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Abstract We consider a generalization of the classical traveling salesman problem (TSP) called the prece­
dence constrained traveling salesman problem (PCTSP), i.e. given a directed complete gra.ph C(ll, E), a 
distance Dij on each arc (i,j) E E, precedence constraints -< on ll, we want to find a minlll1Um distance 
tour that starts node 1 E ll, visits all the nodes in V - {1}, and returns node 1 aga.in so that node i is 
visited before node j when i -< j. We present a branch and bound algorithm for the exact solutions to 
the PCTSP incorporating lower bounds computed from the Lagrangean relaxation. Our lower bounding 
procedure is a generalization of t he restricted Lagrangean method that has been successfully adapted to the 
TSP by Balas and Christofides [2]. Our branch and bound algorithm also incorporates several heuristics and 
variable reduction tests. The computational results with up to 49 nodes show that oUl" algorithm computes 
exact solutions to several classes of precedence constraints wit.hin acceptable computational requirements. 

1. Introduction 

Consider the following generalization of the traveling salesman problem (TSP). 

( Precedence Constrained Traveling Salesman Problem: PCTSP) 
Given a node set V, n =1 VI, an arc set E, a directed complete graph G(V, E), a distance D jj 

on each arc (i, j) E E, precedence constraints ~ on V, we want to find a minimum distance 
tour that starts node 1 E 'V, visits all the nodes in V - {I}, and returns node 1 again so 
that node i is visited before node j when i ~ j. 

Several applications of the vehicle routing problem such as the dial-a-ride routing problem 
(Jaw et al. [17], Psaraftis [2'7], [28], [29]) and the bus routing problem (Stein [31]' Wren and 
Holiday [36]) includes precedence constraints between nodes. Although several variants of 
the vehicle routing problem have been considered in literature, researches for the PCTSP 
are few in spite of its practical importance. The objective of this paper is to develop an 
efficient branch and bound algorithm for the PCTSP incorporating the restricted Lagrangean 
method, that has been successfully applied to the TSP by Balas and Christofides [2]. 

The previous works for the PCTSP are summarized as follows. 
Kalantari et al. [18] provided a branch and bound method based on the algorithm for 

the TSP developed by Little et al. [22], and could solve the 30-node problems with the 
asymmetric distance matrix. Suzuki and Nomura [33] also developed a branch and bound 
algorithm using bounds derived from the arborescence problem or the shortest path problem, 
and could solve 3D-node problems with the sparse distance matrix. In their model, nodes are 
permitted to be visited more than twice and the starting and ending points are prespecified 
(this problem can be reduced to the ordinary PCTSP using a simple transformation). 

Fischetti and Toth [11] proposed an algorithm for the PCTSP based on the additive 
bounding procedure. Their algorithm named bound from variable decomposition can be seen 
as the same algorithm as our bounding procedure 1. The only difference is that they use 
the shortest path problem as a subroutine instead of using the depth first search as in our 
algorithm. Since the ordinary shortest path algorithm requires D( n 2 ) operations where n 

152 

© 1991 The Operations Research Society of Japan



Precedence Constrained TSP 153 

is the number of nodes, and the depth first search runs in O(Eo) where Eo is an arc set 
of the admissible graph that will be defined later, our algorithm works much faster when 
the admissible graph is sparse, i.e. there exist fewer arcs in the graph compared to n2

• 

They derived another bounding procedure named bound from disjuction that can be easily 
observed to be identical to the third bounding procedure developed by Balas and Christofides 
[2]. 

A closely related and important special case of the PCTSP is the dial-a-ride routing 
problem (DARP) in which the precedence constra.ints are represented by pick-up and delivery 
points. Psaraftis [27] developed an exact solution method using a dynamic programming 
algorithm for the DARP whose time complexity is O(n2 3n

), and solved 20-node problems. 
Several heuristic algorithms have been proposed for the DARP (Psaraftis [28], [29], Jaw 

et al. [17], Stein [31]). Psaraftis proposed the minimum spanning tree (MST) heuristic 
and the local search (k-opt) procedure specialized to the DARP. The MSP heuristic runs 
in O(n2 ), while the k-opt procedure runs in O(nk). Since the computational complexity of 
k-opt procedure grows in exponential order in k, he recommends k = 2,3 in practice. Jaw 
et al. [17] provides an insertion heuristic and Stein [31],[32] provided several algorithms that 
run asymptotically well. 

The organization of the paper is as follows: In section 2 several valid inequalities that 
represent the precedence constraints are derived. In section 3 these valid inequalities are 
taken into the Lagrangean function using speciallly designed heuristics called bounding pro­
cedures. In section 4 the branch and bound algorithm incorporating several lower bounding 
procedures, heuristics and variable reduction tests is described. Results of the numerical 
experiments are included in section 5. Section 6 contains conclusions. 

