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Abstract We consider the concave cost capacitated facility location problem, and develop a composite 
algorithm of lower and upper bounding procedures. Computational results for several instances with up to 
100 customers and 25 candidate facility locations are also presented. Our numerical experiments show that 
the proposed algorithm generates good solutions. The gaps between upper and lower bounds are within 1 
percent for all test problems. 

1 Introduction 
The facility location problem, i.e., finding the optimal location to be established among 

a given set of candidate sites in order to satisfy known demands specified at a given set of 
customer locations, has been a popular research area for mathematicians and management 
scientists. The objective of the standard facility location problem is to minimize the total 
cost consisting of fixed costs for establishing facilities and linear production and transporta­
tion costs. Our model is a variant of the facility location problem called the capacilated 
concave cost facility location problem (CCFLP) in which the costs are represented by nonlin­
ear concave functions. The nonlinear costs usually arise when pull type of inventory policies 
are used in the operational level. 

The assumptions of our model are: 

1. The numbers of candidate facilities and customer locations are m and n, respectively. 

2. Candidate facility locations are indexed by 1, ... , i, ... , m. 

3. Customer locations are indexed by 1, ... , j, ... , n. 

4. The production size in each facility, say i, i5, limited by a prescribed amount C i . In the 
sequel, we call it the capacity of the facility. 

5. The production and transportation costs are non-decreasing functions of the production 
and transportation sizes, respectively. We denote the production cost function of 
facility i by fi and the transportation cost function between facility i and customer j 
by 9ij. 

6. The marginal production and transportation costs are non-increasing functions of the 
production and transportation sizes, respectively. This leads that functions fi' i = 
1,,", m and gij, i = 1"", m and j = 1,,", n are concave. Concavities reflect. the 
economies of scale of the production and transportation costs. 

7. The production cost is equal to 0 if no amount is produced, i.e., fi(O) = 0 for i = 
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Dummy Source Facility Cites Demand Points 

Figure 1: Sample Network of the Concave Cost Facility Location Problem 

1, ... , m. The transportation cost is equal to 0 if no amount is shipped, i.e., %(0) = 0 
for i = 1,···, m and j = 1,···, n. 

8. The demand of each customer, say j, is a known value and denoted by dJ' 

Several variants of the facility location problems have been extensively analyzed by many 
authors, but very few researches have been done for the CCFLP. 

Eilon et al. [3] considered a continuous version of the CCFLP, in which facilities can be 
located in any place in the plane. Soland [11] developed a branch and bound algorithm for 
the CCFLP. Recently, Erickson et al. [4] proposed a dynamic programming algorithm for 
the general concave network flow problems. Of course their algorithm can be used for solving 
the CCFLP. 

We have several motivations of this research. One motivation of this research is the 
sparsity of the previous research for the CCFLP in contrast to its practical importance. The 
CCFLP is closely related to the fixed charge facility location problem in which we want 
to minimize the sum of the fixed costs and linear variable costs. The fixed charge facility 
location problem and its variants are extensively analyzed in literature, but the linear and 
fixed charge cost function ca.nnot explain the economy-of-scale that we encounter in several 
practical situations. 

To explain the second motivation, we should analyze the characteristic of the algorithms 
of the previous works. 

The branch and bound method of Soland is particularly effective if only small fraction of 
the arc costs are nonlinear concave function. If many arcs are strictly concave, the algorithm 
may run in exponential time in the worst case. The remarkable characteristic of Soland's 
algorithm is that the presence of the capacity constraints does not increase the difficulty of 
solving the problem. As shown in the numerical experiments in [11], the computational time 
is decreasing as the capacity constraints become tighter. 

In contrast to Soland's algorithm, the dynamic programming algorithm developed by 
Erickson et al. is effective if many of the arcs are strictly concave. Their algorithm runs in 
polynomial time if the underling network has a special structure which they call 'k-planar', 
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i.e., planar graph with all demand nodes lying on the boundary of k faces. Unfortunately, 
the network of the CCFLP does not possess such a special structure (see Figure 1). Further 
the presence of the capacity of arcs makes the algorithm run in exponential time. Thus we 
can observe a lack of the algorithm that works well when 

1. many arcs are strictly concave, 

2. the underlying network does not have a special structure, and 

3. there may exist capacity constraints, but not tight. 

