
Journal of the Operations Research
Society of Japan

Vo!. 34, No. 2, June 1991

THE PRECEDENCE CONSTRAINED TRAVELING SALESMAN PROBLEM

Mikio Kubo Hiroshi Kasugai
Wa8eda University

(Received January 31, 1990; Revised October 2, 1990)

Abstract We consider a generalization of the classical traveling salesman problem (TSP) called the prece­
dence constrained traveling salesman problem (PCTSP), i.e. given a directed complete gra.ph C(ll, E), a
distance Dij on each arc (i,j) E E, precedence constraints -< on ll, we want to find a minlll1Um distance
tour that starts node 1 E ll, visits all the nodes in V - {1}, and returns node 1 aga.in so that node i is
visited before node j when i -< j. We present a branch and bound algorithm for the exact solutions to
the PCTSP incorporating lower bounds computed from the Lagrangean relaxation. Our lower bounding
procedure is a generalization of t he restricted Lagrangean method that has been successfully adapted to the
TSP by Balas and Christofides [2]. Our branch and bound algorithm also incorporates several heuristics and
variable reduction tests. The computational results with up to 49 nodes show that oUl" algorithm computes
exact solutions to several classes of precedence constraints wit.hin acceptable computational requirements.

1. Introduction

Consider the following generalization of the traveling salesman problem (TSP).

(Precedence Constrained Traveling Salesman Problem: PCTSP)
Given a node set V, n =1 VI, an arc set E, a directed complete graph G(V, E), a distance D jj

on each arc (i, j) E E, precedence constraints ~ on V, we want to find a minimum distance
tour that starts node 1 E 'V, visits all the nodes in V - {I}, and returns node 1 again so
that node i is visited before node j when i ~ j.

Several applications of the vehicle routing problem such as the dial-a-ride routing problem
(Jaw et al. [17], Psaraftis [2'7], [28], [29]) and the bus routing problem (Stein [31]' Wren and
Holiday [36]) includes precedence constraints between nodes. Although several variants of
the vehicle routing problem have been considered in literature, researches for the PCTSP
are few in spite of its practical importance. The objective of this paper is to develop an
efficient branch and bound algorithm for the PCTSP incorporating the restricted Lagrangean
method, that has been successfully applied to the TSP by Balas and Christofides [2].

The previous works for the PCTSP are summarized as follows.
Kalantari et al. [18] provided a branch and bound method based on the algorithm for

the TSP developed by Little et al. [22], and could solve the 30-node problems with the
asymmetric distance matrix. Suzuki and Nomura [33] also developed a branch and bound
algorithm using bounds derived from the arborescence problem or the shortest path problem,
and could solve 3D-node problems with the sparse distance matrix. In their model, nodes are
permitted to be visited more than twice and the starting and ending points are prespecified
(this problem can be reduced to the ordinary PCTSP using a simple transformation).

Fischetti and Toth [11] proposed an algorithm for the PCTSP based on the additive
bounding procedure. Their algorithm named bound from variable decomposition can be seen
as the same algorithm as our bounding procedure 1. The only difference is that they use
the shortest path problem as a subroutine instead of using the depth first search as in our
algorithm. Since the ordinary shortest path algorithm requires D(n 2) operations where n

152

© 1991 The Operations Research Society of Japan

Precedence Constrained TSP 153

is the number of nodes, and the depth first search runs in O(Eo) where Eo is an arc set
of the admissible graph that will be defined later, our algorithm works much faster when
the admissible graph is sparse, i.e. there exist fewer arcs in the graph compared to n2

•

They derived another bounding procedure named bound from disjuction that can be easily
observed to be identical to the third bounding procedure developed by Balas and Christofides
[2].

A closely related and important special case of the PCTSP is the dial-a-ride routing
problem (DARP) in which the precedence constra.ints are represented by pick-up and delivery
points. Psaraftis [27] developed an exact solution method using a dynamic programming
algorithm for the DARP whose time complexity is O(n2 3n

), and solved 20-node problems.
Several heuristic algorithms have been proposed for the DARP (Psaraftis [28], [29], Jaw

et al. [17], Stein [31]). Psaraftis proposed the minimum spanning tree (MST) heuristic
and the local search (k-opt) procedure specialized to the DARP. The MSP heuristic runs
in O(n2), while the k-opt procedure runs in O(nk). Since the computational complexity of
k-opt procedure grows in exponential order in k, he recommends k = 2,3 in practice. Jaw
et al. [17] provides an insertion heuristic and Stein [31],[32] provided several algorithms that
run asymptotically well.

The organization of the paper is as follows: In section 2 several valid inequalities that
represent the precedence constraints are derived. In section 3 these valid inequalities are
taken into the Lagrangean function using speciallly designed heuristics called bounding pro­
cedures. In section 4 the branch and bound algorithm incorporating several lower bounding
procedures, heuristics and variable reduction tests is described. Results of the numerical
experiments are included in section 5. Section 6 contains conclusions.

2 Formulation
We give below an integer programming problem of the PCTSP.

(PCTSP : Formulation)

(1)

subject to

(2)

(3)

(4)

(5)

(6)

where

(7)

mm L L DijXij
iEV jEV-{i}

LXi) = 1 Vi E V,
iEV-{i}

L Xli = 1 Vi E V,
jEV-{i}

LLXij ~I S 1-1 'VS cV,S:f= 0,
iES iES

Tour satisfies all precedence relationship,

Xij E {O, I} V{l:,j) E E,

arc (i, j) E E is contained in the solution
otherwise.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

154 M. Kubo & H. Kasugai

Feasible Tour Infeasible Tour

Figure 1: Derivation of Formulation 1

In the formulation above, equalities (2) and (3) are degree constraints. Constraints (4)
prohibit two or more disjoint cycles. Constraints (5) represent precedence constraints be­
tween nodes.

We must rewrite the precedence constraints (5) using Xij to complete the formulation.
The precedence constraint q ~ r can be represented as follows:

1. Set formulation For all S S; V, q E S, 1 E S, r ft S, there exists an arc from S - {I}
to V - S contained in the tour (see Figure 1).