2 Formulation 
We give below an integer programming problem of the PCTSP. 

(PCTSP : Formulation) 

(1) 

subject to 

(2) 

(3) 

(4) 

(5) 

(6) 

where 

(7) 

mm L L DijXij 
iEV jEV-{i} 

LXi) = 1 Vi E V, 
iEV-{i} 

L Xli = 1 Vi E V, 
jEV-{i} 

LLXij ~I S 1-1 'VS cV,S:f= 0, 
iES iES 

Tour satisfies all precedence relationship, 

Xij E {O, I} V{l:,j) E E, 

arc (i, j) E E is contained in the solution 
otherwise. 
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Feasible Tour Infeasible Tour 

Figure 1: Derivation of Formulation 1 

In the formulation above, equalities (2) and (3) are degree constraints. Constraints (4) 
prohibit two or more disjoint cycles. Constraints (5) represent precedence constraints be­
tween nodes. 

We must rewrite the precedence constraints (5) using Xij to complete the formulation. 
The precedence constraint q ~ r can be represented as follows: 

1. Set formulation For all S S; V, q E S, 1 E S, r ft S, there exists an arc from S - {I} 
to V - S contained in the tour (see Figure 1). 

2. Path formulation 

(a) Any path in the feasible tour with starting node r and ending node q must contain 
node 1. 

(b) Any path in the feasible tour with starting node 1 and ending node r must contain 
node q. 

(c) Any path in the feasible tour with starting node q and ending node 1 must contain 
node r. 

3. Articulation node formulation 

(8) 

(a) In the feasible tour the path with starting node 1 and ending node q and the path 
with starting node q and ending node r do not intersect each other. 

(b) In the feasible tour the path with starting node 1 and ending node q and the path 
with starting node rand ending node 1 do not intersect each other. 

(c) In the feasible tour the path with starting node q and ending node r and the path 
with starting node r and ending node 1 do not intersect each other. 

The integer programming representation of the set formulation is 

L L Xij ~ 1 VS C V,l E S, Vq E S, Vr ft S, q ~ r. 
iES-{l}jEV-S 

Theorem 1 Constraint (8) is valid for the PCTSP. 

Proof: Assume that (8) is not satisfied. Then, the only arc emanating from S is from 
node 1; all paths from node q to node r visits node 1. This means the precedence constraint 
is not satisfied. Thus (8) is a valid inequality for the PCTSP. I 
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Figure 2: Derivation of Formulation 3.{a) 

We derive the bounding procedure 1 that uses inequality (8) to improve the lower bound 
in subsection 3.2. 

Using 2.{a), we can represent the precedence constraint as follows: 

(9) L Xii ~I A{p) 1 -1 Vp E P{r t-+ q, 1), "Iq E V, Vr E V, q -< r, 
(i,i)EA(p) 

where P{a 1-+ b, c) is a set of all paths from node a to b that do not visit node c, and A{p) 
denotes a set of arcs in path p. 

Theorem 2 Constraint (9) is valid for the PCTSP. 

Proof: We prove the theorem by showing the contraposition. Assume that (9) is not 
satisfied. Then we lead that there exists pE P{,' 1-+ q, 1) such that 

(10) L Xii ~I A{p) I, 
(i,j)EA(p) 

which implies there exists a path from node r to node q that does not traverse node 1. Since 
any feasible tour must visit node 1 exactly once" there must be a path from node q to node 
r that contains node 1; this means that precedence constraint q -< r is not satisfied. Thus 
(9) is a valid inequality for the PCTSP. I 

Similarly, 2.{b) and 2.{c) can be represented as inequalities using Xij. The bounding 
procedure that takes this type of inequalities t.o the Lagrangean function is described in 
section 3.3. 

We then represent 3.{a) as valid inequalities. For each k E V - {1,q,r}, define the 
following four sets: 

1. '71 C V, 1 E '71> k, r (j. '71, 

2. '72 C V, q E'72, k, r (j. '72, 

3. '73 C V, q E'73, 1, k (j. '73, 

4. '74 cV, rE '74, l,k (j. '74. 

Then the statement 3.{a) is true if and only if the following four events occurs simultane­
ously: 
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1. There exists at least one arc emanating from 171 into V - 171 - {k, r}, or there exists at 
least one arc emanating from 173 into V - 173 - {I, k} (see Figure 2) 

2. There exists at least one arc emanating from 171 into V - 171 - {k, r}, or there exists at 
least one arc going into 174 from V - 174 - {I, k} 

3. There exists at least one arc going into 172 from V - 172 - {k, r} or there exists at least 
one arc emanating from 173 into V - 173 - {I, k} 

4. There exists at least one arc going into 172 from V - 172 - {k, r} or there exists at least 
one arc going into 174 from V - 174 - {I, k} 

Though we can derive four classes of inequalities corresponding to the four events above, 
for simplicity, we derive one class of inequalities corresponding to the first event. 

(11) X> 1 
'} -

iE'11 jEV-'11-{k,r} iE'13 jEV -'13-{k,l} 

V171 C V, 1 E 171, k f/. 171, r f/. 171, V173 C V, q E 173, k f/. 173, 1 f/. 173, 

Vq E V, Vr E V, q ~ r, Vk E V - {I, q, r} 

Before proving the validity of (11), we define the cutset that will be sometimes used in the 
following argument. For any SI, S2 ~ V, SI n S2 = e, the set of arcs {( i, j) EEl i E SI, j E 
S2} is called a directed cut set or briefly a cutset, and denoted by (SI, S2). 

Theorem 3 Constraint (11) is valid for the PCTSP. 