This fact means that we need a tough algorithm that works relatively well for any network 
with strictly concave costs and weak capacity constraints. 

Another drawback of the previous works is that both of the previous algorithms may run 
in exponential time. These observations indicate that we need a tough algorithm that runs 
in low-order polynomial time, and gives relatively good solutions. 

Based on the above motivations, we propose a composite algorithm of the lower and 
upper bounding procedures that uses the Lagrangean dual solution method and produces 
tight lower and upper bounds. 

The remainder of this paper is organized as follows. In section 2 we give two formulations 
of the CCFLP. In section 3 we describe a lower bounding procedure. In section 4 we describe 
an upper bounding procedure. Section 5 contains the numerical experiments and the final 
section gives concluding remarks. 

2 Problem Formulations 
In this section, we describe two formulations of the CCFLP. The first formulation is 

derived from a naive generalization of the standard facility location problem. Similar for­
mulation has been given by Soland [11]. 

(CCFLP : Formulation 1) 

(1) 

subject to 

(2) 

(3) 

(4) 

where 

m n m n 

Z· = min L /;(L x'j) + L L 9ij(x'j) 
.=1 j=1 .=1 j=1 

m 

Lx'j = dj j = 1,"·,n, 
.=1 

n 

L X'j ::; C. i = 1,···, rn, 
j=1 

o ::; x'j ::; r'j i = 1, ... , rn, j = 1, ... , n, 

rn = the number of candidate facilities, 

n = the number of customers, 

Xij = the amount shipped from facility i to customer j, 
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i, = the concave function that represents the production cost in facility i, 

g,j = the concave function that represents the transportation cost from facility i to customer 
], 

C, = the upper bound of the amount produced in facility i, i.e., the capacity of facility i, 

dj = the demand of each customer, 

r.J = min{C" dj } that we call the reduced capacity on arc (i,j). 

In the formulation above, the objective function (1) minimizes the sum of the production 
costs and the transportation costs. Constraints (2) represent that each customer's demand 
must be satisfied. Constraints (3) represent that the total amount shipped from facility i 
must be less than or equal to the capacity of the facility. Constraints (4) are non-negativity 
and upper bound constraint.s of variable Xij' 

Next, we describe the second formulation. We introduce new variables YiJ for i = 
1,' .. ,rn, j = 1,"', n. Variable Yij represents the amount produced in facility i to sat­
isfy the demand of customer j. It may be seen that these variables are not necessary to 
formulate the CCFLP, since Yij must be equal to Xij for i = 1,"', rn, j = 1,"', n. But 
this formulation is used to derive the tight lower bounds that will be described in the next 
section. Similar formulation can be found in Magnanti and Wong [6] for the reduction of 
the facility location problem to the network design problem. 

(CCFLP : Formulation 2) 

(5) 

subject to 

(6) 

(7) 

(8) 

(9) 

(10) 

m n m n 

Z· = min L: J;(L: Yij) + L: L: gij(Xij) 
i=1 j=1 i=1 j=1 

m 

L:X,j = dj j = 1,"',n, 
i=1 

Xij--Yij=O i=l,"',rn,j=l,"',n, 

n 

L: Yij ~ C i i = 1, ... , rn, 
j=1 

o ~ ;"Cij ~ rij i = 1,"', rn, j = 1,"', n, 

o ~ Yij ~ rij i = 1,"',rn,j = 1,···,n. 

In the formulation above, the objective function (5) minimizes the sum of the production 
costs and the shipping costs. Constraints (6) define that each customer's demand must be 
satisfied. Constraints (7) represent that the amount shipped from facility i to customer j 
must be equal to the amount produced in facility i for customer j. Constraints (9) and (IQ) 
are non-negativity and upper bound constraints of variables Xij and Yij respectively. 
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3 Lower Bounding Procedure for the CCFLP 
In this section, we describe a Lagrangean relaxation formulation of the CCFLP and a 

solution method of the Lagrangean subproblem for any given Lagrangean multipliers. Then, 
we describe how to adjust multipliers. We first adjust the initial Lagrangean multipliers by 
solving the transportation problem, and then use the subgradient optimization method to 
adjust the multipliers. 

3.1 Formulation of the Lagrangean Relaxation Problem 
We dualize (6) using multiplier vi for all j = 1,"', nand (7) using multiplier Wi} for all 

i = 1"", m and j = 1,·", n. Given a vector of Lagrangean multipliers (v, w) = ([Vi], [Wij]) , 
we can get the following Lagrangean relaxation problem. 

