9 8 8 8 " 1\ 
,. 
.) 

TKYO-11 187.5744 8 8 8 8 I 8 
,. 
.) 

KNGW-2 1828593 8 8 8 8 I 8 
,. 
.) 

CHBA-1 1790189 8 8 8 7 , 8 " .) 

HYOG-2 1755079 8 7 7 7 7 7 " .) 

OSAK-3 1720428 8 7 7 7 7 7 " .) 

KNGW-4 171104.5 8 7 7 7 I 7 4 
KYOT-2 17071.52 8 7 7 I I I " .) 

CHBA-4 168312.5 8 I I 7 7 7 .[ 

OSAK-5 1637539 7 7 7 7 7 I " MIYG-1 1599740 7 7 7 7 () 7 " .) 

TKYO-7 1.565417 7 7 7 I (; I " TKYO-lO 1.5.56469 7 7 7 7 () I ,. 
,) 

KNGW-3 154205.5 7 7 7 () () 7 <I 
SITM-2 1526.507 7 7 () 6 I; () <I 
OSAK-4 1496106 7 () (j (; I; I; <I 
HYOG-l 1410S3·1 6 6 (j I; 15 15 

,. 
.) 

AITI-2 1381:30.5 (j 6 (j (j I; (j <I 
SZOK-l l:370~2:3 6 6 (j I; (; (j !) 

SITI\1-4 1:3(9).57 (j 0 13 I; I; (j .[ 

NARA-l 1:.104~(j(; (j (j (j G ;) (; ;") 

KNGW-l 1281~81 (j .5 ') .5 .) ;) ·1 
GIFU-1 1263,:39 6 ,5 G G .) G ;, 

AITI-4 1230)59 5 G G :) .) G 'I 
HRSM-l 12031136 .5 5 .5 5 G 5 :1 
OSAK-2 1201348 5 5 .5 .5 :) S fi 

SITM-5 1190 l06 .5 5 .5 ') ;) .5 :1 
SZOK-2 1183·1.57 ') 5 :) ~) ') S ~. 

OKNW-I 11791)97 5 5 .5 .5 ') .5 ~. 

OSAK-7 1177-173 .5 .5 .5 .5 .) G 0.1 

SITM-1 1177:247 .5 .5 .5 ') !) .5 .. 
l\lIEE-1 1172·17:3 .5 .5 5 ;) :) !) ~I 

SIGA-1 1155:~44 5 .5 :) :) .) !) ~I 

HKID-5 1131~)04 !) 5 .5 ::; :) ::; ~I 

TKYO-4 1118:220 5 ::; ::; S .) ;) 
, ., 

IBRK-1 11071;26 5 5 .5 ::; S G . 
KMI\1T-1 1097780 .5 5 .5 G .~ S ~I 

TKYO-3 1080·[70 5 5 5 ;') -l 5 
KNGW-.5 1068·100 5 5 5 :j 4 G c' 
AITI-6 10581,80 5 5 4 -I 4 .5 j 

AITI-l 10.5'!;01 5 .5 4 4 .[ ·1 y 

TKYO-2 1054 1:3:3 5 4 4 4 ., ·1 
TCHG-l 10:361i 12 4 4 4 4 I 'I " 

HKID-4 10341,61 4 ., 4 -I -l .[ ;:. 
SZOK-3 1020712 4 4 4 4 I 4 j 

AITI-3 1010H:34 ·1 4 " -I I -I :l 
FKOK-2 991556;3 -I -I -l Y I .[ 5 
AOMR-l 987405 4 4 4 4 I Y 4 
OKYM-2 976010 " 4 4 -I I <1 :.J 

IBRK-3 967446 4 4 <1 4 , .j .5 
NGSK-1 9647.59 4 4 4 4 ·1 4 5 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Parametric Divisor Method for Apportionment 209 