Proof: Assume that (11) is not satisfied. Then all the variables Xij corresponding to 
arcs in cutsets (171, V - 171 - {k, r}) and (173, V - 173 - {k, I}) are O. This implies that a path 
from node 1 to node q and et path from node q to node r intersect each other, i.e. contain 
the same node, say k. This means the tour is infeasible. Thus (11) is a valid inequality for 
the PCTSP.I 

Validity of other types of inequalities can be proved similarly; hence omitted. We can 
derive eight types of inequalities from 3.(b) and 3.(c) using similar argument above, but they 
are too lengthy to describe here. The bounding procedure that uses the inequalities derived 
from 3.(a), 3.(b) and 3.(c) is described in section 3.4. 

3 Lower Bounding PrO(~edures 
3.1 Restricted Lagrangf~an Relaxation 

In this subsection, we briefly review the restricted Lagrangean approach introduced by 
Balas and Christofides [2]. 

Removing (4),( 5) from the formulation of the PCTSP, we can get an assignment problem 
(AP) that can be solved using a primal-dual algorithm (Kuhn [20]) in O(n3 ) time. 

Let us assume that relaxed constraints (4) and (5) are represented as 

(12) L L a!jXij ~ a~ Vt E T. 
iEV jEV 

Then we can get the following Lagrangean dual problem of the PCTSP. 

(LDP : Lagrangean Dual Problem of the PCTSP) 

(13) max{L(w) I w ~ O}, 
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where W is a non-negative vector whose t-th component is a multiplier Wt corresponding to 
inequality (12), and 

(14) L(w) = min E E(Dij - E Wta!j)Xij + E wta~ 
iEV jEV tET tET 

subject to (2),(3),(6). 
Of course the Lagrangean dual (13) may be solved using the subgradient optimization 

technique (see for example [30]). In this case, however, the number of components of the 
vector W is an exponential number; such a procedure is computationally expensive. There­
fore, we solve the restricted version of the Lagrangean dual problem. 

Let us denote the optimal solution of the AP by Xi) = 1, 'V( i, j) E E, and the optimal 
multipliers by Ui, 'Vi E V and Vj, 'Vj E V corresponding to the constraints (2) and (3), 
respectively. Then we restrict the dual variables to satisfy the following two conditions: 

Condition I ( Dual Feasibility): 

(15) Dij ~ Ui + Vj + E Wta!j 'Vi E V, 'Vj E V, 
tET 

Condition 11 ( Complementary Slackness ): 

(16) Xi; > 0 implies (i, j) E Eo, 

where 

(17) Eo = {( i, j) EEl D jj = Uj + Vj + E wtaL}· 
tET 

Then the bound computed from the restricted Lagrangean dual is 

(18) E Ui + E Vj + ~= WtaL 
iEV jEV H,T 

and the reduced cost Di; is 

(19) 

When we can add the inequality (12) to the objective function without violating the 
dual feasibility and complementary slackness conditions, and the corresponding multiplier 
Wt is positive, we say that Wt can be applied to (12). We also define the admissible graph 
Go(V, Eo) whose arc set Eo is defined in (17). 

The restricted version of the Lagrangean dual problem of the PCTSP can be solved us­
ing specialized adjustment heuristics called bouncling procedures. Balas and Christofides [2] 
used three types of subtour elimination constraints to get tight lower bounds for the TSP, 
and derived several bounding procedures for the TSP. We use several forms of precedence 
constraints that can be added without disturbing dual feasibility and complementary slack­
ness conditions, and give three bounding procedures that will be described in the following 
subsections. 
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Figure 3: Cut Set (S - {I}, V - S) 

3.2 Bounding Procedure 1 
The first procedure, called the bounding procedure 1, uses the precedence constraints 

derived from the set formulation. The Lagrangean multiplier to the constraint (8) can be 
determined based on the following theorem. 

Theorem 4 A positive multiplier can be applied to the inequality (8) if and only if 

(20) (S - {I}, V - S) n Eo = 0 

is satisfied. Furthermore, if the condition above are satisfied, the multiplier 

(21) w = min {Dij I (i,j) E (S - {I}, V - S)} 

can be applied to the inequality (8). 

Proof: Suppose that there exists a set S satisfying (20). Then the positive multiplier 
defined by (21) can be applied to all arcs in the cutset (S - {I}, V - S) without reducing any 
negative reduced costs, and obviously the conditions I and 11 of the restricted Lagrangean 
method are satisfied. Assume that (S - {I}, V - S) n Eo f. 0. Then it is easily seen that a 
positive multiplier cannot be applied to the inequality (8). This proves the theorem. I 

To improve the lower bound we must find a cutset (S - {I}, V - S) that contains no arc 
in Eo (see Figure 3). This can be done by the depth first search (see for example [34]) from 
node q on Go - {I} (a subgraph of G(V, E) deleting node I and all arcs connecting node 
1). More precisely, the bounding procedure 1 can be described as follows. (in this paper, we 
adopt Pidgin-Algol [1] to describe the lower bounding procedures.) 

