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Abstract This paper describes nonconvex minil1liza;ioll approaches for tilt' problem of determining an 
economic ordering policy for jointly replenished items. ,\ ft.er reducing t.he object. function in the problem to a 
single-variable nonconvex function, two methods are proposed for solving the problem. One is the Successive 
Underestimation Method which utilizes effectively the propert.ies of the function A/t + Bt. Another is a 
modification of t.he Relief Indicator Method. Different. from other heuristic methods ever proposed for the 
problem, the method,; developed in this paper can obtain a global approxilllate solution within any pre3cribed 
error bound a.s we like. Result.s of computational test; show t.hat both of the proposed methods perform 
equally well for many test problems. 

1. Introduction 
In this paper we will develop two methods for the problem of determining economic 

ordering frequencies of jointly replenished item,. by applying nonconvex minimization tech­
niques. The problem is encountered when an llnpackaged product is packaged into several 
sizes right after manufacture. These items, each representing a particular type of container, 
are said to be jointly replenished. The problem has been a matter of considerable interest for 
researchers over the last 20 years; see Doll and Why bark [1], Goyal [2]'[3],[4],[5], Goyal and 
BeIton [6], Shu [12], and Silver [14]. It has a close connection with the problem of determining 
economic ordering frequencies of items procured from a single supplier. For details of the 
latter problem refer to Graves [7], Muramatu and Yanai [8], Roundy [10]' Starr and Miller 
[15], and Schwartz [11]. 

The problem we will treat in this paper is originally investigated by Goyal [3]'[4]. It is 
to determin ordering frequencies minimizing the associated annual cost which consists of: 

(a) cost of manufacturing set-ups, 
(b) cost of packaging set-ups, and 
(c) cost of holding stock for packaged items. 
Although a number of methods have been developed for the problem, almost all the 

approaches are heuristic and only local optimum solutions are obtained. Moreover, good and 
sensible error bounds are not evaluated. Only on.e method that guarantees optimality would 
be that of Goyal[4]. However, his method is rather enumerative. It requires evaluating all the 
candidate solutions between the lower and the upper bounds of decision variables which will 
be defined in the following section. Therefore the number of solutions to be evaluated will 
be enormous as the size of the problem n, which is the number of container types, becomes 
large. 

The purpose of this paper is to develop such methods for the problem as guarantee the 
error of the solution obtained to be less than a prescribed tolerance t: > O. In order to accom-
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pUsh this, we first reduce the original problem to a single-variable nonconvex minimization 
problem and then apply two methods for the reduced problem. One is a successive underes­
timation method and the other is the Relief Indicator Method which was developed recently 
by H.Tuy and one of the authors [16]. The latter was originally a general method for the 
global minimization of a multi variable constrained nonconvex function. In this paper we will 
adopt it with some modification to our problem. Numerical experiments show that both of 
our methods perform well with reference to our purpose. 

In both methods, especially in the successive underestimation method, a function of the 
form f(t) = A/t + Bt plays a central role as an appropriate underestimator for the non convex 
function under consideration. Such a function naturally has applications in other fields, but 
we will describe the underestimating techniques with reference to obtaining an economic 
ordering policy for jointly replenished products. 

This paper consists of 6 sections. In section 2, we will give the formuation of the original 
problem and the conversion to a single-variable nonconvex minimization problem. In section 
3 the successive underestimation method will be developed. Section 4 is for the application 
of the relief indicator method. Section 5 is for the numerical experiments. Section 6 contains 
an extension and conclusions. 

2. Problem formulation and its reduction to a single-variable nonconvex mini­
mization 
In this section we will introduce a mathematical formulation of the problem. We use the 

following assumptions and notations. 
Assumptions: 

(1) rate of demand for each packaged item is constant with time, 
(2) no shortages are allowed, 
(3) time horizon is infinite, and 
(4) rate of packaging is infinite. 

Notations: 
C : average annual cost, 
S : set-up cost of each manufacturing run, 
n : number of container types, 
t : time interval between manufacturing set-ups (continuous variable), 

and for the i-th item 
D; : annual demand, 
hi : holding cost per unit per year, 
Si : set-up cost of packaging, 
ki : ratio of the time interval between packaging set-ups to t (integer variable). 