2. Path formulation

(a) Any path in the feasible tour with starting node r and ending node q must contain
node 1.

(b) Any path in the feasible tour with starting node 1 and ending node r must contain
node q.

(c) Any path in the feasible tour with starting node q and ending node 1 must contain
node r.

3. Articulation node formulation

(8)

(a) In the feasible tour the path with starting node 1 and ending node q and the path
with starting node q and ending node r do not intersect each other.

(b) In the feasible tour the path with starting node 1 and ending node q and the path
with starting node rand ending node 1 do not intersect each other.

(c) In the feasible tour the path with starting node q and ending node r and the path
with starting node r and ending node 1 do not intersect each other.

The integer programming representation of the set formulation is

L L Xij ~ 1 VS C V,l E S, Vq E S, Vr ft S, q ~ r.
iES-{l}jEV-S

Theorem 1 Constraint (8) is valid for the PCTSP.

Proof: Assume that (8) is not satisfied. Then, the only arc emanating from S is from
node 1; all paths from node q to node r visits node 1. This means the precedence constraint
is not satisfied. Thus (8) is a valid inequality for the PCTSP. I

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP 155

Figure 2: Derivation of Formulation 3.{a)

We derive the bounding procedure 1 that uses inequality (8) to improve the lower bound
in subsection 3.2.

Using 2.{a), we can represent the precedence constraint as follows:

(9) L Xii ~I A{p) 1 -1 Vp E P{r t-+ q, 1), "Iq E V, Vr E V, q -< r,
(i,i)EA(p)

where P{a 1-+ b, c) is a set of all paths from node a to b that do not visit node c, and A{p)
denotes a set of arcs in path p.

Theorem 2 Constraint (9) is valid for the PCTSP.

Proof: We prove the theorem by showing the contraposition. Assume that (9) is not
satisfied. Then we lead that there exists pE P{,' 1-+ q, 1) such that

(10) L Xii ~I A{p) I,
(i,j)EA(p)

which implies there exists a path from node r to node q that does not traverse node 1. Since
any feasible tour must visit node 1 exactly once" there must be a path from node q to node
r that contains node 1; this means that precedence constraint q -< r is not satisfied. Thus
(9) is a valid inequality for the PCTSP. I

Similarly, 2.{b) and 2.{c) can be represented as inequalities using Xij. The bounding
procedure that takes this type of inequalities t.o the Lagrangean function is described in
section 3.3.

We then represent 3.{a) as valid inequalities. For each k E V - {1,q,r}, define the
following four sets:

1. '71 C V, 1 E '71> k, r (j. '71,

2. '72 C V, q E'72, k, r (j. '72,

3. '73 C V, q E'73, 1, k (j. '73,

4. '74 cV, rE '74, l,k (j. '74.

Then the statement 3.{a) is true if and only if the following four events occurs simultane­
ously:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

156 M Kubo & H. Kasugai

1. There exists at least one arc emanating from 171 into V - 171 - {k, r}, or there exists at
least one arc emanating from 173 into V - 173 - {I, k} (see Figure 2)

2. There exists at least one arc emanating from 171 into V - 171 - {k, r}, or there exists at
least one arc going into 174 from V - 174 - {I, k}

3. There exists at least one arc going into 172 from V - 172 - {k, r} or there exists at least
one arc emanating from 173 into V - 173 - {I, k}

4. There exists at least one arc going into 172 from V - 172 - {k, r} or there exists at least
one arc going into 174 from V - 174 - {I, k}

Though we can derive four classes of inequalities corresponding to the four events above,
for simplicity, we derive one class of inequalities corresponding to the first event.

(11) X> 1
'} -

iE'11 jEV-'11-{k,r} iE'13 jEV -'13-{k,l}

V171 C V, 1 E 171, k f/. 171, r f/. 171, V173 C V, q E 173, k f/. 173, 1 f/. 173,

Vq E V, Vr E V, q ~ r, Vk E V - {I, q, r}

Before proving the validity of (11), we define the cutset that will be sometimes used in the
following argument. For any SI, S2 ~ V, SI n S2 = e, the set of arcs {(i, j) EEl i E SI, j E
S2} is called a directed cut set or briefly a cutset, and denoted by (SI, S2).

Theorem 3 Constraint (11) is valid for the PCTSP.

Proof: Assume that (11) is not satisfied. Then all the variables Xij corresponding to
arcs in cutsets (171, V - 171 - {k, r}) and (173, V - 173 - {k, I}) are O. This implies that a path
from node 1 to node q and et path from node q to node r intersect each other, i.e. contain
the same node, say k. This means the tour is infeasible. Thus (11) is a valid inequality for
the PCTSP.I

Validity of other types of inequalities can be proved similarly; hence omitted. We can
derive eight types of inequalities from 3.(b) and 3.(c) using similar argument above, but they
are too lengthy to describe here. The bounding procedure that uses the inequalities derived
from 3.(a), 3.(b) and 3.(c) is described in section 3.4.

3 Lower Bounding PrO(~edures
3.1 Restricted Lagrangf~an Relaxation

In this subsection, we briefly review the restricted Lagrangean approach introduced by
Balas and Christofides [2].

Removing (4),(5) from the formulation of the PCTSP, we can get an assignment problem
(AP) that can be solved using a primal-dual algorithm (Kuhn [20]) in O(n3) time.

Let us assume that relaxed constraints (4) and (5) are represented as

(12) L L a!jXij ~ a~ Vt E T.
iEV jEV

Then we can get the following Lagrangean dual problem of the PCTSP.