Algorithm: Bounding Procedure 1 (BPl) 
Input: node number n, reduced cost matrix [Dij] , admissible graph Go(V, Eo), precedence con­
straints --<, node 1 E V . 
Output: new reduced cost matrix [Dij] , LB!. 
begin 
set LBl := OJ 
for all q --< r do 

begin 

initialize the reachable set S := {q}j 
while r ~ S do 

begin 
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end 

end 

end. 

Precedence Constrained TSP 

G1 := Go - {I}; 
find a reachable set 5 from node q on the admissible graph 
G1 using the depth first search; 
w:= min{Dii I (i,j) E (5, V - 8 - {l})}j 
Dij := Dii - w V(i,j) E (5, V - 5 - {l})j 
LB1 := LB1 + Wj 

add the arcs that a.ttains minimum in (21) to Eo 

159 

The number of operations of the above procedure is dominated by the order of the depth 
first search and the number of arcs added to Go in the course of the procedure. Since the 
number of precedence constraints is O{n2

) and for each precedence constraint the depth first 
search runs in O{n2), the complexity of the former part is O{n4 ). Since the number of arcs 
added to Go must be less or equal to n2 in the worst case and the operation for finding an 
arc with the minimum reduced cost requires O{n), the complexity ofthe latter part is O{n3 ). 

Thus the overall complexity of the bounding procedure 1 is O{n4 ). 

3.3 Bounding Procedure 2 
We derive the second bounding procedure called to bounding procedure 2 using the prece­

dence constraints derived from path formulation 2.{a), 2.{b) and 2.{c). Since the structure 
of inequalities are about the same, we describe how to adjust the multiplier to (9) only. 

We rewrite (9) with a standard form of the restricted Lagrangean method. 

(22) L Xii ~ 1- I A{p) I 
(i,j)EA(p) 

Vp E P(,· t--t q, 1), Vq E V, Vr E V,q -< r 

To describe the bounding procedure 2, we use several notations. We express our second 
bounding procedure in terms of the assignment tableau of the Hungarian algorithm. The 
tableau is defined as the ordered pair of V. A line is defined as a row or a column of the 
tableau, and a cell of the tableau is the intersection of a row and a column. Since the cells 
correspond to the arcs of G{V, E), we denote them in the same way. We call that a set of 
lines L covers cell (i, j) when L contains column i or row j. 

The bounding procedure 2 is based on the following theorem. 

Theorem 5 A positive multiplier can be applied to the inequality (22) if and only if 
there exists a set L of lines and a path p E P(r H q, 1) such that 

i every cell (i, j) E A{p) is covered by L exactly once, 

ii no cell (i, j) that satisfies Dii = 0 for all (i, j) ~ A(p) is covered by any line in L. 

Proof: Suppose that there exists a line set L consisting of row set I and column set 
J which satisfies i a.nd ii . A positive multiplier '.'J) can be applied to (22); w is added to all 
(i, j) E A(p). Then Ui and Vi is modified as follows: 

Ui := Ui + w Vi E I, 
Vi := Vi + w Vj E J. 

It is easily seen that the conditions above guarantee the dual feasibility, i.e. all reduced costs 
are non-negative and complementary slackness condition, i.e. if Xii = 1 then Dij = O. This 
proves 'if' part of the theorem. 
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Next, assume that a positive multiplier w can be applied to (22). Then we must increase 
Ui + Vj by w to keep complementary slackness condition. This implies that i must be sat­
isfied. Then suppose that ii is not satisfied, then no positive multiplier can be applied to 
(22). This proves 'only if' part of the theorem. I 

Condition ii in the theorem above suggests that we can restrict our search on the arc set 

(23) Ep = {(i, j) E Eo I Dik =1= 0, 'rIk E V, k =1= i, D"j =1= 0, 'rIk E V, k =1= j} 

when finding path p to improve the lower bound. A candidate path p is the shortest path 
from r to q on G(V, Ep). We use the breadth first search [34] for finding such a path. In the 
sequel we refer this path to the precedence violating path . 

Given a path p, lines are selected using the following heuristic procedure in which we 
select a line ( row or column) that attains the maximum increase of the lower bound. 

Procedure: Line Selection 
Input: G(V,E), reduced cost matrix [bij], precedence violating path p. 
Ou tput : row set 1*, column set J*. 
begin 
set 1* := 0, J* := 0; 
for all (i,j) E A(p) do 

end. 

begin 

end 

a := minkEV-{j} Pik; 

b := minkEV-{i} Dkj ; 
if a ~ b then 1* :=: 1* U {i} else r := r u {j} 

The lines selected by the procedure above may contain the same cell more than once. 
Therefore, we must determine the Lagrangean multiplier w as follows: 

(24) w = min { . min(i,j)EU*,J*) Dij /2 D- } . 
rrnn(i,j)EU* ,v -J*)u(V -1* ,J*) ij 

The bounding procedure 2 can be described as follows: 

Algorithm: Bounding Proc€,dure 2 (BP2) 
Input: node number n, reduced cost matrix [bij ], admissible graph Go(V, Eo), precedence con­
straints -<, node 1 E V . 
Output: new reduced cost matrix [bij ] , LB2. 
begin 
set LB2 := 0; 
for all q -< r do 

begin 

find a path p from r to q on G(V, Ep) - {I} using the breadth first search; 
find 1* and r using procedure Line Selection; 
compute w using (24); 
change reduced costs as follows: 

iJij := iJij - w V(i,j) E (/*, V - r) u (V - 1*, r); 

LB2 := LB2 + w; 

add the arcs that attain minimum in (24) to Eo 
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end 

end. 
We can estimate the number of operation required as in the bounding procedure 1. Since 

the number of precedence constraints is O(n2 ), and both the breadth first search and proce­
dure Line Selection run in O(n2

), the overall complexity of bounding procedure 2 is O(n4
). 