All these variables and constants are positive. 
Now the minimization problem of the average annual cost C can be expressed as follows 

(see Goyal[4]): 

n " 
(2.1) mmzmzze C(t,k):= (S + ",£S;jk;)/t + "'£h i D;ki t/2 

i=l i=l 

s.t. t ~ 0, k i ~ 1 Vi. 
We will introduce a single-variable function F(t) defined by 

(2.2) F{t) := min { C(t, k) I ki : positive integer, i = 1,2, ... , n }. 

Generally, F(t) is cont.inuous but not convex and it may have many local minima (see 
Fig.I). So our problem will be reduced to the problem of seeking a global minimum of the 
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___ C(t,k) 

__ F{t) 

... t 

Fig.1. F(t) and local minima for an example of two items. 
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nonconvex function F(t) over t ~ o. The upper and lower bounds of t and the upper bound 
of k; can be estimated respectively as follows (se,e Appendix): 

n n 

tu = (2(S+ LS;jk;)('E,h;D;)1/2 , 
;=1 ;=1 

n 

tL = S/(F(tu) - L(2S;hiD;)1/2) , 
;=1 

ku; [(2S;/{h;D;))1/2 /tL]-~ 1 for i = 1,2, ... , n. 

3. Successive Underestimation Method 
Let us recall our problem: 

(P) minimize F(t), s.t. tL ~ t ~ tu , 

where tL and tu are positive numbers and 

n 

(3.1) F(t) = SIt + L min{S;j(k;jt) + hiD;k;t/2 11 ~ k; ~ ku;, k; : integer}. 
;=1 

In this section we present a successive underestimation method suitably applied to the 
problem (P). A general scheme of the successive underestimation method is the following. 
First, we replace the objective function F in the problem (P) by another function FJ which 
underestimates F on [t L, tu], i.e., 

(3.2) 

so that it may be easy to handle its minimizer. Instead of solving (P) we solve the relaxed 
problem: 
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Let tJ be a solution of (pj). From (3.2) it is obvious that if FJ(tJ) 2 F(tJ), then tJ is optimal 
for the problem (P). Otherwise, i.e., if Fj(tJ) < F(tJ), we construct a new underestimator 
Fj +1 of F which is better than Fj , i.e., 

FJ(t) ~ FJ+1(t) ~ F(t) 'v'tf[tL,tUJ, 

Fj(tj) < Fj+1(tj) = F(tJ) , 

and enter a new iteration for solving the new relaxed problem: 

(pj+d minimize FJ+1(t), s.t. tf[tL' tu]. 

In the case where F is Lipschitzian on [tL' tu] and its Lipschitz constant is effectively 
estimated, the underestimators Fj (j = 1,2, ... ) will be taken in a class of piecewise linear 
functions (see Piavskii [9], Shubert [13]). 

In our case, an upper bound of the Lipschitz constant of F on [t L, tu 1 may be computed 
rather easily, but it will be very large (perhaps very far from the actual Lipschitz constant of 
F on [tL' tu]). This means that the solution method in Shubert [13] (or in Piavskii [9]) can not 
be effectively applied to the problem (P). We will provide another class of underestimators, 
based on which the successive underestimation scheme will be effectively implemented. 

For the vector k = (k1' k2, ... , kn) of integer variables let us denote 

n 

A(k) S + L S;Jki' 
i=1 

n 

B(k) L h;D;k;J2. 
;=1 

From (3.1) we have 

(3.3) F(t) = min{ A(k)jt + B(k)t }, 
k 

Thus, we see F(t) is a pointwise minimum of a finite family of functions of the form: 

(3.4) Ajt + Bt. 

Let us describe some basic properties of functions of the form (3.4) which will lead us to 
a suitable underestimator for the problem (P). 

Proposition 3.1 Let [t" tu] be a segment on t > o. If A > 0, B > 0, and tl ~ J Aj B ~ tu, 

then the function (3.4) has its minimum value 2VAB at t = J Aj B. Otherwise, either tl or 
tu must be the minimizer of the function (3.4). 