CNST. PPL. GDM MFM EPM [[MM SDiU LF;)[ CRT 
OKYl'vl1 940896 4 t 4 4 4 4 .5 
HYOG-3 931342 4 J 4 4 -1 4 3 
HRSJ\1-3 907690 -1 I 4 -l -l -1 5 
FKOK-1 900537 -1 I 4 4 -1 4 4 
FKOK-3 882371 4 1 4 4 -1 4 5 
SAGA-l 880013 4 ·1 4 -1 -1 4 5 
KYOT-l 879422 4 4 4 -1 4 4 5 
CHBA-:l 876419 4 4 4 4 4 4 5 
TKYO-iJ 873135 -1 ,I 4 4 -1 4 3 
TKYO-) 866342 -1 4 4 4 4 4 3 
KGSJ\1-1 851854 4 ,I -1 -1 4 4 4 
HYOG-l 851743 4 4 -1 4 4 4 4 
YMGC-2 848828 4 -1 1 -l 4 4 .5 
IWTE-l 846892 4 4 1 -1 4 4 4 
KOTI-l 839784 3 4 I I 4 4 5 
TKSM- 834889 3 -1 I ·1 cl ,j 5 
YMNS-J 832832 3 4 I 1 4 4 .5 
TCHG-:~ 8294.54 3 4 j -1 -l 4 5 
FUKI-l 811633 3 :1 .l 3 3 3 4 
OITA-1 816464 3 3 :3 :3 :3 3 4 
TKYO-() 808974 :3 3 :3 :3 :3 :3 4 
CHBA-L 798,130 :3 :3 :\ :1 :3 :3 4 
SIJ\1N-1 794(j29 :3 :3 :1 :1 :3 :3 :) 

ISKW-1 789142 :3 :3 :\ :3 :3 3 3 
FKSl\I-1 771072 :3 3 :3 :3 :3 3 4 
NIGT-3 768503 :3 3 :3 :3 :3 3 5 
HKID-2 767974 3 .3 :3 :) ;) :3 4 
GIFU-2 764797 :3 :3 .. :3 :3 :3 4 
YMGC-l 752799 :3 :3 .. :3 :3 3 4 
FKSM-2 747622 3 :l .. :3 :1 3 5 
AKTA-1 746675 :3 :3 '.' :3 :3 :3 4 c' 

MYZK-l 745710 :3 :3 .', :3 :1 :3 3 
NIGT-l 743154 :) :3 : ~, :3 :3 :3 3 
KMMT-:2 739907 3 :3 :3 :3 3 :3 .5 
GNMA-:: 725265 :l ;) :3 :3 :3 3 4 
OSAK-1 724129 :3 :l :3 :3 :3 :3 :3 
YMGT-1 11.5822 3 :3 :l :3 :3 :l 4 
OSAK-6 710772 3 ;) :\ :3 :3 :3 :3 
AITI-5 709.593 3 3 :3 :3 :3 :3 3 
HRSI'I'l-2 708344 3 3 :3 :3 :3 :l -l 
GNMA-l 659408 3 :l :3 :3 :3 :3 :l 
IBRK-2 649933 3 :3 :3 :3 :3 :3 3 
WI\Yl\I-l 6:397.~6 :3 :3 :3 :3 :3 :3 :3 
NGSK-:2 6:2fJ209 2 :3 :1 :3 :3 :3 .j 

TOYM-1 62722(j '2 3 :1 :3 :\ :3 :1 
TOTR-l 61G024 2 3 :1 :3 :3 :3 4 
SITM-3 600761 2 :3 :1 :3 :3 :3 3 
IWTE-2 .586719 :2 '2 :1 :1 :1 :3 -l 
NGNO-l 585569 2 2 :; :1 :3 :3 :3 
TKYO-l 577806 2 '2 L :3 :l '2 :3 
MIYG-2 .576.5.55 2 :2 L :3 :3 '2 -l 
HKID-3 574984 '2 '2 '2 '2 :1 :2 3 
MIEE-2 .5748:38 '2 :2 '2 '2 :3 '2 -l 
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CNST. PPL. GDM MFM EPM HMM SDM LFM CRT 
NGNO-3 571726 2 2 2 2 :~ '2 4 
FKSM-3 561610 2 2 2 '2 :~ 2 3 
NIGT-2 .560065 2 2 2 2 3 '2 3 
KAGW-l 557122 2 2 2 2 3 '2 3 
EHIM-2 555415 2 '2 2 2 :) '2 3 
YMGT-2 545840 2 2 2 2 :1 '2 3 
AOMR-2 537043 2 2 2 '2 '2 :2 3 
GNMA-2 536586 :2 2 2 :2 :2 '2 3 
EHIM-l 517401 2 2 2 :2 '2 2 3 
AKTA-2 507357 2 2 2 '2 '2 2 3 
NGNO-4 505719 2 2 2 2 '2 :2 3 
TOYM-2 491143 2 2 2 2 2 2 3 
NGNO-2 473913 2 2 2 '2 '2 :2 3 
KGSl'1'1-2 468450 2 2 2 2 '2 '2 3 
KAGW-2 465447 2 2 2 2 '2 2 3 
EHIM-3 457167 :2 2 2 2 '2 :2 3 
TKYO-8 4526.53 :2 2 2 2 '2 :2 :3 
WKYIVI-2 447450 :2 '2 :2 :2 '2 '2 :j 