3.4 Bounding Procedure 3 
The third procedure, called the bounding procedure 3, uses the precedence constraints 

derived from 3.(a), 3.(b) and 3.(c). Since the structures of the inequalities are about the 
same, we describe how to adjust the multipliers to (11) to increase the lower bound. The 
Lagrangean multiplier to the constraint (11) can be determined based on the following the­
orem. 

Theorem 6 A positive multiplier can be applied to the inequality (Il) if and only if 
K1 n Eo = e and 1(2 n Eo = e, where 

(25) K1 = (rh, V - T}1 - {k,r}) 

and 

(26) K2 = (T}3, V - T}3 -- {k, I}). 

Proof: Suppose that K1 n Eo = e and K2 n Eo = e are satisfied. If we set w = 
min(i,j)EK1UKl Dij , then at least w/2 can be applied to (11). This proves 'if' part of the 
theorem. 

Next assume that K1 n Eo #- e or K2 n Eo 1~ 0. Then it is easily seen that no positive 
multiplier can be applied to (11). This proves 'only if' part of the theorem. I 

We first find the cutsets K1 and K2 using the same technique as in the bounding proce­
dure 1. Then the multiplier is determined as follows: 

(27) w = min { ~n(i,j)EKlnKl Dij /2 D- }. 
mm(i,j)EKluKl-KlnKl ij 

The bounding procedure 3 can be described as follows: 

Algorithm: Bounding Procedure 3 (BP3) 
Input: node number n, reduced cost matrix [Di }), admissible graph Go(V, Eo), precedence con­
straints --<, node 1 E V . 
Output : new reduced cost matrix [Dij) , LB3. 
begin 
set LB3 :== 0; 
for all q --< r do 

begin 

for all k E V - {1, q, r} do 

begin 

find a reachable set "'1 from node 1 on Go - {r, k}; 
find a reachable set "'3 from node q on Go - {I, k }; 
Let K1 = (1711 V -171 - {k,r}); 
Let K2 = ("'3, V -"'3 - {k, I}); 
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end 

end 

end. 
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compute w using (27); 
change reduced costs as follows: 

D;j :== D'j - W V(i,j) E (/*, V - J*) u (V - /*, J*); 

LB3 :== LB3 + w; 
add the .LICS for which the minimum in (27) is attained 
to Eo 

We can estimate the number of operations as in the bounding procedure 1. Since the 
number of precedence constraints is O( n2 ) and for each precedence constraint and for each 
k the depth first search runs in O(n2 ), the overall complexity of bounding procedure 3 is 
O(nS). 
3.5 Numerical Example 

To illustrate the bounding procedures described above we give a small example. Consider 
the 10 node PCTSP with distance matrix [D;j] shown in Table 1, and precedence constraints 
5 -< 6, 4 -< 7, 4 -< 8, 1 -< j for all j E V - {I}, i -< 10 for all V - {10}. 

The optimal assignment is < 1,4,3,6,8,5,2, 10, 1 > and < 7,9, 7 > and its solution value 
is 172. The reduced cost matrix after solving the assignment problem is shown in Table 2 
and the corresponding admissible graph in Figure 4. 

Table 1: Distance Matrix[D;j] 

1 2 3 4 5 6 7 8 9 10 
1 - 97 83 21 63 - - - 39 -
2 - - 80 73 12 25 73 8 67 27 
3 - 89 - 79 47 7 59 90 78 85 
4 - 45 13 - 78 90 87 96 30 -
5 - 22 36 53 - 60 35 39 24 -
6 - 82 97 58 - - 10 15 94 74 
7 - 72 81 - 44 12 - 60 13 86 
8 - 77 59 - 14 75 48 - 44 65 
9 - 72 97 24 92 26 40 84 - 96 
10 0 - - - - - - - - -

Table 2: Reduced Cost Matrix [D;j] (after solving the 
assignment problem) 

1 2 3 4 5 6 7 8 9 10 
1 - 55 41 0 21 - - - 0 -
2 - - 72 86 4 36 70 0 62 0 
3 - 63 - 74 21 0 38 64 55 40 
4 - 32 0 - 65 96 79 83 20 -
5 - 0 14 52 - 57 18 17 5 -
6 - 67 82 64 - - 0 0 82 40 
7 - 56 65 - 28 15 - 44 0 51 
8 - 63 45 - 0 80 39 - 33 32 
9 - 27 52 0 47 0 0 39 - 32 
10 0 - - - - - - - - -
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Bounding procedure 1 (BPl) 
For 5 -( 6, we can find reachable set S = {I, 2, 5., 8, 10}. Thus for cutset (S - {I}, V - 8) = 