Proof: Proposition 3.1 is obvious since the function (3.4) on t > 0 is either linear (in case 
of A = 0), strictly concave (in case of A < 0), or strictly convex (in case of A > 0). 0 

It is easy to check the following results. 

Proposition 3.2 Let (tl' fz) and (tu, lu) be arbitrary two points in R2 such that 0 < tl < tu· 
Then a function of the form (3.4) which involves both of those points is uniquely determined 
as 

where 

A(t" I" tu, lu) = (fujtu - Idtl)j(lj(tu? - 1j(tI)2) , 
B(t" /Z, tu, lu) = (futu - Iltz)j((tu)2 - (tz)2). 
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Corollary 3.1 Let ft(t) = Adt + BIt and f2(t) = Adt + B2t be two different functions 
defined on t > O. They intersect mutually at most at one point over t > O. 0 

To see that f1 and h do not contact but intersect mutually, we can check that their derivatives 
are different at the point where they have the same value. 

Now we can introduce an underestimator for the problem (P) by taking advantage of the 
form A/t + Bt. 

Proposition 3.3 Let t/ and tu are two points sllch that 0 < t/ < tu' The function 

(3.5) 

is an underestimator of F on [t/, tu]. 

Proof: By the definition of F (see (3.3)) and Proposition 3.2, one has 

f(t/) = inf { A(k)/t/ + B(k)t/ }, 
k 

inf {A(k)/tu + B(k)tu }. 
k 

Then, by Corollary 3.1 one has 

f(t):::; i~f{A(k)/t + B(k)t} = F(t) Vtdt/,t u]. 0 

Suppose that we are given an ordered set l' which consists of a finite number of points 
in [t L , tu] such that 

T :J {t L, tu } . 

Let us define the following function on [if" tu]. 

(3.6) 

for td:::; t :::; t., td, t. ET, td: predecessor of i •. 

Proposition 3.3 immediately gives the following iresult. 

Corollary 3.2 FT is an underestimator of FOil [t L, tu]. 0 

By Proposition 3.1 it is easy to handle a minimizer of FT. 
We are now ready to present a successive underestimation method for the problem (P) 

in each iteration of which an underestimator will be taken in the class of functions of the 
form (3.6). 

Algorithm 3.1 
Initialization: Set j -1, T1 - {tL,iu}, F1(t) - FT,(t), and c - a positive small value. 
Iteration j: Solve the relaxed problem: 

(3.7) 

and let tj be the solution obtained. 
If the st.opping criterion 

holds, then stop. Otherwise, set TJ +1 <,- TJ U {tJ }, FJ +1(t) <,- FTj+,(t). 
Go to it.eration j after setting j <,- j + 1. 0 
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- F(t) 

> 

Fig.2. Illustration of Algorithm 2.1. 

Fig.2 shows stepwise procedures of the algorithm up to the 2nd iteration. 
In the rest of this section we will prove that the Algorithm 3.1 terminates in finite 

iterations. 

Definition 3.1 For a given tolerance c ~ 0, a point t* f [t£, tu] is called an c - optimal 
solution of the problem (P) if 

F(t*) ~ inf F(t) + c "It f [t£, tu]. 

It is obvious that 0- optimal solution is the exact solution of the problem (P). 

Proposition 3.4 F and FT are Lipschitzians on [tL' tu]. 

Proof: The function (3.4) is Lipschitzian with Lipschitz constant max{A/(t£)2, B} over 
t ~ tL > 0. So, by (3.3), F is a pointwise minimum of a finite family of Lipschitzians of 
the form (3.4), and by (3.6), FT is a piecewise Lipschitzian of the form (3.4). Thus, one has 
Proposition 3.4. 0 

Theorem 3.1 If c > 0, Algorithm 3.1 terminates after a finite number of iterations yielding 
an c - optimal solution. 