(LRP : Lagrangean Relaxation Problem) 

m n n m n n 

(11) Z(v, w) = minE {J;(Ly,j) - L wiiYij} + I: L {g'j(X,j) + (W'j - Vj)x,j} + L djv} 
;=1 j=1 j=1 ;=1 j=1 j=1 

subject to (8),(9),(10). 
The optimal value of the Lagrangean relaxation problem Z(v, w) is a valid lower bound 

on the optimal value of the CCFLP. 

3.2 Solving the Lagrangean Subproblems 
The Lagrangean relaxation problem (LRP) ,can be decomposed into two independent 

problems; one is to determine variables Xii and (llJlother is to determine variables Yij· 
The problem for determining variable Xij can be further decomposed into m x n subprob­

lems each of which determines the optimal shipment size between a facility and a customer. 
More precisely, for all i = 1,"" m,j = 1,"', n and given Lagrangean multiplier vectors 
v = [Vj] and w = [Wij], we define LSX,j(v, w) ( Lagrangean subproblem corresponding to 
variable X,j ) as follows. 
(LSX,Av, w) ) 

(12) Zij(v, w) = min 9ii(x,}) + (w,j - Vj)x,j 

subject to (9). 
The problem to determine variable Y,j can be decomposed into m subproblems each of 

which gives the optimal production size in a facility. More precisely, for all i = 1, ... , m and 
given Lagrangean multiplier vector w = [w,j], we define LSY;(w) ( Lagrangean subproblem 
corresponding to variable Yii ) as follows. 
(LSY;(w) ) 

n n 

(13) Zr(w) = min ME Yij) - L WijYij 
j=1 j=1 

subject to (8),(10). 
Using (12),(13), we can represent the optimal value of the Lagrangean relaxation problem 

Z(v,w) as follows: 

m m n n 

(14) Z(v,w) = LZr(w) + LL Zij(v,w) + EdjVj. 
.=1 i=I}=1 j=1 

We now describe how to solve the subproblern LSX,} (v, w). Since the function gi}(Xij) 
is concave, there exists an optimal solution on the extreme points of the polyhedron de­
fined by the constraints ( see [12] ). By observing that the constraints of the subproblem 
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F. • 

o ",r d i ",r-l d 
L..k'=l PiCk) L..k·=1 PiCk) 

Figure 2: Solving Lagrangean Subproblem LSY;(w) E;'=1 Yi) 

LSXij{ V, w) are the upper and lower bounds of variable Xij only, the decision variable Xi) 
can be determined as follows. 

(15) ifgij~:rij)+(wij-Vj)rij<o i=I ... m '=1 .. · n 
otherwise ' ,,) , ,. 

Next, we describe how to solve LSY;(w) corresponding to variable Yij' Since the function 
li is also concave, we may restrict our attention to the extreme points only. The extreme 
points are represented as dots in Figure 2. Using this property, we can get the following 
proced ure for solving L SY; ( w). 

Consider a facility i(E {I, 2,"', m}) corresponding to LSY;(w). First, find a permutation 
Pi that satisfies 

(16) Wip;(I) ~ Wipi(2) ~ ••• ~ Wip;(n) 

and let 

1 1 

(17) Fit = IlL rip;(k») - L f;p;(k)Wip;(k) for all 1 < f < 1i 
k=1 k=1 

and 

i; I; 
(18) Fil;+1 = li(G;) - L rip;(k)Wip;(k) - (Gi - L rip;(k»)Wip;(I;+I)' 

k=l k=1 

where 1i is the maximum index f that satisfies 

(19) 

Then, find f:" such that 

(20) 

1 

L rip;(k) < Gi . 
k=1 

Fi/- = min Fi/' 
1;5/;51;+1 
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If F,t- ::; 0, then the optimal solution is y,; = 0 for j = 1,"', n, i.e., all variables 
corresponding to subproblem LSY;( w) are set to O. Otherwise, we determine the variable 
Yij as follows (see Figure 2). 
IU" =I Ri + 1, 

(21) 
{ 

r,p;(k) k=l,"',r, 
Y'p;(k) = 0 k ' = t" + 1,"', n. 

IU" = Pi + 1, 

(22) y;"j') ~ { 

k = 1 ... I , '" 
k = ii + 1, 
k = Ri + 2, ... , n. 