OITA-2 -B37.50 2 2 2 :2 '2 '2 :j 

MYZK-2 429833 2 :2 :2 :2 '2 :2 :3 
NIGT-4 406748 I 2 2 :! '2 :2 :! 
ISKW-2 363183 1 2 2 '2 '2 :2 2 
KGSM-3 345904 1 I '2 2 2 I 2 
HYOG-5 329052 1 1 1 2 '2 I :2 
KGSM-4 153062 0 I 1 1 J 1 I 
Tot.al .512 512 512 512 5J2 .512 512 
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Table 3. Final apportionments by parametriC' divisor method 

CNST. PARAMETER 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

HIGD-l la la 10 9 9 9 9 9 9 9 8 
FKOI~-l 9 9 9 S 8 8 8 8 8 8 8 
TKYO-ll 8 8 8 8 8 8 8 8 8 7 7 
KNGW-2 8 8 8 8 8 8 8 8 7 7 7 
CHBA-l 8 8 8 8 8 8 8 "i I 7 7 
HYOG-2 8 8 8 8 8 7 7 7 I 7 7 
OSAK-3 8 8 8 7 I 7 7 'j' 7 7 7 
KNGW-4 8 8 7 7 7 I 7 7 7 7 7 
KYOT-2 8 8 7 7 7 I 7 I 7 I 7 
CHBA-4 8 7 7 7 7 7 7 7 7 7 7 
OSAK-.5 7 7 7 7 7 7 'j' 7 7 7 7 
MIYG-l 7 7 7 7 7 7 'j' 'j' 7 6 6 
TKYO-7 7 7 7 i 7 7 7 () 6 (j 6 
TKYO-lO 7 7 7 7 'j' 7 7 I:i 6 6 6 
KNGW-3 i 7 7 i i 7 7 6 () () () 

SITM-2 7 7 7 7 7 7 (j (j 6 6 6 
OSAK-4 7 7 i (i 6 () () () 6 () 6 
HYOG-1 6 6 () (j 6 (j li (j () () 6 
AITI-'2 6 6 6 (j 6 G (j (j () G 6 
SZOK-1 6 6 () G 6 6 () Ij 6 6 G 
SITM-4 6 6 G I; () 6 () 6 6 6 6 
NARA-1 () 6 6 li 6 () () 5 5 5 5 
KNGW-l 6 (j 6 (i .5 5 :) 5 5 5 5 
GIFUl () .5 5 :, 5 5 5 5 :~ 5 5 
AITI-·* 5 .5 .5 " 5 5 -'i 5 5 .5 5 
IIRSI\I-l 5 .5 5 " 5 .5 -5 5 5 -5 5 
OSAh-2 5 5 .5 .5 5 .5 :) :) .5 5 5 
SI1'1\15 5 5 .5 " :) .5 5 :) 5 5 5 
SZOK-2 5 5 5 ;) .5 5 :) -) 5 5 5 
OKNW-1 5 5 5 5 .5 5 5 S 5 :) 5 
OSAI\-7 5 5 5 [) .5 5 :) 5 .) S 5 
SITM-1 5 5 5 S .5 5 ::; S ::; 5 5 
1I1IEE-l 5 5 5 ;) .5 .5 5 5 ') 5 :) 

SIGA-l .5 .5 5 S .5 .5 .) .) S .5 S 
HKID-5 5 5 5 f) S .) .) .) .) .) 5 
TKYO-4 5 5 .5 ;) 5 .5 5 :s .5 :) 5 
ISRK1 5 5 .5 5 5 5 :s 5 .5 5 5 
KMMT-1 5 5 5 ;) 5 5 5 5 5 5 5 
TKYO-3 5 5 5 5 .5 5 5 5 5 4 4 
KNGW-5 5 5 .5 ;) 5 5 .) 

'* ·1 '* 
4 

AITI-G 5 5 .) ;) .5 :) -1 -I I 4 4 
AITI-l 5 5 5 [) .5 .5 -1 

'* 
-'I 4 4 

TKYO-2 5 4 4 S 4 4 .. .j .j 

'* 4 
TCHC-1 4 4 4 4 4 4 ·1 :j .j .* 4 
HKID--1 4 -1 -1 4 4 4 

'* 
.j --l 4 4 

SZOK-3 4 4 4 4 4 
'* 

--l -I -'I --l 4 
AITI-:I .. 