Proof: Since Fj is an underestimator of F and tj is a minimizer of Fj , FJ(t j )+c ~ inf F(t)+c 
holds. So, if the stopping criterion (3.7) holds for any c > 0, i.e., F(tj) ~ Fj(tJ) + c, then 
F(tj) ~ inf F(t) + c . Therefore, by Definition 3.1, tj is an c - optimal solution. Let us 
assume that the algorithm is infinite, i.e., it generates an infinite sequence {tj}, j = 1,2,···. 
We are going to prove that 

(3.8) 

Suppose that (3.8) is not satisfied. Since F(tj) ~ Fj(tj) for any j, it follows that there is a 
subsequence {tj,} such that 

(3.9) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Nonconvex Minimization for Joint Replenishment 

Since F and Fj are Lipschitzians on [tL' tu], one has 

IF(tj,) - Fj,(tj')l == IF(tj,) - Fj,(tj,_I) + Fj,(tj,_I) - F),(tj,)1 
< IF(tj,) - Fj.(t),_I)1 + IFj,(t),_I) - Fj,(tj,)1 
== IF(tj,) - FUj,_I)1 + IFj,(t),_I) - Fj,(t),) I 

(Note that Fj,(tjr) == F(tjr) V r < s) 
< LIlt), - tjl-ll + L2 Itj,_1 - tj, I 
< (LI + L2 )ltj, - tj,_11 , 

where LI and L2 are the Lipschitz constants of F and Fj , respectively. 
Since It), - t),_11 -+ 0 (s -> 00), this conflicts with (3.9). Thus, we have (3.8). 0 

4. Relief Indicator Method 

115 

In this section we present another method to minimize F(t) on [tL,tU]' The method is 
a modification of the relief indicator method developed recently by H.Tuy and one of the 
authors (see [16]) for multivariable, constrained Ilonconvex minimization problems. 

We will start with introducing the basic idea of the relief indicator method which will 
reduce the problem to a parametric minimization problem of a d.c. function (a function 
which can be written as a difference of two convex functions). 

Choose a point t) in [tL' tu] and let ej = F«(,). Then, define 

(4.1 ) 

( 4.2) 

(4.3) g)(t) := sup{ 2yt + d;(y) - l I F(y) 2': ej Yf[tL' tu] } , 
y 

where dj(t) denotes the distance from each point tt[tL' tu] to the set Sr gj(t) is a convex 
polygon formed along the quardraric curve t 2 (see Fig.3). 

As seen form Fig.3, one has 

( 4.4) 

( 4.5) 

( 4.6) 

(Proof: see Proposition 3.1 in [16]). 
We call 'lj;(e, t) := g(t) t2 a relief indicator of F(t). From (4.4), (4.5), and (4.6) it follows 
that if min 'lj;(ej , t) = 0, then tj is a minimizer of F(t). This means that the minimization 
of F(t) can be reduced to the parametric minimization problem: 

(Q) find tj such that min{ 'lj;(ej , t) I tf[tL' tu]} = O. 

We will employ this approach with some modifica,tions. 
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-----"\0\ /- F(') ......................... \\~ .......................... ==e, 
~ ej 

______________ ~ ____________ L-__ ~ ____ ~. t 

Sj 

Fig.3. Relations among F, S, e, g, and t 2 . 

To check if tj is optimal, we solve the subproblem: 

(q) minimize g,(t) - e s.t. tE[t L , tu] . 

Unfortunately, SJ and then g,(t) are usually not available. So, we underestimate gJ(t) by 
a piecewise linear convex function hJ(t) such that hj(t) ~ gJ(t) VtE[tL, tu]. We can indeed 
construct such underestimator hj(t) depending on the threshold eJ as we will state later. At 
first we solve the following subproblem (H) instead of solving the subproblem (q) . 

(H) minimize hj(t) - e s. tE[t L , tu] , 

and obtain a soluton of it denoted by tj+1' From (4.5), (4.6), and hj(t) ~ gj(t), the following 
three cases are possible with respect to tj+1 (see FigA). 

Case 1: hj(tj+d::::: t;+1' i.e., eJ = F(tj+1) = min F(t). 

Case 2: 'I/J(ej ), tJ+1) < 0 and hJ(tj+d < t;+1' i.e., F(tj+l) < ej . 