(LDP : Lagrangean Dual Problem of the PCTSP)

(13) max{L(w) I w ~ O},

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP 157

where W is a non-negative vector whose t-th component is a multiplier Wt corresponding to
inequality (12), and

(14) L(w) = min E E(Dij - E Wta!j)Xij + E wta~
iEV jEV tET tET

subject to (2),(3),(6).
Of course the Lagrangean dual (13) may be solved using the subgradient optimization

technique (see for example [30]). In this case, however, the number of components of the
vector W is an exponential number; such a procedure is computationally expensive. There­
fore, we solve the restricted version of the Lagrangean dual problem.

Let us denote the optimal solution of the AP by Xi) = 1, 'V(i, j) E E, and the optimal
multipliers by Ui, 'Vi E V and Vj, 'Vj E V corresponding to the constraints (2) and (3),
respectively. Then we restrict the dual variables to satisfy the following two conditions:

Condition I (Dual Feasibility):

(15) Dij ~ Ui + Vj + E Wta!j 'Vi E V, 'Vj E V,
tET

Condition 11 (Complementary Slackness):

(16) Xi; > 0 implies (i, j) E Eo,

where

(17) Eo = {(i, j) EEl D jj = Uj + Vj + E wtaL}·
tET

Then the bound computed from the restricted Lagrangean dual is

(18) E Ui + E Vj + ~= WtaL
iEV jEV H,T

and the reduced cost Di; is

(19)

When we can add the inequality (12) to the objective function without violating the
dual feasibility and complementary slackness conditions, and the corresponding multiplier
Wt is positive, we say that Wt can be applied to (12). We also define the admissible graph
Go(V, Eo) whose arc set Eo is defined in (17).

The restricted version of the Lagrangean dual problem of the PCTSP can be solved us­
ing specialized adjustment heuristics called bouncling procedures. Balas and Christofides [2]
used three types of subtour elimination constraints to get tight lower bounds for the TSP,
and derived several bounding procedures for the TSP. We use several forms of precedence
constraints that can be added without disturbing dual feasibility and complementary slack­
ness conditions, and give three bounding procedures that will be described in the following
subsections.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

158 M. Kubo & H. Kasugai

Figure 3: Cut Set (S - {I}, V - S)

3.2 Bounding Procedure 1
The first procedure, called the bounding procedure 1, uses the precedence constraints

derived from the set formulation. The Lagrangean multiplier to the constraint (8) can be
determined based on the following theorem.

Theorem 4 A positive multiplier can be applied to the inequality (8) if and only if

(20) (S - {I}, V - S) n Eo = 0

is satisfied. Furthermore, if the condition above are satisfied, the multiplier

(21) w = min {Dij I (i,j) E (S - {I}, V - S)}

can be applied to the inequality (8).

Proof: Suppose that there exists a set S satisfying (20). Then the positive multiplier
defined by (21) can be applied to all arcs in the cutset (S - {I}, V - S) without reducing any
negative reduced costs, and obviously the conditions I and 11 of the restricted Lagrangean
method are satisfied. Assume that (S - {I}, V - S) n Eo f. 0. Then it is easily seen that a
positive multiplier cannot be applied to the inequality (8). This proves the theorem. I

To improve the lower bound we must find a cutset (S - {I}, V - S) that contains no arc
in Eo (see Figure 3). This can be done by the depth first search (see for example [34]) from
node q on Go - {I} (a subgraph of G(V, E) deleting node I and all arcs connecting node
1). More precisely, the bounding procedure 1 can be described as follows. (in this paper, we
adopt Pidgin-Algol [1] to describe the lower bounding procedures.)

Algorithm: Bounding Procedure 1 (BPl)
Input: node number n, reduced cost matrix [Dij] , admissible graph Go(V, Eo), precedence con­
straints --<, node 1 E V .
Output: new reduced cost matrix [Dij] , LB!.
begin
set LBl := OJ
for all q --< r do

begin

initialize the reachable set S := {q}j
while r ~ S do

begin

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

end

end

end.

Precedence Constrained TSP

G1 := Go - {I};
find a reachable set 5 from node q on the admissible graph
G1 using the depth first search;
w:= min{Dii I (i,j) E (5, V - 8 - {l})}j
Dij := Dii - w V(i,j) E (5, V - 5 - {l})j
LB1 := LB1 + Wj

add the arcs that a.ttains minimum in (21) to Eo

159

The number of operations of the above procedure is dominated by the order of the depth
first search and the number of arcs added to Go in the course of the procedure. Since the
number of precedence constraints is O{n2

) and for each precedence constraint the depth first
search runs in O{n2), the complexity of the former part is O{n4). Since the number of arcs
added to Go must be less or equal to n2 in the worst case and the operation for finding an
arc with the minimum reduced cost requires O{n), the complexity ofthe latter part is O{n3).

Thus the overall complexity of the bounding procedure 1 is O{n4).

3.3 Bounding Procedure 2
We derive the second bounding procedure called to bounding procedure 2 using the prece­

dence constraints derived from path formulation 2.{a), 2.{b) and 2.{c). Since the structure
of inequalities are about the same, we describe how to adjust the multiplier to (9) only.

We rewrite (9) with a standard form of the restricted Lagrangean method.

(22) L Xii ~ 1- I A{p) I
(i,j)EA(p)

Vp E P(,· t--t q, 1), Vq E V, Vr E V,q -< r

To describe the bounding procedure 2, we use several notations. We express our second
bounding procedure in terms of the assignment tableau of the Hungarian algorithm. The
tableau is defined as the ordered pair of V. A line is defined as a row or a column of the
tableau, and a cell of the tableau is the intersection of a row and a column. Since the cells
correspond to the arcs of G{V, E), we denote them in the same way. We call that a set of
lines L covers cell (i, j) when L contains column i or row j.

The bounding procedure 2 is based on the following theorem.

Theorem 5 A positive multiplier can be applied to the inequality (22) if and only if
there exists a set L of lines and a path p E P(r H q, 1) such that

i every cell (i, j) E A{p) is covered by L exactly once,

ii no cell (i, j) that satisfies Dii = 0 for all (i, j) ~ A(p) is covered by any line in L.