The computational requirement of the proced1iUe above is very cheap. If we assume that 
each elementary operation on real numbers requires one unit time and concave functions Ii 
and 9iJ are evaluated in one unit time, overall complexity for solving the Lagrangean problem 
is O(mnlogn), since the subproblem LSX,j{v, w) requires 0(1) time for each i = 1,"', m 

and j = 1,' .. , n and the subproblem LSY;( w) requires O(n log n) time for each i = 1,' .. ,m. 

3.3 Dual Adjustment Procedure 
By duality theory [5], the Lagrangean objective function value Z(v, w) gives a valid lower 

bound of the optimal solution value Z" for any r,eal vectors v = [v]] and w = [WiJ]' 
Therefore, we have to solve the following Lagrangean dual problem to find the best lower 

bound. 
(LOP: Lagrangean Dual Problem) 

(23) 
v,w 

Z(v, w). LB = max 

Instead of solving the Lagrangean dual problem optimally, we solve it approximately by ad­
justing multipliers and using subsequently a subgradient optimization procedure to improve 
the lower bound. This subsection gives the initial multiplier adjustment procedure and the 
subgradient optimization procedure for the CCFLP. 

3.3.1 Initial Adjustment of Lagrangean Multipliers 
Though we may start the subgradient procedure with any Lagrangean multipliers, we set 

the initial Lagrangean multipliers heuristic ally for fast and steady convergence. 
We use linear and lower approximation of the concave functions to derive initial adjust­

ment procedure. Let Ii and 9,j be the coefficients of the linear-lower approximation of 
I;(,'E-'1=l Y,j) and 9ij( Xij), respectively, which are defined as follows: 

(24) 

and 

(25) 

J, - Ii(r'J:~ 
1 - r. 

IJ 

Using the linear and lower approximation above, we can get the following approximation 
of the Lagrangean relaxation problem. 

m n m n 

(26) mm L L !.Y'j + :[ L 9,jX,j 
,=1 j=l ,=1 j=l 
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subject to (6),(7), (8),(9),(10). 
Since Xij = Yij for i = 1,,"', rn, j = 1,···, n, the problem above can be reduced to the 

following transportation problem: 

(27) 

subject to 

(28) 

(29) 

(30) 

m n 

nun L LU: + 9ij )~iJ 
i=lj=l 

m 

L ~ij = dj j = 1, ... , n, 
i=l 

n 

L ~ij ~ C; i = 1,···, rn, 
j=l 

o ~ ~ij ~ rij i = 1,···,rn,j = 1,···,n. 

The initial Lagrangean multipliers Vj for j = 1,· .. , n are set to the optimal dual variables 
of the corresponding constraints (28) and multipliers Wij for i = 1,···, rn, j = 1,···, n are 
set as follows : 

(31) Wij == Vj - 9ij i = 1,···, rn,j = 1,···, n. 

Since an optimal solution of the transportation problem can be obtained in polynomial time 
by the primal-dual algorithm, and multipliers Wij can be computed in O(rnn), the overall 
complexity is polynomial time order. 

For the uncapacitated case, i.e., C i ~ L:j=l dj for all i = 1,···, rn, we can determine Vj 

more easily. 

(32) 

In this case, computational complexity can be reduced to O(rnn). 
The validity of the initial lower bound is shown in the following theorem. 

Theorem 1 By setting the Lagrangean multipliers equal to v and W above, we can 
get the initial lower bound 

n 

(33) LB = L dj'uj. 
j=l 

Furthermore, the initial primal solution of the Lagrangean subproblem is Xij = 0 and YiJ = 0 
for i = 1, ... , rn, j = 1, ... , n. 

Proof: Consider the linear and lower approximation of the LRP: 
m n m n n 

(34) min L LCf; - Wij)Yij + L L(9ij + Wij - Vj)Xij + L dj Vj 
i=lj=l i=lj=l j=l 

subject to (8),(9),(10). 
Since Vj ~ J; + 9ij, we get Wij ~ J; for i = 1,···, rn, j = 1···, n. From the definition 

of W, we get 9ij ~ Vj - Wij for i = 1,···, rn, j = 1,"', n. Therefore, we can say that the 
optimal solution of the LRP is Xij = 0 and Yij = 0 for i = 1,"', rn, j = 1,···, n and this 
gives the initial lower bound L:j=l djvj. I 
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3.3.2 Subgradient Optimization 
We apply a subgradient optimization procedure to increase the value of the Lagrangean 

lower bound. Let Xij, Yij be the solution derived from the Lagrangean relaxation problem 
and let 

m 

(35) Aj = L Xij - d j :j = 1,"', n 
i=1 

and 

(36) Pij = Xij - Yij i = 1,,", rn, j = 1,"', n. 