({2,5,8,10},{3,4,6,7,9}) we can apply the multiplier w = 5(= D59 ) to (8); arc (5,9) is 
added to Go. The lower bound after the bounding procedure 1 becomes 177, the reduced 
cost matrix is shown in Table 3 and the corresponding admissible graph in Figure 5. 
Bounding procedure 2 (BP2) 

For 5 -( 6, the breadth first search from node 5 on G{V, Ep) finds the precedence violating 
path p = {5, (5, 2), 2, (2, 10), 10, (10, 1), 1); a positive multiplier can be applied to the valid 
inequality of type 2.{c) with P(5 1-+ 1,6). The cells (5,2), (2,IO), (10,1) corresponding to 
arcs in p are covered by row set I* = {IO} and column set J* = {2,IO}. The multiplier 
w = 27(= 1)92) can be applied to (22). The lower bound after the bounding procedure 2 
becomes 204, the reduced cost matrix is shown in Table 4 and the corresponding admissible 
graph in Figure 6. 
Bounding procedure 3 (BP3) 

For 5 -( 6 and k = 2, we can get '11 = {I, 3, 4, 7, 9} and TJ3 = {3, 4, 5, 6, 7, 8, 9}; 
cutsets become Kl = ({I, 3, 4, 7, 9}, {5, 8}) and K2 = ({3, 4, 5, 6, 7,8, 9}, {I, 1O}). We 
can apply w = 5{:= 1)8.10) to (11). Similarly, for 5 -( 6 and k = 9, we can get cut­
sets Kl = ({1,3,4},{2,5,7,8,10}) and K2 = ({2,5,8,1O},{3,4,6,7}). The multiplier 
w = 5(= 1)42) can be applied to (11). The lower bound after the bounding procedure 3 
becomes 214, the reduced cost matrix is shown in Table 5 and the corresponding admissible 
graph in Figure 7. 

Table 3: Reduced Cost Matrix [1);j] (after BP1) 

1 2 3 4 5 6 7 8 9 10 

1 - 55 41 0 21 - - - 0 -
2 - - 67 81 4 3.1 65 0 57 0 
3 - 63 - 74 21 I) 38 64 55 40 
4 - 32 0 - 65 96 79 83 20 -
5 - 0 9 47 - 5-2 13 17 0 -
6 - 67 82 64 - - 0 0 82 40 
7 - 56 65 - 28 15 - 44 0 51 
8 - 63 40 - 0 7'5 34 - 28 32 
9 - 27 52 0 47 I) 0 39 - 32 
10 0 - - - - .. - - - -

Table 4: Reduced Cost Matrix [1);j] (after BP2) 

1 2 3 4 5 I) 7 8 9 10 
1 - 28 41 0 21 .. - - 0 -
2 - - 67 81 4 31 65 0 57 0 
3 - 36 - 74 21 I) 38 64 55 13 
4 - 5 0 - 65 96 79 83 20 -
5 - 0 9 47 - 52 13 17 0 -
6 - 40 82 64 - .. 0 0 82 13 
7 - 29 65 - 28 15 - 44 0 24 
8 - 36 40 - 0 75 34 - 28 5 
9 - 0 52 0 47 I) 0 39 - 5 
10 0 - - - - .. - - - -
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Table 5: Reduced Cost Matrix [Djj] (after BP3) 

1 2 3 4 5 6 7 8 9 10 
1 - 23 41 0 11 - - - 0 -
2 - - 62 76 4 26 65 0 57 0 
3 - 31 - 74 11 0 38 54 55 8 
4 - 0 0 - 55 96 79 73 20 -
5 - 0 4 42 - 47 13 17 0 -

6 - 40 82 64 - - 0 0 82 8 
7 - 29 65 - 23 15 - 39 0 19 
8 - 36 35 - 0 70 34 - 28 0 
9 - 0 52 0 42 0 0 34 - 0 
10 0 - - - - - - - - -

Figure 4: Admissible Gr .. ph Figure 5: Admissible Graph 
(before bounding procedures) (afler BPl) 

Figure 6: Admissible Gr .. ph Figure 7: Admissible Graph 
(afler BP2) (after BP3) 

4 Branch and Bound Method 
4.1 Outline of the Branch and Bound Method 

The essential ingredients of our branch and bound procedure are: 

1. A branching rule: We derive new branching scheme that uses the precedence con­
straints, and then it is combined other branching rules for the TSP. 

2. A subproblem selection rule: We adopt the depth first search for selecting the sub­
problem in the branching tree. 
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3. Logical and variable fixing tests: We use a logical test using the precedence constraints. 
Furthermore, several variables are fixed using the reduced costs. Details are described 
in subsection 4.3. 

4. Approximate algorithms: To get an upper bounds we use the insertion and local search 
algorithms. The insertion method constructs a feasible tour by inserting nodes one by 
one so as to satisfy the precedence constraints, and the local search methods are based 
on Or-opt procedure for the TSP [21]. These approximate algorithms incorporate 
several features designed to provide the efficiency and the performance. Details are 
described in the companion paper [19]. 

5. Finding of Hamiltonian cycles on the admissible graph: We find a Hamiltonian cycle 
on Go to get an upper bound and a precedence violating path that is used in the 
branching rule. Although finding a Hamilt.onian cycle on any given graph is known to 
be NP-complete [13], we can find a Hamiltonian cycle using the depth first search with 
the limited searches on a sparse graph in modest computational requirement. In our 
experiment we set the upper limit of searches equal to 5n. 