Proof: Suppose that there exists a line set L consisting of row set I and column set
J which satisfies i a.nd ii . A positive multiplier '.'J) can be applied to (22); w is added to all
(i, j) E A(p). Then Ui and Vi is modified as follows:

Ui := Ui + w Vi E I,
Vi := Vi + w Vj E J.

It is easily seen that the conditions above guarantee the dual feasibility, i.e. all reduced costs
are non-negative and complementary slackness condition, i.e. if Xii = 1 then Dij = O. This
proves 'if' part of the theorem.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

160 M Kubo & H. Kasugai

Next, assume that a positive multiplier w can be applied to (22). Then we must increase
Ui + Vj by w to keep complementary slackness condition. This implies that i must be sat­
isfied. Then suppose that ii is not satisfied, then no positive multiplier can be applied to
(22). This proves 'only if' part of the theorem. I

Condition ii in the theorem above suggests that we can restrict our search on the arc set

(23) Ep = {(i, j) E Eo I Dik =1= 0, 'rIk E V, k =1= i, D"j =1= 0, 'rIk E V, k =1= j}

when finding path p to improve the lower bound. A candidate path p is the shortest path
from r to q on G(V, Ep). We use the breadth first search [34] for finding such a path. In the
sequel we refer this path to the precedence violating path .

Given a path p, lines are selected using the following heuristic procedure in which we
select a line (row or column) that attains the maximum increase of the lower bound.

Procedure: Line Selection
Input: G(V,E), reduced cost matrix [bij], precedence violating path p.
Ou tput : row set 1*, column set J*.
begin
set 1* := 0, J* := 0;
for all (i,j) E A(p) do

end.

begin

end

a := minkEV-{j} Pik;

b := minkEV-{i} Dkj ;
if a ~ b then 1* :=: 1* U {i} else r := r u {j}

The lines selected by the procedure above may contain the same cell more than once.
Therefore, we must determine the Lagrangean multiplier w as follows:

(24) w = min { . min(i,j)EU*,J*) Dij /2 D- } .
rrnn(i,j)EU* ,v -J*)u(V -1* ,J*) ij

The bounding procedure 2 can be described as follows:

Algorithm: Bounding Proc€,dure 2 (BP2)
Input: node number n, reduced cost matrix [bij], admissible graph Go(V, Eo), precedence con­
straints -<, node 1 E V .
Output: new reduced cost matrix [bij] , LB2.
begin
set LB2 := 0;
for all q -< r do

begin

find a path p from r to q on G(V, Ep) - {I} using the breadth first search;
find 1* and r using procedure Line Selection;
compute w using (24);
change reduced costs as follows:

iJij := iJij - w V(i,j) E (/*, V - r) u (V - 1*, r);

LB2 := LB2 + w;

add the arcs that attain minimum in (24) to Eo

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP 161

end

end.
We can estimate the number of operation required as in the bounding procedure 1. Since

the number of precedence constraints is O(n2), and both the breadth first search and proce­
dure Line Selection run in O(n2

), the overall complexity of bounding procedure 2 is O(n4
).

3.4 Bounding Procedure 3
The third procedure, called the bounding procedure 3, uses the precedence constraints

derived from 3.(a), 3.(b) and 3.(c). Since the structures of the inequalities are about the
same, we describe how to adjust the multipliers to (11) to increase the lower bound. The
Lagrangean multiplier to the constraint (11) can be determined based on the following the­
orem.

Theorem 6 A positive multiplier can be applied to the inequality (Il) if and only if
K1 n Eo = e and 1(2 n Eo = e, where

(25) K1 = (rh, V - T}1 - {k,r})

and

(26) K2 = (T}3, V - T}3 -- {k, I}).

Proof: Suppose that K1 n Eo = e and K2 n Eo = e are satisfied. If we set w =
min(i,j)EK1UKl Dij , then at least w/2 can be applied to (11). This proves 'if' part of the
theorem.

Next assume that K1 n Eo #- e or K2 n Eo 1~ 0. Then it is easily seen that no positive
multiplier can be applied to (11). This proves 'only if' part of the theorem. I

We first find the cutsets K1 and K2 using the same technique as in the bounding proce­
dure 1. Then the multiplier is determined as follows:

(27) w = min { ~n(i,j)EKlnKl Dij /2 D- }.
mm(i,j)EKluKl-KlnKl ij

The bounding procedure 3 can be described as follows:

Algorithm: Bounding Procedure 3 (BP3)
Input: node number n, reduced cost matrix [Di }), admissible graph Go(V, Eo), precedence con­
straints --<, node 1 E V .
Output : new reduced cost matrix [Dij) , LB3.
begin
set LB3 :== 0;
for all q --< r do

begin

for all k E V - {1, q, r} do

begin

find a reachable set "'1 from node 1 on Go - {r, k};
find a reachable set "'3 from node q on Go - {I, k };
Let K1 = (1711 V -171 - {k,r});
Let K2 = ("'3, V -"'3 - {k, I});

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

162

end

end

end.

M Kubo & H. Kasugai

compute w using (27);
change reduced costs as follows:

D;j :== D'j - W V(i,j) E (/*, V - J*) u (V - /*, J*);

LB3 :== LB3 + w;
add the .LICS for which the minimum in (27) is attained
to Eo

We can estimate the number of operations as in the bounding procedure 1. Since the
number of precedence constraints is O(n2) and for each precedence constraint and for each
k the depth first search runs in O(n2), the overall complexity of bounding procedure 3 is
O(nS).
3.5 Numerical Example

To illustrate the bounding procedures described above we give a small example. Consider
the 10 node PCTSP with distance matrix [D;j] shown in Table 1, and precedence constraints
5 -< 6, 4 -< 7, 4 -< 8, 1 -< j for all j E V - {I}, i -< 10 for all V - {10}.

The optimal assignment is < 1,4,3,6,8,5,2, 10, 1 > and < 7,9, 7 > and its solution value
is 172. The reduced cost matrix after solving the assignment problem is shown in Table 2
and the corresponding admissible graph in Figure 4.