The vector (>..,1-1) = ([Aj], [Pij)) defines a subglradient for the Lagrangean function Z(v, w) 
and specifies a candidate direction for changing the current values. The multipliers are 
adjusted as 

(37) Vj:=V)+(}Aj j=I,"',n 

and 

(38) Wij := Wij + BPij i = 1, ... ,rn, j = 1, ... ,n, 

where () is the step-size given by 

(39) 
z - Z(v,w) 

() = S "m (A .)2 "m "n ( .. )2 
£...i=1 • + £...i=,1 £...j=1 P') . 

Z is an upper bound on the solution value and s is a prespecified steJrsize in the range 
0< s < 2. 

4 Upper Bounding Procedure for the CCFLP 
In this section, we give a simple approximate algorithm for the CCFLP. After determining 

the open facility using the information of the Lagrangean solution described in the previous 
section, we use the transportation problem as a subroutine to get an approximate solution. 
If the transportation problem is infeasible, we add the facilities to be opened using the 
greedy criteria. This criteria also uses the information of the Lagrangean solution. This 
procedure should be periodically applied during the subgradient optimization procedure. In 
the numerical experiments in section 5, we apply the upper bounding procedure once every 
5 iterations. 
(Upper Bounding Procedure) 

Step 1 Let the optimal solution of the Lagrangean subproblem be Xij and Yij for i = 

1, "', rn, j = 1, "', n. Calculate the reduced fixed charge ii for each facility i = 1, ... rn 
as follows: 

n n 

(40) ii = J;(LYij) - L WijXij. 
j=1 j=1 

Step 2 Determine the set of opened facilities I as follows: 

( 41) 1= {i I ii < 0,1 = 1,"', rn}. 
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Step 3 If lie, then goto Step 5. 

Step 4 Determine i* (cheapest facility) as follows: 

(42) fi* = min fi 
iE{l .. ··.m}-I 

and add i* to I. 

Step 5 Solve the following transportation problem: 

(43) 

subject to 

(44) 

(45) 

(46) 

n 

min LL9ij(~ij) 
iEI j=l 

L~ij = dj j = 1,···,n, 
iEI 

n 

L ~ij ;:; Ci i El, 
j=l 

0;:; ~ij;:; r ij i E I,j = 1,···,n. 

If the solution is infeasible, then goto Step 4. Otherwise we get a feasible solution by 
setting Xij = ~i; for all i E I and j = 1"", n, where ~ij is an optimal solution of the 
transportation problem above. 

Most time consuming part of the upper bounding procedure above is Step 5. Since the 
transportation problem can be solved in polynomial time and Step 5 is used at most m 
times, the upper bounding procedure described above runs in polynomial time order. 

For uncapacitated case, we can replace Step 5 in the algorithm by the following simple 
procedure: 
Step 5' The demands of customer j are shipped by facility ij where 

(47) 

For uncapacitated case, only O(mn) steps are required. 

5 Numerical Experiments 
We coded our procedures in BASIC and ran them on a PC9801 VM2 (NEC) computer. 

Test problems have been randomly generated so that all nodes are distributed randomly on 
100 x 100 grids. We set the data of the random instances so that both the branch and bound 
algorithm proposed of Soland [11] and the dynamic programming algorithm of Erickson et 
al. [4] do not work well. Demands are identical at all customers; we set d = 1. The capacity 
of each facility is set to infinity, i.e., all the test problems are uncapacitated. 