Using the above ingredients, we can construct the branch and bound method. The outline 
of our branch and bound can be described as follows: 

Algorithm: Branch and Bound for the PCTSP 
Input: node number n, distance matrix [Dij], pr€'cedence constraints --<, node 1 E V . 
Output: an optimal solution and its solution value z*. 
begin 
(Ini tialization) 

put PCTSP on the list of active subproblems; 
set initial upper bound U B := 00; 

while list is not empty do 

begin 

(Subproblem Selection) 

choose a subproblem according to the sub problem selection rule 
and remove it from the list; 

(Logical Test) 

do a logical test using precedence constraints; 

(Finding Lower Bound) 

compute lower bound LB using the assignment relaxation; 
improve LB using subtour elimination constraints (this can be 
done using bounding procedures that are described in Balas and 
Christofides [2]); 
improve LB using precedence constraints (this can be done using 
our bounding procedures that are described in section 3); 

(Finding Upper Bound) 

use approximate algorithms to find a feasible tour; 
find a Hamiltonian cycle on admissible graph Go; 
if a better solution than U B is found then store it and update 
UB; 
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(Variable Fixing Test) 

do a variable fixing test using the reduced costs; 

(Subproblem Generation) 

if LB < U B then generate new subproblems, place them on the 
list 

Several features of the branch and bound method are described in the following subsec­
tions. 

4.2 Branching Rules 
To describe the branching rules, we introduce several notations. Let us denote the sub­

problem in the branching tree by (NO, NI) where 

(28) N° = {(i,j) EEl Xij = O} 

and 

(29) NI = {(i,j) EEl Xij = I}. 

We denote the descendants of (N°, NI) by (N~, Nr
l

) for r = 1,2· .. , R. 
We describe three branching rules that are used intermittenly. The first one is derived 

from the precedence violating path. The second one, which is known to be the most efficient 
rule for the TSP, is derived from the subtour elimination inequality. The third one is based 
on the classical branching rule proposed by Little et al. [22] for the TSP. 

4.2.1 The First Branching Rule 
The first branching rule uses the precedence constraint q -< r for branching. For each 

q -< r, the precedence violating paths are three types: P(r -+ q, 1), P(l -+ r, q), P(q -+ 1, r) 
(see subsection 3.3). If we denote the precedence violating path by 

then A-I subproblems generated from (N°, NI) are 

(30) { 
Nf = N° U (i~, iHd 
N~ = NI U {(il' i2 ),"', (i~-l' i~)} 

The subproblems are mutually exclusive. 

4.2.2 The Second Branching Rule 

>. = 1,2· .. ,A - 1. 

Murty [25] proposed the branching rule for the TSP based on the subtour elimination 
constraint. If we are given a subtour 

then generated R - 1 subproblems are: 

(31) r = 1,2, ... , R - 1. 
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4.2.3 The Third Branching Rule 
Kalantari et a1. [18] used the following branching rules based on the classical branching 

rule for the TSP proposed by Little et al. [22]. Let 

(32) 

where 

(33) 

(i, j) = max <Pii 
(i,j)EB 

<Pii := min{Dki I Vk E V, k -I j} + min{Dik I Vk E V, k -I i}. 

Then two subproblems are generated as follows: 

(34) 

and 

(35) 

4.2.4 Selection of Branching Rule 
We use three branching rules intermittenly according to the following rule. Let us denote 

the set of all precedence violating paths on Go defined in subsection 3.3 by Allp and the set 
of all subtours by All •. If 

(36) . {{IP\{N~UNDI,VPEAllp}} 
mm {I S \ {N2 U NH I, VS E All.} 

is greater than On, then we use the third branching rule. Otherwise we use the first or second 
branching rule that attains minimum in (36). The parameter 0 is set equal to 1/3 in the 
numerical experiments. 

4.3 Tests 
We use two tests: one is the logical test that uses the precedence constraints; another 

is the variable fixing test that uses the reduced costs. The logical test is used before the 
bounding procedures, while the variable fixing test is used after the bounding procedures. 

4.3.1 Logical Test 
The unnecessary variables Xij can be fixed to 0 (or set Dij = 00 ) based on the following 

theorem. 

Theorem 7 If j -< i or i -< k -< j(3k E V), then we may set 

(37) Dii = 00 

without loss of optimality. 

Proof: Obviously any feasible tour does not contain arc (i,j) when j -< i. If i -< k -< j, 
then all feasible paths from i to j must pass k; any feasible tour can not contain arc (i, j). I 
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4.3.2 Variable Fixing Test 
Let us denote the lower bound, the upper bound, the reduced cost of the subproblem by 

LB, U B, [Dij] , respectively. The variable fixing test is based on the following theorem. 

Theorem 8 (Balas and Christofides [2]) If the condition 

(38) UB < LB+D· - 'J 

is satisfied, we may set Xij := 0 without losing optimality. 

From the theorem above, we may set variables that satisfy (38) equal to 0 for the current 
subproblem and its descendants. 