Table 1: Distance Matrix[D;j]

1 2 3 4 5 6 7 8 9 10
1 - 97 83 21 63 - - - 39 -
2 - - 80 73 12 25 73 8 67 27
3 - 89 - 79 47 7 59 90 78 85
4 - 45 13 - 78 90 87 96 30 -
5 - 22 36 53 - 60 35 39 24 -
6 - 82 97 58 - - 10 15 94 74
7 - 72 81 - 44 12 - 60 13 86
8 - 77 59 - 14 75 48 - 44 65
9 - 72 97 24 92 26 40 84 - 96
10 0 - - - - - - - - -

Table 2: Reduced Cost Matrix [D;j] (after solving the
assignment problem)

1 2 3 4 5 6 7 8 9 10
1 - 55 41 0 21 - - - 0 -
2 - - 72 86 4 36 70 0 62 0
3 - 63 - 74 21 0 38 64 55 40
4 - 32 0 - 65 96 79 83 20 -
5 - 0 14 52 - 57 18 17 5 -
6 - 67 82 64 - - 0 0 82 40
7 - 56 65 - 28 15 - 44 0 51
8 - 63 45 - 0 80 39 - 33 32
9 - 27 52 0 47 0 0 39 - 32
10 0 - - - - - - - - -

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP 163

Bounding procedure 1 (BPl)
For 5 -(6, we can find reachable set S = {I, 2, 5., 8, 10}. Thus for cutset (S - {I}, V - 8) =

({2,5,8,10},{3,4,6,7,9}) we can apply the multiplier w = 5(= D59) to (8); arc (5,9) is
added to Go. The lower bound after the bounding procedure 1 becomes 177, the reduced
cost matrix is shown in Table 3 and the corresponding admissible graph in Figure 5.
Bounding procedure 2 (BP2)

For 5 -(6, the breadth first search from node 5 on G{V, Ep) finds the precedence violating
path p = {5, (5, 2), 2, (2, 10), 10, (10, 1), 1); a positive multiplier can be applied to the valid
inequality of type 2.{c) with P(5 1-+ 1,6). The cells (5,2), (2,IO), (10,1) corresponding to
arcs in p are covered by row set I* = {IO} and column set J* = {2,IO}. The multiplier
w = 27(= 1)92) can be applied to (22). The lower bound after the bounding procedure 2
becomes 204, the reduced cost matrix is shown in Table 4 and the corresponding admissible
graph in Figure 6.
Bounding procedure 3 (BP3)

For 5 -(6 and k = 2, we can get '11 = {I, 3, 4, 7, 9} and TJ3 = {3, 4, 5, 6, 7, 8, 9};
cutsets become Kl = ({I, 3, 4, 7, 9}, {5, 8}) and K2 = ({3, 4, 5, 6, 7,8, 9}, {I, 1O}). We
can apply w = 5{:= 1)8.10) to (11). Similarly, for 5 -(6 and k = 9, we can get cut­
sets Kl = ({1,3,4},{2,5,7,8,10}) and K2 = ({2,5,8,1O},{3,4,6,7}). The multiplier
w = 5(= 1)42) can be applied to (11). The lower bound after the bounding procedure 3
becomes 214, the reduced cost matrix is shown in Table 5 and the corresponding admissible
graph in Figure 7.

Table 3: Reduced Cost Matrix [1);j] (after BP1)

1 2 3 4 5 6 7 8 9 10

1 - 55 41 0 21 - - - 0 -
2 - - 67 81 4 3.1 65 0 57 0
3 - 63 - 74 21 I) 38 64 55 40
4 - 32 0 - 65 96 79 83 20 -
5 - 0 9 47 - 5-2 13 17 0 -
6 - 67 82 64 - - 0 0 82 40
7 - 56 65 - 28 15 - 44 0 51
8 - 63 40 - 0 7'5 34 - 28 32
9 - 27 52 0 47 I) 0 39 - 32
10 0 - - - - .. - - - -

Table 4: Reduced Cost Matrix [1);j] (after BP2)

1 2 3 4 5 I) 7 8 9 10
1 - 28 41 0 21 .. - - 0 -
2 - - 67 81 4 31 65 0 57 0
3 - 36 - 74 21 I) 38 64 55 13
4 - 5 0 - 65 96 79 83 20 -
5 - 0 9 47 - 52 13 17 0 -
6 - 40 82 64 - .. 0 0 82 13
7 - 29 65 - 28 15 - 44 0 24
8 - 36 40 - 0 75 34 - 28 5
9 - 0 52 0 47 I) 0 39 - 5
10 0 - - - - .. - - - -

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

164 M. Kubo & H. Kasugai

Table 5: Reduced Cost Matrix [Djj] (after BP3)

1 2 3 4 5 6 7 8 9 10
1 - 23 41 0 11 - - - 0 -
2 - - 62 76 4 26 65 0 57 0
3 - 31 - 74 11 0 38 54 55 8
4 - 0 0 - 55 96 79 73 20 -
5 - 0 4 42 - 47 13 17 0 -

6 - 40 82 64 - - 0 0 82 8
7 - 29 65 - 23 15 - 39 0 19
8 - 36 35 - 0 70 34 - 28 0
9 - 0 52 0 42 0 0 34 - 0
10 0 - - - - - - - - -

Figure 4: Admissible Gr .. ph Figure 5: Admissible Graph
(before bounding procedures) (afler BPl)

Figure 6: Admissible Gr .. ph Figure 7: Admissible Graph
(afler BP2) (after BP3)

4 Branch and Bound Method
4.1 Outline of the Branch and Bound Method

The essential ingredients of our branch and bound procedure are:

1. A branching rule: We derive new branching scheme that uses the precedence con­
straints, and then it is combined other branching rules for the TSP.

2. A subproblem selection rule: We adopt the depth first search for selecting the sub­
problem in the branching tree.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP 165

3. Logical and variable fixing tests: We use a logical test using the precedence constraints.
Furthermore, several variables are fixed using the reduced costs. Details are described
in subsection 4.3.