'* 
4 4 4 .. .. ·1 --1 --1 --1 

FKOI<-2 4 4 4 4 4 4 ·1 -'I -'I -1 4 
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CNST. PARAMETER 
0.0 0.1 0.2 0.3 0.4 0.5 O.fl 0.7 0.8 0.9 1.0 

AOMR-l 4 4 4 4 4 4 4 4 4 4 4 
OKYM-2 4 4 4 4 4 4 4 4 4 4 4 
IBRK-3 4 4 4 4 4 4 4 4 4 4 4 
NGSK-l 4 4 4 4 4 4 4 ·1 4 4 4 
OKYM-l 4 4 4 4 4 4 4 4 ·4 4 4 
HYOG-3 4 4 4 4 4 4 4 4 4 4 4 
HRSM-3 4 4 4 4 4 4 4 I 4 4 4 
FKOK-4 4 4 4 4 4 4 4 4 4 4 4 
FKOK-3 4 4 4 4 4 4 4 4 4 4 4 

SAGA-l 4 4 4 4 4 4 4 4 4 4 4 
KYOT-l 4 4 4 4 4 4 4 4 4 4 4 
CHBA-3 4 4 4 4 4 4 4 4 4 4 4 
TKYO-9 4 4 4 4 4 4 4 '1 4 4 4 

TKYO-5 4 4 4 4 4 4 4 cl 4 I 4 
KGSM-l 4 4 4 4 4 4 4 ,1 1 4 -4 
HYOG-4 4 4 4 4 4 -4 -4 ) '1 -4 4 
YMGC-2 4 4 4 4 4 4 4 -I -, 4 4 
IWTE-l 4 4 4 4 4 4 4 4 ., 4 4 
KOTI-l 3 4 4 4 4 4 4 4 ·1 4 4 
TKSM-l 3 3 3 4 4 4 -I I 4 4 4 
YMNS-l 3 3 3 4 4 4 4 4 4 <1 4 
TCHG-2 3 3 3 4 4 4 4 -l I 4 4 
FUKI-l 3 3 3 3 3 3 :3 3 4 3 3 
OITA-l :3 :3 3 3 3 3 :3 :3 :1 :3 :3 
TKYO-fl 3 :3 3 3 3 3 :3 :3 :3 :3 :3 
CHBA-2 :3 :3 :3 :3 3 3 :3 :3 :3 :3 :3 
SIMN-l :3 :3 :3 :3 :3 :3 ;3 :3 :1 :3 :3 
ISKW-l :3 :3 3 :3 :3 :3 :3 :3 :3 :3 :3 
FKSM-l :3 3 :3 :3 :3 :3 :3 :3 :3 :3 :3 
NIGT-3 3 :3 3 3 3 :3 :3 :3 :3 :3 :3 
HKID-2 3 :3 3 3 3 :3 :3 :3 :3 :3 3 
GIFU-2 :3 :3 3 3 :3 :3 :3 :3 :3 :3 :3 
YMGC-l 3 :3 :3 :3 3 :3 :3 :3 3 :3 :3 
FKSM-2 3 3 3 3 3 3 :3 :3 :3 :3 3 
AKTA-l 3 :3 3 3 3 3 :3 3 :3 3 :3 
MYZK-l 3 3 3 3 3 :3 3 :3 :3 :3 :3 
NIGT-l 3 3 3 3 3 3 3 :3 :3 :3 3 
KMMT-2 :3 :3 3 3 3 3 3 :3 3 3 3 
GNMA-3 3 3 3 3 3 :3 3 :3 :3 3 :3 
OSAK-l 3 :3 3 3 :3 :3 3 :3 :3 :3 :3 
YMGT-l 3 3 :3 3 3 :3 :3 :3 :3 :3 3 
OSAK-fl 3 3 3 3 3 3 3 :3 :3 3 3 
AITI-5 3 3 3 3 3 :3 :3 :3 :3 :3 :3 
HRSM-2 3 3 :3 3 3 :3 :3 3 :3 :3 3 
GNMA-l 3 :3 :3 :3 3 3 3 3 :3 3 3 
IBRK-2 3 3 :3 3 :3 3 3 :3 :3 :3 3 
WKYM-l 3 3 :3 3 3 3 3 :3 :3 :3 3 
NGSK-2 2 3 3 3 3 3 3 :3 :3 3 3 
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CNST. PARAMETER 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.S 0.9 1.0 

TOYM-l 2 3 3 3 :3 3 3 3 3 3 3 
TOTR-l 2 2 3 3 :3 3 3 :3 3 3 3 
SITM-3 2 2 2 2 :3 .3 ;J :3 :3 :3 3 
IWTE-2 2 2 2 2 2 :2 :3 3 :3 3 3 
NGNO-l 2 2 2 :2 "2 :2 :3 3 :3 3 :3 
TKYO-l 2 :2 :2 2 :2 :2 "2 :3 3 3 3 
MIYG-2 2 2 2 2 :2 :2 :2 3 3 3 3 
HKID-3 2 2 :2 2 :2 "2 :2 3 3 3 3 