5 Numerical Experimellts 
Our algorithm is implemented by BASIC and run on micro-computer PC980IVM (NEC). 

The speed of N88BASIC compiler is almost 1/3600 of VS-FORTRAN on IBM3081. 
Distance matrix [Dij] is generated according to two types of instances below: 

pure asymmetric: uniform integer over [1,100], 

two dimensional Euclidean : nodes are distributed on 100 x 100 grids and then distances 
are calculated by the Euclidean metric between nodes. 

The precedence constraints are generated according to the following two methods: 

dial-a-ride precedence constraints: Given a node number n (odd number), we set 
i -< i + Ln/2J, for i = 2,3,···, Ln/2J. 

general precedence constraints: Given a parameter p(O :::; p :::; 1), we set i -< j with 
probability p independently for all (i,j) E E, i < j, and then find a transitive closure 
using Warshall-Floyd algorithm [12], [35]. 

In the tables, we use the following abbreviations. 

CPU : Computational time represented by Hour : Minute : Second.· The value in the 
parenthesis denotes CPU time after scaling that adjusts CPU time so that n = 7 is 
equal to 1. This value is used as the measure of the growth of the computational time 
when the problem size increases. 

No. of Branches: Number of subproblems generated in the branch and bound method. 

No. of FA : Number of fixed arcs in the first subproblem. 

UB : The solution value calculated by the approximate algorithm. 

Z : The optimal solution value. 

Density: Density of the precedence constraints: 

(39) 
number of precedence constraints 

n(n - 1)/2 

We solve one randomly generated instance for each class of the problem. The results for 
the dial-a-ride precedence constraints are summarized in Table 6 and Table 7. The results 
for the general precedence constraints are summarized in Table 8 and Table 9. 

The following conclusions are obtained: 
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Table 6: Comparison with the Algorithm Proposed by Kalantari et al. The results of 
Kalantari et al. is the computer time in seconds on Cray 1 at the University of Minnesota. 
(Asymmetric Distance Matrix, Dial-A-Ride Precedence Constraints) 

Our Algorithm Kalantari et al. 
n CPU No. of Branches No. of FA UB/Z CPU 
7 0:03 (1) 1 - 1 0.00152 (1) 
13 3:48 (3.44) 17 65 1 0.0373 (1.11) 
19 16:49 (2.28) 22 235 1 0.903 (4.06) 
25 1:14:57 (2.57) 55 105 1 11.3 (12.79) 
31 4:39:36 (3.28) 92 138 1 106.0 (40.93) 
37 6:33:49 (1.91) 90 159 1 -
43 14:24:57 (1.98) 130 186 1 -
49 38:22:01 (2.73) 100 213 1 -

Table 7: Result of Our Branch and Bound Algorithm with Various Problem Sizes. (Sym-
metric Distance Matrix and Dial-A-Ride Precedence Constraints) 

n CPU No. of Branches No. of FA UB/Z 
7 0:24 (1) 7 27 1 
13 5:25 (0.61) 19 46 1 
19 36:48 (0.62) 51 76 1 
25 2:08:14 (0.55) 77 111 1 
31 3:57:39 (0.34) 79 103 1 
37 10:31:23 (0.38) 119 124 1 
43 24:26:37 (0.41) 171. 145 1 
49 52:17:16 (0.47) In 166 1 

Table 8: Result of Our Branch and Bound Algorithm with n = 3l. (Asymmetric Distance 
Matrix and Genera.l Precedence Constraints) 

p Density CPU No. of Branches No. of FA UB/Z 
0.1 0.33 45:21 34 161 1 
0.2 0.53 1:05:23 38 251 1 
0.3 0.68 1:41:29 41 300 1 
0.4 0.83 2:08:33 4'" ,) 382 1 
0.5 0.89 1:14:41 3:1 467 1 
0.6 0.93 0:50:47 20 529 1 
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Table 9: Result of Our Branch and Bound Algorithm with n = 31. (Symmetric Distance 
Matrix and General Precedence Constraints) 

p Density CPU No. of Branches No. of FA UB/Z 
0.1 0.24 2:55:17 85 98 1 
0.2 0.44 3:33:11 69 173 1 
0.3 0.79 1:50:09 33 320 1 
0.4 0.81 2:56:48 49 339 1 
0.5 0.94 1:57:19 31 508 1 
0.6 0.96 1:24:40 31 550 1 

1. Our algorithm performs better than the algorithm proposed by Kalantari et al. with 
respect to the growth of the computational time; we could solve relatively large in­
stances. 

2. For the general precedence constraints, CPU time of our algorithm is relatively small 
when p is small and the distance matrix is asymmetric. We observe that when p 
is small the PCTSP can be reduced to the ordinal TSP that can be solved by the 
assignment based branch and bound method. 

3. For the general precedence constraints, our algorithm performs well when p is large. 
This is due to the fad that when p is large the logical test eliminates large number of 
unnecessary variables; the structure of the PCTSP becomes easier. 

6 Conclusion 
We considered the precedence constrained traveling salesman problem that has many 

practical applications in the area in vehicle routing and scheduling problems. We derived 
three bounding procedures, and developed a branch and bound method by incorporating 
these bounds. We could solve problems with up to 49 nodes exactly using our branch and 
bound method. 
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