4. Approximate algorithms: To get an upper bounds we use the insertion and local search
algorithms. The insertion method constructs a feasible tour by inserting nodes one by
one so as to satisfy the precedence constraints, and the local search methods are based
on Or-opt procedure for the TSP [21]. These approximate algorithms incorporate
several features designed to provide the efficiency and the performance. Details are
described in the companion paper [19].

5. Finding of Hamiltonian cycles on the admissible graph: We find a Hamiltonian cycle
on Go to get an upper bound and a precedence violating path that is used in the
branching rule. Although finding a Hamilt.onian cycle on any given graph is known to
be NP-complete [13], we can find a Hamiltonian cycle using the depth first search with
the limited searches on a sparse graph in modest computational requirement. In our
experiment we set the upper limit of searches equal to 5n.

Using the above ingredients, we can construct the branch and bound method. The outline
of our branch and bound can be described as follows:

Algorithm: Branch and Bound for the PCTSP
Input: node number n, distance matrix [Dij], pr€'cedence constraints --<, node 1 E V .
Output: an optimal solution and its solution value z*.
begin
(Ini tialization)

put PCTSP on the list of active subproblems;
set initial upper bound U B := 00;

while list is not empty do

begin

(Subproblem Selection)

choose a subproblem according to the sub problem selection rule
and remove it from the list;

(Logical Test)

do a logical test using precedence constraints;

(Finding Lower Bound)

compute lower bound LB using the assignment relaxation;
improve LB using subtour elimination constraints (this can be
done using bounding procedures that are described in Balas and
Christofides [2]);
improve LB using precedence constraints (this can be done using
our bounding procedures that are described in section 3);

(Finding Upper Bound)

use approximate algorithms to find a feasible tour;
find a Hamiltonian cycle on admissible graph Go;
if a better solution than U B is found then store it and update
UB;

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

166

end

end.

M. Kubo & H. Kasugai

(Variable Fixing Test)

do a variable fixing test using the reduced costs;

(Subproblem Generation)

if LB < U B then generate new subproblems, place them on the
list

Several features of the branch and bound method are described in the following subsec­
tions.

4.2 Branching Rules
To describe the branching rules, we introduce several notations. Let us denote the sub­

problem in the branching tree by (NO, NI) where

(28) N° = {(i,j) EEl Xij = O}

and

(29) NI = {(i,j) EEl Xij = I}.

We denote the descendants of (N°, NI) by (N~, Nr
l

) for r = 1,2· .. , R.
We describe three branching rules that are used intermittenly. The first one is derived

from the precedence violating path. The second one, which is known to be the most efficient
rule for the TSP, is derived from the subtour elimination inequality. The third one is based
on the classical branching rule proposed by Little et al. [22] for the TSP.

4.2.1 The First Branching Rule
The first branching rule uses the precedence constraint q -< r for branching. For each

q -< r, the precedence violating paths are three types: P(r -+ q, 1), P(l -+ r, q), P(q -+ 1, r)
(see subsection 3.3). If we denote the precedence violating path by

then A-I subproblems generated from (N°, NI) are

(30) {
Nf = N° U (i~, iHd
N~ = NI U {(il' i2),"', (i~-l' i~)}

The subproblems are mutually exclusive.

4.2.2 The Second Branching Rule

>. = 1,2· .. ,A - 1.

Murty [25] proposed the branching rule for the TSP based on the subtour elimination
constraint. If we are given a subtour

then generated R - 1 subproblems are:

(31) r = 1,2, ... , R - 1.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP 167

4.2.3 The Third Branching Rule
Kalantari et a1. [18] used the following branching rules based on the classical branching

rule for the TSP proposed by Little et al. [22]. Let

(32)

where

(33)

(i, j) = max <Pii
(i,j)EB

<Pii := min{Dki I Vk E V, k -I j} + min{Dik I Vk E V, k -I i}.

Then two subproblems are generated as follows:

(34)

and

(35)

4.2.4 Selection of Branching Rule
We use three branching rules intermittenly according to the following rule. Let us denote

the set of all precedence violating paths on Go defined in subsection 3.3 by Allp and the set
of all subtours by All •. If

(36) . {{IP\{N~UNDI,VPEAllp}}
mm {I S \ {N2 U NH I, VS E All.}

is greater than On, then we use the third branching rule. Otherwise we use the first or second
branching rule that attains minimum in (36). The parameter 0 is set equal to 1/3 in the
numerical experiments.

4.3 Tests
We use two tests: one is the logical test that uses the precedence constraints; another

is the variable fixing test that uses the reduced costs. The logical test is used before the
bounding procedures, while the variable fixing test is used after the bounding procedures.

4.3.1 Logical Test
The unnecessary variables Xij can be fixed to 0 (or set Dij = 00) based on the following

theorem.

Theorem 7 If j -< i or i -< k -< j(3k E V), then we may set

(37) Dii = 00

without loss of optimality.

Proof: Obviously any feasible tour does not contain arc (i,j) when j -< i. If i -< k -< j,
then all feasible paths from i to j must pass k; any feasible tour can not contain arc (i, j). I

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

168 M. Kubo & H. Kasugai

4.3.2 Variable Fixing Test
Let us denote the lower bound, the upper bound, the reduced cost of the subproblem by

LB, U B, [Dij] , respectively. The variable fixing test is based on the following theorem.

Theorem 8 (Balas and Christofides [2]) If the condition

(38) UB < LB+D· - 'J

is satisfied, we may set Xij := 0 without losing optimality.

From the theorem above, we may set variables that satisfy (38) equal to 0 for the current
subproblem and its descendants.

5 Numerical Experimellts
Our algorithm is implemented by BASIC and run on micro-computer PC980IVM (NEC).

The speed of N88BASIC compiler is almost 1/3600 of VS-FORTRAN on IBM3081.
Distance matrix [Dij] is generated according to two types of instances below:

pure asymmetric: uniform integer over [1,100],

two dimensional Euclidean : nodes are distributed on 100 x 100 grids and then distances
are calculated by the Euclidean metric between nodes.