Case 3: 'I/J(ej , t j +1) 2:: 0 and hj (tj+l) < t;+1' i.e., F(tj+d > eJ. 

In Case 1, tj and tj+1 are optimal. In Case 2, tj is not optimal and we get t j +1 which is 
better than tj. In Case 3, we find tj is better than tj+1' 

Now we proceed to construct a more accurate underestimator hj +1 (t). Using the solution 
tj+1 of the subproblem (H) with hj{t) , we first prepare an improved threshold ()J+1 by 

()J+1 := min{F{tj +1 ), ej } , 
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/ gj(t) 

/ hj(t) 

, ...... e 

----"----" t 
tj+1 

CaseI 

hj(t) 

-----A--------------~·t tj+1 

Case 2 

--~----------~--~·t tj+1 

Case 3 
Fig.4. Three cases of solutions of subproblem (H). 

and arrange a set of points Tj +1 such that 

{ tL, tu, tj+1 } C Tj +1 . 
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gj(t) 

Then construct hj +1(t) through the following routine RI so that it may satisfy the next 
conditions: 

(4.7) 

( 4.8) 

Routine RI: Construct the underestimator FTi+l of F(t) defined upon TJ+1 as in the last 
section (ref. (3.6)). Letubethelargestvalueoft(~tj+l)suchthatFTi+,(t) = ej +1 • If there 
is no such i, set u 'c- iL. Let v be the smallest value of t(~ tJ+d such that FT}+, (t) = eJ +1 . 

If there is no such value, then set v f- iL (see Fig.S). 
Construct a linear function at + (3 by setteing et f- u + v, (3 f- -uv so that it may satisfy 
the condition: 

(4.9) at + (3 ~ e Vi t [u, v], at + (3 < e Vt fI. [u, v], 

then construct the piecewise linear convex function 

( 4.10) hj +1(t) := max{ hj(t), ai + (3}. o 

Thus we obtained a new underestimator hJ+1 (i) of gJ+1 (t) depending on the threshold 
eJ +1 (~ ej ). Then we solve again the subproblem (H) with h j +1(t). 
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FTj+1 
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\"" '", 

aj +1 
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F(t) 

--~-~--------~~--~--~----~·t 
u v 

Fig.5. Determination of u and v used FT. 

To see that hj+1(t) is a underestimator of gj+1(t) better than hj(t), it is sufficient to 
prove that h)+l(t) satisfies the conditions (4.7) and (4.8). The proof is as follows: 

Condition t;+l > hj (tj+1) always holds in Cases 2 and 3. Since we set u :=:; t)+l :=:; v in the 
routine RI, (4.9) gives atj+1 + j3 2 t;+l. Moreover,(4.IO) implies h)+l(tj+r) 2 at)+l + j3. 
Combining those facts, one has 

hj +1(t j+1) 2 atj+1 + j3 2 t;+l > h) (tj+rl . 

Thus, condition (4.7) holds. Next, by the definition (4.2) one has 

d)+1(a/2) = inf I a/2 - x I 2 inf I a/2 - x I = (v - u)/2. 
X<Sj+l x~[u,vl 

Hence, from F(a/2) 2 aj +1 and (4.3), we have 

(4.11) at + /3 = 2(a/2)t + ((v - u)/2? - (a/2? 

< 2(a/2)t + d;+1(a/2) - (a/2? 

< sup{ 2yt + d'J+l(Y) - y2 I F(y) 2 aj+1, Yf[t£, tu] } 
y 

= gj+l(t) 'v'tf[t£,tU]. 

On the other hand, h)(t) is the underestimator of gj(i) depending on the threshold a). Hence, 
g;(t) 2 hj(t) holds. By (4.3), aj +1 :=:; Bj gives gj+l(t) 2 gj(t). Hence, from (4.10) and (4.11) 
one has 

gj+l (t) 2 max{ at + j3, gj(i)} 2 max{ at + j3, hj(t)} = hj+1 (t) 2 h)(t) . 