MIEE-2 2 2 :2 :2 :2 :2 "2 :3 3 3 3 

NGNO-3 :2 :2 :2 :2 2 2 :2 3 3 3 3 
FKSM-3 2 2 2 2 2 2 :2 :2 2 3 3 
NIGT-2 2 2 2 2 :2 2 "2 "2 :2 3 3 
KAGW-l :2 2 2 2 2 :2 :2 :2 :2 3 3 
EHIM-2 2 2 2 2 2 "2 "2 2 :2 3 3 
YMGT-:2 2 2 :2 :2 :2 "2 :2 :2 :2 "2 3 

AOMR-:2 2 2 :2 :2 :2 :2 "2 "2 :2 :2 :2 
GNMA-:2 :2 :2 "2 :2 :2 I "2 "2 "2 "2 2 2 
EHIM-l :2 :2 2 :2 :2 I 2 "2 "2 2 2 2 
AKTA-2 2 2 2 :2 :2 :2 :2 :2 :2 :2 2 
NGNO-4 2 2 :2 :2 :2 2 "2 :2 2 2 2 
TOYM-2 :2 2 :2 2 :2 :2 "2 :2 2 :2 2 
NGNO-:2 :2 :2 :2 :2 2 :2 :2 :2 2 :2 :2 
KGSM-2 2 :2 2 :2 :2 2 :2 2 :2 :2 :2 
KAGW-:2 :2 2 :2 2 :2 2 :2 2 :2 :2 2 

EHIM-3 :2 :2 2 :2 :2 :2 "2 :2 :2 :2 :2 
TKYO-S :2 :2 :2 :2 "2 :2 "2 "2 :2 :2 "2 
WKYl\I-:? :2 :2 :2 "2 :2 :2 :2 "2 "2 "2 :2 
OITA-:2 :2 :2 :2 :2 "2 :2 :2 "2 "2 "2 :2 
MYZK-:2 "2 :2 :2 :2 :2 :2 "2 "2 :2 "2 :2 
NIGT-4 1 I 2 2 :2 "2 "2 :2 "2 "2 :2 
ISKW-2 1 1 1 I 1 :2 :2 "2 2 2 2 

KGSM-3 1 1 1 1 1 I :2 :2 2 "2 "2 
HYOG-5 1 1 1 l l l l "2 :2 :2 2 
KGSM-4 0 0 0 0 1 l l l 1 l 1 

Total .512 512 512 512 512 ~12 512 512 512 512 512 

MFM LFM EPM HMM 

'f ~~ ----------. r-.. 
__ ~~I~~~~I~~~I~-~~+I~~~I~~--~>·t 

.5 .55 .6 .65 .7 

Fig. 5 
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of s, 0.51 ::; s ::; 0.54. i.e., the method LFM is equiva.lent to the P D M for a]nroximately 
0.51 ::; s ::; 0.54. 

From these results we can conclude that the correspondence between P D Af and other 
traditional apportionment methods MFM, EPM, HMM. and LFM can be illustrated as 
in Fig. 5. 

6. SUllllllary and conclusion 

In this paper we proposed apportionment method P j) .11 based upon the parameter t 
given in (4.3). As mentioned in sections ,1 and 5. the parametric method P DJ\{ covers all 
six traditionaJ methods G D iv!, M FM, E PM, H M AI, S D;)1, and L F M by cha.nging the 
parameter t from 0.0 to 1.0. The P DNf satisfies the house monotone property fo~' any t such 
that 0 ::; t ::; 1 as it belongs to a divisor method. It does not guarantee the quota property 
as do other apportionment methods (with the exception of the LF/v! ). From the results of 
our numerical experiments a:i illustrated in Fig .. 'J wc can conclude that the apportionment 
method LF Jo,1 is loca ted bet\\'eeJl oH F:H and E P 1\1 frOJll the \'i('wpoint of biasedness to the 
population size of the constituellcy. As history shows (see (.g. [So ~)]). there \';as a harsh 
controversy in the LT.S. Congress in 1900's over whether tlle.\1 F:l1 or the l~·PJ.1 should be 
accepted. Although BaliJlski cllld '{oung [8] says that the ,\1/-',\1 is the only unbiased divisor 
method, we believe that generally the At FA! is still more fa\'orable to larger constituencies 
since most numerical exampl,.':'; violate the quota. pl'Opnty (s('e t.y. [8. 12. 1:3, 14]). 