The precedence constraints are generated according to the following two methods:

dial-a-ride precedence constraints: Given a node number n (odd number), we set
i -< i + Ln/2J, for i = 2,3,···, Ln/2J.

general precedence constraints: Given a parameter p(O :::; p :::; 1), we set i -< j with
probability p independently for all (i,j) E E, i < j, and then find a transitive closure
using Warshall-Floyd algorithm [12], [35].

In the tables, we use the following abbreviations.

CPU : Computational time represented by Hour : Minute : Second.· The value in the
parenthesis denotes CPU time after scaling that adjusts CPU time so that n = 7 is
equal to 1. This value is used as the measure of the growth of the computational time
when the problem size increases.

No. of Branches: Number of subproblems generated in the branch and bound method.

No. of FA : Number of fixed arcs in the first subproblem.

UB : The solution value calculated by the approximate algorithm.

Z : The optimal solution value.

Density: Density of the precedence constraints:

(39)
number of precedence constraints

n(n - 1)/2

We solve one randomly generated instance for each class of the problem. The results for
the dial-a-ride precedence constraints are summarized in Table 6 and Table 7. The results
for the general precedence constraints are summarized in Table 8 and Table 9.

The following conclusions are obtained:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP 169

Table 6: Comparison with the Algorithm Proposed by Kalantari et al. The results of
Kalantari et al. is the computer time in seconds on Cray 1 at the University of Minnesota.
(Asymmetric Distance Matrix, Dial-A-Ride Precedence Constraints)

Our Algorithm Kalantari et al.
n CPU No. of Branches No. of FA UB/Z CPU
7 0:03 (1) 1 - 1 0.00152 (1)
13 3:48 (3.44) 17 65 1 0.0373 (1.11)
19 16:49 (2.28) 22 235 1 0.903 (4.06)
25 1:14:57 (2.57) 55 105 1 11.3 (12.79)
31 4:39:36 (3.28) 92 138 1 106.0 (40.93)
37 6:33:49 (1.91) 90 159 1 -
43 14:24:57 (1.98) 130 186 1 -
49 38:22:01 (2.73) 100 213 1 -

Table 7: Result of Our Branch and Bound Algorithm with Various Problem Sizes. (Sym-
metric Distance Matrix and Dial-A-Ride Precedence Constraints)

n CPU No. of Branches No. of FA UB/Z
7 0:24 (1) 7 27 1
13 5:25 (0.61) 19 46 1
19 36:48 (0.62) 51 76 1
25 2:08:14 (0.55) 77 111 1
31 3:57:39 (0.34) 79 103 1
37 10:31:23 (0.38) 119 124 1
43 24:26:37 (0.41) 171. 145 1
49 52:17:16 (0.47) In 166 1

Table 8: Result of Our Branch and Bound Algorithm with n = 3l. (Asymmetric Distance
Matrix and Genera.l Precedence Constraints)

p Density CPU No. of Branches No. of FA UB/Z
0.1 0.33 45:21 34 161 1
0.2 0.53 1:05:23 38 251 1
0.3 0.68 1:41:29 41 300 1
0.4 0.83 2:08:33 4'" ,) 382 1
0.5 0.89 1:14:41 3:1 467 1
0.6 0.93 0:50:47 20 529 1

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

170 M. Kubo & H. Kasugai

Table 9: Result of Our Branch and Bound Algorithm with n = 31. (Symmetric Distance
Matrix and General Precedence Constraints)

p Density CPU No. of Branches No. of FA UB/Z
0.1 0.24 2:55:17 85 98 1
0.2 0.44 3:33:11 69 173 1
0.3 0.79 1:50:09 33 320 1
0.4 0.81 2:56:48 49 339 1
0.5 0.94 1:57:19 31 508 1
0.6 0.96 1:24:40 31 550 1

1. Our algorithm performs better than the algorithm proposed by Kalantari et al. with
respect to the growth of the computational time; we could solve relatively large in­
stances.

2. For the general precedence constraints, CPU time of our algorithm is relatively small
when p is small and the distance matrix is asymmetric. We observe that when p
is small the PCTSP can be reduced to the ordinal TSP that can be solved by the
assignment based branch and bound method.

3. For the general precedence constraints, our algorithm performs well when p is large.
This is due to the fad that when p is large the logical test eliminates large number of
unnecessary variables; the structure of the PCTSP becomes easier.

6 Conclusion
We considered the precedence constrained traveling salesman problem that has many

practical applications in the area in vehicle routing and scheduling problems. We derived
three bounding procedures, and developed a branch and bound method by incorporating
these bounds. We could solve problems with up to 49 nodes exactly using our branch and
bound method.

Acknowledgments
We wish to thank the anonymous referees for their valuable comments. This work was

partially supported by the Waseda University Grant for Special Research Projects: 63A-42
and 89A-74.

References
[1] A. V. Aho, J. E. Hopcmft and J. D. Ulman , "The Design and Analysis of Computer

Algorithms, " Addison··Wesley {1974}.

[2] E. Balas and N. Christofides ,"A Restricted Lagrangean Approach to the Traveling
Salesman Problem," Mathematical Programming, Vol. 21 (1981) pp. 19-46.

[3] M. Bellmore and J. C. Malone ," Pathology of Traveling Salesman Subtour Elimination
Algorithm," Operations Research, Vol. 19 (1971) pp. 278-307.

[4] M. Bellmore and G. I. Nemhauser ,"The Traveling Salesman Problem: A Survey,"
Operations Research, Vol. 16 (1968) pp. 53&-558.

[5] L. Bodin and B. Golden, "Classification in Vehicle Routing and Scheduling," Networks,
Vo!. 11 {1981} pp. 97-108.