Thus, (4.8) holds. 0 

To effectively improve the threshold Bj we can use Goyal's method for finding a stationary 
point (see [5]) as follows. 

Routine R2: Let Bj := F(i;) be the current threshold. We first minimize C(ij, k)(see (2.1)) 
with respect to variable k, obtaining k'. Then minimize C(t, k') with respect i, obtaining t'. 
if ij = i', then tj is a stationary point. We use B) as the threshold. If ij i= i', then we have 
F(t') < Bj and repeat this procedure by setting tj f-- t'. 0 

Before describing our algorithm, we will introduce some concept about an approximate 
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solution. From the definition of 9j(t), one has 

9J(t) - e == -inf{ It - YI2IF(y) > F(;~j), Yf[tL,t U ]} Vt I F(t) < F(tj) 
y 

(see Proposition 3.1 in [16]). Then, if 

inf{ 9J(t) - e I tf[tL' tu]} ~ inf{hJ(t) - t2 I tf[h, tu] } 

there exists a point t'f[tL, tu] such that 

( 4.12) 

119 

We call t) an c - approximate solution if (4.12) holds for every tf[tL' tu]. It is obvious that 
a 0 - approximate solution is exactly optimal. Thus we have 

Theorem 4.1 If hj(tJ) - t; ~ -c2, then tj is an c - approximate solution. 0 

Now we are led to the following algorithm. 

AIgoriths 4.1 
Initialization: Set hl(t) := 0, Tl +- {tL, tu}, e1 +- min{F(h), F(tu)}, 

j +- 1, and c +- a positive ,mall value. 
Iteration j: 

j.a.: Solve the subproblem 

(H) minimize h,(t) - t 2, s.t. tf[tL' tu] 

obtaining an optimal solution tJ+1 of it. 
If 

hJ(tJ+1) - (tj+l)2 ~ _c2 
, 

then stop. tJ+1 is an c - approximate solution. 
Otherwise go to step j.b. 

j.b: If F(tj+d < ej, then improve F(tJ+d by routine R2. 
Set ej +1 .- min{F(tj+t), ej}, 1';+1 +- Tj U {tj+l}, and FJ+1 +- FTi+l. 
Construct hj +1(t) by routine RI. 
Set j +- j + 1. Then, go to step j.a. 0 

By the analogous arguments as in Theorem 6.2 in [16]' one has the following convergence 
property of our approach. 

Theorem 4.2 If c > 0, then Algorithm 4.1 terminates after a finite number of iterations 
yielding an c - approximate solution. 0 

5. Numerical experiements 
In this section we report the computational results of G4: Goyal's method [4], G5: Goyal's 

method [5], SUM: the Successive Underestimation Method, and RIM: the Relief Indicator 
Method on over 240 test examples. G5 is a method for finding a stationary point with a 
heuristic initial point and the rest are methods for finding a global optimal solution. Input 
data were generated randomly. The computational results are given in Tables 1,2,3, and 4. 
Notations in the tables are as follows: 
n: number of items 
m: number of test problems 
R: average of ratios of tu to tL 
Nl(%): percentage of test examples in which G5 gives a global optimal solution 
El(%): average of relative errors by G5 
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Tl(s): average of computational times by GS 
N2: average of numbers of local minima to be examined in G4 
N3: maximum of numbers of local minima to be examined in G4 
T2(s): average of computational times by G4 
N4: average number of iterations by SUM 
NS: maximum numbers of iterations by SUM 
d: parameter which gives the tolerance E := d· F(tJ)/lOO in the stopping criterion of SUM 
T3(s): average of computational times by SUM 
N6: average number of iterations by RIM 
N7: maximum number of it,erations by RIM 
E3(%): average of relative errors by RIM 
E4(%): maximum relative error by RIM 
102: parameter which gives the tolerance 10 2 := c2(tu - tL)/2 in the stopping criterion of RIM 

The programs were coded in BASIC(compiler) and ran on a PC(16bit/12MHz). The 
results in Table 1 and thOSE' in Table 2 correspond to two different random distributions of 
data. 