In conclusion, we believE' that the method LFIH. which of course satisfies the quota 
property, gives a most reasonable assignment of seats to the cOllstituency althougb it does not 
satisfy the house monotone property. We would like to .~trongly recomlllend the P DJo,d with 
the parameter valne 0 . .52 ::; .~ ::; 0.:34 siIlce it gives all1lost the same assignlllent as the LFk! as 
shown in section 5. and importantly. it satisfies the house Illonotone property. Interestingly 
enough, the method P D 1\1 provides a solution to the local and global optimization problems 
given in Corollary 4.2 and Theorem 4.4. 

Presently we are investigating ot.her properties of populatioll lllonotonicity, constituency 
and so on (see e.g. [.5, 8, 11]) for the P D At to see if this met hod can be made to more closely 
satisfy these properties. 
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Appendix 

Proof of Theoreln 2.6 Let constituenc" i he fayorecl over J', th(,1I we have :!:J.. < I' < <b. . 
.J p) - - PI 

SO we need to consider the followillg t\\'o cases (i)-(ii). III each case \\'e show the condition 
that the measure ·Jf inequity after a transfer of one sea t from i to j is larger thall or equal 
to that before the transfer. 

(i) <b. - l' > l' - <!J. 
Pt - 1') 

SUI)I)OSe .1,-1 < l' and dJ +l >1', If dJ +! - l' > I' - ,/,-1, wc neecl to have 
1', - 1'J - I'J - 1', 

cl, cl) + 1 
-<--
Jli Ilj 

Otherwise, i.e., fu. + ~ < 21' + .1. - .1.. we need to haye 
JlI Jl) P, fJ) 

di 1 
-<r+-- .) 
Pi -P, 

(A.l) 

(/1..2) 

Suppose .1,-1 > rand <lJ+1 > r. If ,/J+I 2: ,/,-1, tlte cOllditioll Cdll lw reduced to (A.I). 
p, p) - )1) PI 

Otherwise, a tran:,fer has to be made since r < d,-I < !h, 
p! jJ! 

Suppose <1,-1 < l' and <1]+1 < I'. If '/,-1 < :1,+1, the conclition Cilll be reduced to (A.2). 
PI - ]J] PI - jJ) 

Otherwise, a trall3fer has to be made siuce /' > d,+1 > iL. 
I'J PJ 

(ii) <b. - l' < r - q~ 
Pt 11) 
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S d -I < I d,+1 > . "1 " +1 1 I Uj)j)ose -"- r anc -~ r. It l' - --'-=-- > ~ - ,.. we I}(:,P( to 1a\'(' 
IJ, - })j - PI - p, 

di - 1 cl, 
-- <--'-

Pi p] 

Otherwise, i.e., 1.. + ':!:J.. > :21' + ..!.. - J..., we need to have 
Pt Pl P,}JJ ' 

(A.3) 

(AA) 

Suppose d,-I < l' and ~z.±]. < r. If d,-I < d)+I, the cOllditioll can be reduced to (A.3). 
p, - p) P, - PJ 

Otherwise, a transfer has to be made since ':!:J.. < ")+1 < 1'. 
p) 1') 

Suppose d,-l > l' and .'!.~ > 1'. If d,-l < d,+I, the condition call be reduced to (AA). 
p, p) - p, - 1'1 

Otherwise, a transfer has to be made since r < d,-l < !b.. 
p, PI 

Summarizing the above two cases, if 2p~ ;::: ]J~ ;::: Pj, then the following ba;; to hold 

.r] ;::: .1', -- p~ 

p' 
.r < /' + --'-, - 2 

, 
.c, ;::: .1', -- Ji] 

if .1'; + :t'j ::; 21' 

if 21' ::; .r, + .1.1 ::; ·.h + /J: - //, 
if .r, + .1'.1 ;::: 21' + p: - /, 

(A.5) 

(A.6 ) 

(A.I) 

and if p; > 2pj, only (A.5) and (A.6) haye to hold. If p; < //} ::; 2/J;, then we must have 

if x; + 'Ci ;::: 2r 

if 2r > .1'; + J'J ;::: 2r + p; - p', 
'f' < ) , , I .r, + .r) _ __ 'r + p, - /)) 

and if 2Pi < pi, only (A.8) alld (A.lJ) have to hold. 