The production costs are generated as follows: 

n n 

(48) f;(LYij) = F x (LYij)Q. 
j=l j=l 

We set F=lOOO and 0'=0.5 in our experiments. 
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Table 1: Summary Statics of the CCFLP 

Problem Size No. of Iter. Gap CPU Time 
( 5, 20 ) 36 .34 2:07 
(10, 40 ) 26 .96 5:37 
(15, 60 ) 53 .76 25:36 
(20, 80 ) 56 .33 48:29 
(25, 100 ) 96 .98 2:09:50 

Legend: Problem Size = (No. of Facilities, No. of Customers), No. of Iter. = No. of 

b d· t·t f G Best upper bound- Best lower bound 100 CPU f 
su gra len I era IOns, ap = Best lower bound x, llne = 
(Hours: Minute: Seconds) on PC9801 VM2 (10 MHz), Basic Compiler. The computational 
time is about 3600 times longer than IBM 3090 VS-FORTRAN when measured by addition 
only. 

The transportation costs are generated as follows: 

(49) 9'j{x./l = (Euclidean distance betw,~en nodes i and j) x (x.j)tl 

We set f3 = 0.5 in all instances. 
Table 1 gives the results with various problem sizes. 
Our algorithm performs well for randomly generated test problems with up to lOO cus­

tomers and 25 candidate facilities. For all the computational runs, the gaps between the 
lower and upper bounds are within 1 percent. 

6 Concluding Remarks 
We developed it composite algorithm of lower and upper bounding procedures. We re­

ported on computational results for several instances with up to 100 customers and 25 candi­
date facility location sites. Our numerical experiments showed that our algorithm generates 
good solutions within reasonable computational time. For all problems, the iterations of our 
algorithm are less than 100, and one iteration requires O{mnlogn) time. Since the growth 
of the number of iterations is relatively slow, we can predict that the computational time 
does not grow so rapidly as the problem size increases. This indicates that our composite 
algorithm of upper and lower bounding procedures can be used for large instances that we 
encounter the practical situations. 

Acknowledgments 
We wish to thank the anonymous referees for their valuable comments. This work was 

partially supported by the Waseda University Grant for Special Research Projects: 63A-42 
and 89A-74. 

References 
[1] A. Balakrishnan , T. L. Magnanti and R. T. Wong ,"A Dual-Ascent Procedure for 

Large-Scale Uncapacitated Network Design," Working Paper (1987) Purdue University. 

[2] A. Balakrishnan, and S. C. Graves ,"A Composite Algorithm for a Concave-Cost Net­
work flow Problem," Networks, Vo!. 19 (1989) pp. 175-202. 

[3] S. Eilon, C. D. T. Watson-Gandy and N. Christofides ," Distribution Management: 
Mathematical Modeling and Practical Analysis," (1971) Compton Printing. 

[4] R. E. Erickson , C. L. Monma and A. F. Veinott, Jr. ,"Send-and-Split Method for 
Minimum-Concave-Cost Network Flows," Mathematics of Operations Research, Vo!. 4 
(1987) pp.634-664. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



136 M. Kubo & H. Kasugai 

[5] A. M. Geoffrion," Lagrangean Relaxation for Integer Programming," Mathematical Pr<r 
gramming, Vol.2 (1974) pp. 82-114. 

[6] T. L. Magnanti and R. T. Wong ,"Network Design and Transportation Planning: 
Models and Algorithms," Transportation Science, Vol. 18 (1984) pp. 1-55. 

[7] T. L. Magnanti , P. Mireault and R. R. Wong ,"Tailoring Benders Decomposition for 
Network Design," Mathematical Programming Study, Vol. 26 (1986) pp. 112-154. 

[8] M. Minoux ," Network Synthesis and Optimum Network Design Problems: Models, 
Solution Methods and Applications," Networks, Vol. 19 (1989) pp.313-360. 

[9] W. B. Powell and Y. Sheffi ,"The Load Planning Problem of Motor Carriers: Problem 
Description and a Proposed Solution Approach," Transportation Research, Vol. 17 A 
(1983) pp.471-480. 

[10] W. B. Powell ," A Local Improvement Heuristic for the Design of Less-than-Truckload 
Motor Carrier Networks," Transportation Science, Vol. 20 (1986) pp.246-257. 

[11] R. M. Soland " Optimal Facility Location with Concave Costs," Operations Research, 
Vol. 22 (1974) pp.373-382. 

[12] W. I. Zangwill ,"A Backlogging Model and Multi-Echelon Model of a Dynamic Lot 
Sizing Production System-A Network Approach," Management Science, Vol. 15 (1969) 
pp. 506-527. 

Mikio KUBO : Department of 
Industrial Engineering and 
Management, 
Waseda University, 
3-4-1, Okubo Shinjuku, 
Tokyo 169, Japan 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