Observations: Although GS is very good in many examples, sometimes an error by this 
method is rather large (~7%). Furthermore, even if we obtain a very good solution by this 
method we do not know how good it is. On the other hand, SUM and RIM can control 
their errors within any tolerance as we like. Additionally, from the computational results 
we see that they are not so expensive even when the number of items becomes large. The 
computational times of G4 a,re much larger than those of SUM and RIM when the number 
of items becomes large. For the cases of the same number of items, the computational time 
of G4, compared with SUM and RIM, increases quickly as the ratio R:= tu /t L increases. 

6. Conclusions 
In this paper the problem of determining an economic ordering policy for jointly re­

plenished items has been reduced to the problem of minimizing the single-variable noncon­
vex function F(t) over t > O. We proposed two methods: the Successive Underestimation 
Method in Section 3 and the Relief Indicator Method in Section 4. Different from the con­
ventional approaches of seeking a local optimal policy, the proposed methods can obtain a 
global approximate solution within any prescribed error bound as we like. 

As was observed in Section S both of the proposed methods performed equally well for 
many test problems. To evaluate the performance we have numerically tested our methods 
and Goyal's methods [4] ,[S] , The computational time of Goyal's method [4] for a global 
optimal solution was much larger than those of the other tree methods and increased quickly 
as the number of items n became large and as the ratio R:= tU/tL became large even for a 
small n. Goyal's method [S] which is supposed to be the best heuristic method ever developed 
was the fastest but sometimes gave a large relative error over 7% to the solution. Moreover 
it cannot provide an error bound for a local optimum solution obtained. Our methods are 
slower than Goyal's method [S], but this will be justified by more accurate results obtained 
by our methods in most practical situations. 

In the course of development of the methods described in Sections 3 and 4 we have 
realized that the approaches employed there can be used in a class of problems, for example 
the problem: 

minimize (CIX)'(C2X) s.t. Ax =b, x20. 

We will merely indicate such an approach and leave the detailed development to another 
paper. 
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Table 1. Computational results of four methods for the first rundom distribution of data. 

Goyal [5] Goyal [4] SUM (cl = 0.01) RIM 
n m R NI El E2 T1 N2 N3 T2 N4 N5 T3 N6 N7 E3 E4 

(%) (%) (%) (s) (s) (s) (%) (%) 
5 20 4.0 60 0.54 4.06 0.2 15.8 96 0.5 6.0 10 1.0 5.3 11 lE-OS 4E-04 

10 20 3.5 50 0.52 5.92 0.3 27.6 132 1.1 6.8 15 1.2 5.7 13 0.004 0.06 
15 20 8.5 50 0.42 5.87 1.0 121.7 722 3.9 11.0 25 3.0 8.6 16 SE-OS 9E-04 
20 20 14.5 25 1.19 7.51 1.3 269.5 2160 9.5 15.3 40 5.2 9.3 13 0.002 0.03 
25 20 25.6 15 0.84 4.34 2.1 648.5 3624 25.3 26.5 47 11.1 16.5 24 0.009 0.06 
30 20 34.7 0 0.97 2.30 2.3 1039.9 3885 44.0 34.7 60 17.1 16.5 19 0.01 0.05 

Table 2. Computational results of four methods for the second rundom distribution of data. 

Goyal [5] Goyal [4] SUM (cl = 0.01) RIM 
n m R NI El E2 T1 N2 N3 T2 N4 N5 T3 N6 N7 E3 E4 

(%) (%) (%) (s) (s) (s) (%) (%) 
5 20 37.5 75 0.08 1.13 0.3 198.8 991 4.1 17.8 23 2.5 16.3 20 0.004 0.07 

10 20 32.5 40 0.33 1.77 0.6 278.4 1063 7.2 20.6 29 4.6 12.7 16 0.01 0.08 
15 20 40.3 50 0.16 1.01 0.8 577.1 3281 17.0 22.9 33 6.5 12.3 16 0.01 0.08 
20 20 39.8 20 0.23 0.99 1.1 583.5 1353 19.7 24.1 31 8.4 14.7 16 0.009 0.09 
25 20 40.8 20 0.29 1.43 1.6 727.7 1328 28.0 26.0 35 10.3 14.9 19 om 0.09 
30 20 73.4 20 0.40 1.45 2.6 1882.2 5012 79.3 34.8 44 16.9 15.4 23 0.008 0.04 

c2 T4 
(s) 