(A.S) 

(A.9) 

(A.IQ) 

All relations above have to be considered withill the region of ;r} ::; l' and l' ::; Xi. Thus 
the relation (A .. 5)-(A.IQ) call 1)(' written as (2.:36)-(2.:38). 0 

Proof of Corollary 2.7 Let the identical assignment of seats by UDAl and S'DA! be 
{cli liE S}. Thell it should :iatisf.y the following max-lIlin cOllditions. 

Pi . p, 
max -,-, - < nlln --'-

i c, + 1 - J el} 

f!, . PI 
Illax -I < 111111 --'-

, Cl - ] cl] -- J 

Therefore the cOllditions of both (A.I) and (A.3) can be satisfied for all pairsi and j ill 
S. Thus the allocation gives a stable solution. 0 

Proof of Theorem 2.8 Sillce we ha.ve ':!:J.. < l' < <b. We consider the following three cases j>J - - 1'," - .. 

(i)-(iii) in order t.hat a trander of one seat from Cl Itlore l'avored const.ituency i to Cl less 
favored constituency j should not decrease \ he measure of in<'q1Iity. 
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(i) dj-l < r d]+l > l' 
p. - , PJ --

di d) di - 1 d, + 1 
(- -1')(1' - -):S (I' - ---)(--- - 1') 

Pi PJ Pi p} 

The above relation can be written as follows. 

el, - qi ~ d; -- Cli - I 

Hence using Xi ~ () a.nd '\-J :S 0, we obtain 

for 0 :S ·\~i :S L -1 :S Xj :S 0 

(ii) d.-I> r d]+l > r 
p. 'p]--

(di - Cfi)(qj - d j ) :S (d; - Cl, - 1)(<1.1 - Cf) + 1) 

Hence rewriting tlw above using Xi and X)' we obtaill 

-XiX} :S (Xi - 1)(X) + 1) for X, > 1. -1 :S X} :S 0 

( "') d -1 < d]+l III -'- r, < r 
p. - Pl 

di il) di - 1 cl, + 1 
(- -1')(1' - -):S (1' - ---)(1' + ---) 

Pi P) jii p} 

(cl; - q,)(qj - rij):S (Cf, - cl i + 1)((1.1 - cl, - 1) 

Hence rewriting tlw above llsing Xi and X j • lIT obtai 11 

Thus the relation (2.40)-(2.41) is obtained. 0 

217 

(A.ll) 

(A.12) 

(A.13) 

Proof of Corollary 2.9 The parameter ~ catisfies tIlt' .\1 Fell conditioll for the case 

V(di) = di + 1. Hellce 

P) 1 Pi --<-<--
d 1-'-l I j+2 1 Ci-2" 

and we obtain the following relation. 

for all i.j E S' 

_ 1 
.\ i = cli - (1; < -- 2 

_ 1 
.\.1 = cl, - Cf, ~ --- - 2 

(A.14) 

(A.l.5 ) 

(A.16) 

Considering Xi ~ U and X, :S 0 for applying tile ARPT rule. the region given by (A.15) 
and (A.16) is a stable region. 0 
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Proof of Theorem 3.3 We show that the ivI F M solves the problem PG. If an assignment 
{di liE S} is optimal, then for all di, d, with i =f:. j and di > 0, a trallsfer of a seat from 
constituency i to j canIlot improve the objective criterion, that is, 

di - L dj + 1 ri, cl) 
1-- - rl + 1-- - 1'121- -1"1 + 1- - rl (A.17) 

Pi ]i) Pi p] 

Suppose that the constituencyi is favored over j, the inequality (A.17) can be written 
as follows. 

di - 1 dj + 1 di d) 
r - -- + -- - r > - - r+ 'J" --

Pi p} - Pi Jl) 

The above inequality indicates that all optimal assiglllllPnt {il, I lE.':>'} satisfies 

. P, p, 
mill --1 2 max --'-1 
d,>O di -- 2" d,?O cl, + 2" 

which is the max-min inequality characterizing the M FJ'vI. 

(A.18) 

(A.H)) 

Conversely, suppose the assignment {cli liE S} satisfies the J1 FM rna,x-min inequality 
(A.19). Let {d; li E S} be another assignment different from {d, liE ,':>'} , then we define 
sets of suffices S+ and S- itS in (3.12) and denote {d: liE S} as in (:3.13), Thell we need 

- to show the following relation. 

~ d; ~ di 
~ 1- - 1'1 2 ~ 1- -J"I 
iES Pi iES Pi 

(A.20) 

From (A.19) we have 

i E S+,j E ,,)'-- (A.21) 

Using the above relatioll and also using 

di - ~ . d) + ~ 
max --~ < mm ---~ 

- Pi - p) 

we obtain the following. 