[6] G. Carpaneto and P. Toth , "Some New Branching and Bound Criteria for the Asym­
metric Traveling Salesman Problem," Management Science, Vo!. 26 (1980) pp. 736-743.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Precedence Constrained TSP

[7] P. L. Cassidy and H. S. Bennett , "TRAMP - A Multi-Depot Vehicle Scheduling
System," Operations Research Quarterly, Vol. 23 (1972) pp. 151-163.

[8] H. Crowder and M. W. Padberg ,"Solving L,arge-Scale Symmetric Traveling Salesman
Problems to Optimality," Management Science, Vol. 26 (1980) pp. 495-509.

[9] G. B. Dantzig, D. R. Fulkerson and S. Johnson ,"Solution of a Large Scale Traveling
Salesman Problem," Operations Research, Vol. 2 (1954) pp. 393-410.

[10] M. A. Efroymson and T. L. Ray, "A Branch and Bound Algorithm for Plant Location,"
Operations Research, Vol. 14 (1966) pp. 361-368.

[11] M. Fischetti and P. Toth," An Additive Bounding Procedure for Combinatorial Opti­
mization Problems," Operations Research, Vol. 37 (1989) pp. 319-328.

[12] R. M. Floyd ," Algorithm 97, Shortest Pat.h," Communication of the ACM, Vol. 5
(1962) pp. 345.

[13] M. R. Garey and D. S. Johnson ,"Computers and Intractability: A Guide to the
Theory of NP-Completeness," Freeman (1979).

[14] W. V. Gehrlein ,"On Methods for Generat.ing Random Partial Order," Operations
Research Letters, Vol. 5 (1986) pp. 285-291.

[15] B. Golden, L. Bodin, T. Doyle and W. Stewa,rt JR. ," Approximate Traveling Salesman
Algorithm," Operations Research, Vol. 28 (ll980) pp. 694-711.

[16] M. Held and R. M. Karp, "A Dynamic Programming Approach to Sequencing Prob­
lems, " SIAM Journal of Applied Mathematics, Vol. 10 (1962) pp. 196-210.

[17] J. Jaw, A. R. Odoni, H. N. Psaraftis and N. H. M. Wilson ,"A Heuristic algorit.hm
for the Multi-Vehicle Advance Request Dial-A-Ride Problem with Time Windows,"
Transportation Research, Vol. 20B (1986) pp. 243-257.

[18] B. Kalantari, A. V. Hill and S. R. Arora , " An Algorithm for the Traveling Sales­
man Problem with Pickup and Delivery Customer," European Journal of Operations
Research, Vol. 22 (1985) pp. 377-386.

[19] M. Kubo and H. Kasugai," Heuristic Algorithms for the Dial-A-Ride Routing Prob­
lem," Journal of Operations Research Socie1ly of Japan, Vol. 33, No.4 (1990) pp. :135-
353.

[20] H. W. Kuhn ," The Hungarian Method for the Assignment Problem," Naval Research
Logistics Quarterly, Vol. 2 (1955) pp. 83-97.

[21] E. L. Lawler, .r. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys ,"The Traveling
Salesman Problem," John Wiley and Sons (1985).

[22] J. D. C. Little, K. G. Murty, D. M. Sweeney and C. Karel ,"An Algorithm for the
Traveling Salesman Problem," Operations Research, Vol. 11 (1963) pp. 972-989.

[23] T. L. Magnanti ,"Combinatorial Optimization and Vehicle Fleet Planning: Perspec­
tives and Prospects," Networks, Vol. 11 (1981) pp. 121-132.

[24] S. Martello ," ALGORITHM 595 An Enumerative Algorithm for Finding Hamiltonian
Circuits in a Directed Graph," ACM Transactions on Mathematical Software, Vol. 9
(1983) pp. 131-138.

[25] K. G. Murty," An Algorithm for Ranking all the Assignments in Order of Increasing
Cost," Operations Research, Vol. 16 (1968) pp. 682-687.

[26] M. W. Padberg and S. Hong," On the Symmetric Traveling Salesman Problem: A
Computational Study," Mathematical Programming Vol. 7 (1980) pp. 78-107.

[27] H. Psaraftis ," A Dynamic Programming Solution to the Single Vehicle Many-to-Many

171

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

172 M Kubo & H. Kasugai

Intermediate Request Dial-A-Ride Problem," Transportation Science, Vol. 2 (1980)
pp. 130-154.

[28] H. Psaraftis ,"Analysis of an O(N2
) Heuristic for the Single Vehicle Many-to-Many

Euclidean Dial-A-Ride Problem," Transportation Science, Vol. 117B (1983) pp. 133-
145.

[29] H. Psaraftis ,"K-interchange Procedures for Local Search in a Precedence Constrained
Routing Problem," European Journal of Operations Research, Vol. 13 (1983) pp. 391-
402.

[30] N. Z. Shor ," Minimization Methods for N ondifferentiable Functions," Springer-Verlag
(1985).

[31] D. Stein ,"Scheduling Dial-A-Ride Transportation System," Transportation Research,
Vol. 12 (1978) pp. 232-249.

[32] D. Stein ," An Asymptotic, Probabilistic Analysis of a Routing Problem," Mathematics
of Operations Research, Vol. 3 (1978) pp. 89-101

[33] H. Suzuki and S. Nomura ," A Shortest Path Problem with Visiting Order Constraints,"
(in Japanese) Proceedings of the 7th Mathematical Programming Symposium Japan
(1986) pp. 127-142.

[34] R. E. Tarjan ,"Data Structures and Network Algorithms," SIAM Publications (1983).

[35] S. Warshall ,"A Theorem on Boolean Matrices," Journal of the ACM, Vol. 9 (1962)
pp. 11-12.

[36] A. Wren and A. Holida.y ,"Computer Scheduling of Vehicle from One or More Depot
to a Number of Delivery Point," Operations Research Quarterly, Vol. 23 (1972) pp.
333-344.

Mikio KUBO : Department of
Industrial Engineering and
Management,
Waseda University,
3-4-1, Okubo Shinjuku,
Tokyo 169, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