0.01 0.7 
0.01 1.5 
0.01 2.8 
0.01 4.4 
0.001 8.7 
0.001 11.3 

c2 T4 
(s) 

0.002 3.2 
0.002 3.5 
0.002 4.6 
0.002 6.5 
0.002 8.0 
0.002 10.2 
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Table 3. Relation between computational times of Goyal's method[4], 
SUM and RIM, and R = tUjtL in case n = 5. 

Goyal [4] SUM RIM 
m R N2 T2(s) N4 cl T3(s) N6 E3(%) c2 T4(s) 
20 4.0 15.8 0.5 6.0 0.01 1.0 5.3 1E-05 0.01 0.7 
20 12.8 53.1 1.2 14.4 0.01 2.0 13.3 0.006 0.002 2.5 
20 37.5 198.8 4.1 17.8 0.01 2.5 16.3 0.004 0.002 3.2 
20 49.9 299.4 6.3 18.9 0.01 2.6 18.1 0.004 0.002 4.0 
20 89.3 727.1 14.9 19.3 0.01 2.8 18.1 0.008 0.002 4.1 

Table 4. Relation between computational times of Goyal's method[4], 
SUM and RIM, and R = tu jtL in case n = 20. 

Goyal [4] SUM RIM 
m R N2 T2(s) N4 cl T3(s) N6 E3(%) c2 T4(s) 
20 14.5 269.5 9.5 15.3 0.01 5.2 9.3 0.002 0.01 4.4 
20 25.5 355.2 12.1 23.2 0.01 8.1 15.1 0.01 0.002 6.3 
20 39.8 583.5 19.7 24.1 0.01 8.4 14.7 0.009 0.002 6.5 
20 51.2 767.0 26.0 24.0 0.01 8.4 14.8 0.008 0.002 6.8 
20 71.8 1114.2 37.7 24.7 0.01 8.6 15.0 0.02 0.001 7.1 
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Appendix 

Determination of tu: From Proposition 3.1 and (2.1), 

is the minimizer of C(t, k) with any fixed k := (kt, k2 , ... , kn ). Noting that t(k) is a decreasing 
function of k and k; ~ 1 for all i ~ n, one has 

as an upper bound of t for the problem of minimizing C(t,k). 

Determination oftL: From Proposition 3.1, the function S;jk;t + h;D;k;tj2 on t > 0 has 
its minimum value v'2S;h;Lf,. Then, one has 

n 

C(t, k) Sjt + 2.: {S;jk;t + h;D;k;tj2} 
;=1 

> Sjt + tV2S;h;D; . 
;=1 
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Let t' be the root of the equation: 

Sjt + 2tJS.h.D. = F(tu) . 
• =1 

For t ~ t' one has 

F(t) = infC(t,k) > Sjt + t J2S.h.D. 
k 

.=1 

> Sjt' -+- tJ2SihiDi 
.=1 

Thus, we obtain 

t£ := t' = Sj(F(tu) - t J2S.h.D.) 
.=1 

as a lower bound of t for the problem of minimizing C( t, k). 
Note that F(t£) 2: F(tu) holds. 

123 

= F(tu ). 

Determination of A:u;: From Proposition 3.1, k;(t) := J2S;/h.D.t2 is the minimizer of the 
function S;/tk. + h,D;tk;/2 with any fixed t > O. Letting k(t) := (k1(t), k2(t), ... , kn(t)), one 
has 

n 

C(t, k) = Sjt + l:)S;/k.t + h.D.k.tj2} 2: C(t, k(t)) . 
• =1 

Then, noting that k, is a positive integer and k;(() is a decreasing function of t for all i ~ n, 
we obtain the following ku; as an upper bound of k. for the problem of minimizing C(t, k). 

ku; = [J2S;/h.D~(tU)2] + 1, 

where [x] denotes the integer part of x. 
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