~ d; ~ cl, 
~ 1- -1'1- ~ 1- - 1'1 
iES Pi iES Pi 

L Idi --(X, - 1'1 + L Idj- ij) -1'1- Lld, - 1'1 
iES+]h )ES- Pj ,~s+us- P, 

= L (Xi + L ;:i) 20 
IES+ Pi jES- p) 

Thus the relation (A.20) can be obtained. That the M F.H gives an optimaJ solution to 
the problem PG can be proved in a similar way. D 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Parametric Divisor Method for Apportionment 219 

Proof of Theorem 3.4 If an assignment {d; liE S} is optima.!, then for all cli,dj with 
i =I- j and cli > 0 .. a transfer of a seat from any constituency i to j cannot improve the 
objective criterion, that is, 

(A.22) 

Namely, 
2 2 

Pi > Pj 

dj(d, - 1) - dj(d) + 1) 

Pi > P.J 

Jdj(d j -1) - Vd) (d) + 1) 
(A.23) 

Thus we obtain the following. 

(A.24) 

Conversely, suppose the assignment {cl; 1 i E: S} satisfif's the fc'P,H max-ll1in inequality 
(A.24). Let {cl; 1 i E .'l} be another assignment differen t from {el, 1 i E S}. Defining sets of 
suffices 5+ and S'-- as lfl (3.12) and denote {d; 1 i E S·} as in (:3.1:3), we lleed to show the 
following relation. 

.) ,) 

L Pi ,~p~. -> ) -
1, - L-.J d 

E c' G i-c' ./ 1, .... J 1[=0 

(A.25) 

Namely, we need to have 

(A.26) 

From (A.24) we have 

Thus the inequality (A.26) is obtained just by adding I inequalities with the following form. 

PT p2 -,----,:.-'---- < ) 
di(dj + Cli) - dJ(d, - :Jj ) 

i E . .,+, j E . ..,.- (A.27) 

Thus the proof is complete. 0 

Proof of Theorem 3.5 If an assignment {cl, 1 i E."·} is optimaL then for all dj,d) with 
i =I- j and di > 0, a transfer of a seat from allY constituellcy i to j callnot improve the 
objective criterion, that is, 

I Pi 1 1 Pj 1 1 Pi ·1 l}Jj I ---5 + ---82: ---' + ---' 
d; - 1 d) + 1 di d) 
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Without loss of genera.lity, we can assume that ~ 2: s 2: T.,i.f., constituency i is favored 

over j. Then we have 

Pi Pj Pi p) ---s+s--->s--+--s 
d; -- 1 dj + 1 - d; d) 

(d; - t)Pi > (d) + ~)p) 
di(di - 1) - d)(dj + 1) 

The above inequality implie, that for any i, j E S 

(di + t)p; . (d) - 4)p) 
max < mm -

i di(di + 1) - j dj(d) -1) 

which is the max-mill inequ,~.lity that characterizes the H M M method. 

(A.28) 

(A.29) 

Conversely, suppose that {d; 1 i E S} satisfies the EP M max-min inequality (A.29). Let 
{di 1 i E S} be another assignment different from {di 1 i E 5}. Defining sets or suffices S+ 
and S- as in (3.12) and denote {di liE S} as in (3.1:3), we Heed to show the following 
relation. 

I 

"" IPi I "" I
Pi 

I Lt --8 2: Lt --8 

iES d'iES cli 

Namely, we need to show 

"" I Pi I"" I pj "" I Pt I Lt --- -- 8 + Lt . - si 2: Lt - - 8 
iES+ di + Ui iES- d) - i3) iES+US- di 

,,---- 1 Pi I"" Pi Lt -- - 8 + Lt 1- - -"I 
iES+ di + ai iES+ d t 

::; L I PJ!. - 81 - L I
Pi 

- .sI 
iES- d) -3) iES- cl, 

Without loss of generality, we can assume that 

_l_?'_ < p, < .s < ]J) < ])} 
d, + 0, -- d, - - d) - dj - ,d] 

Hence the above inequality (A.31) can be written as follows. 

Namely, we have 

From the max-min inequa.lity (A.29) for the H M M, we ha.ve for 0i 2: 1 and (3) 2: 1 

(di + Y)Pi 
di(cli + a;) 

(A.30) 

(A.31) 

(A.32) 

(A.:33) 

(A.:34) 
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Hence we also have the following relation. 

i E S+,j E S- (A.35) 

Therefore, by adding IS+I inequalities from the l,~ft and IS-I inequalities from the right, we 
obtain the relation (A.34). 0 
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