
Journal of the Operations Research 
Society of Japan 

Vo!. 34, No. 1, March 1991 

ANALYSIS OF BATCH ARRIVAL CYCLIC SERVICE 
MULTIQUEUE SYSTEMS WITH LIMITED SERVICE DISCIPLINE 

Yutaka Babl 
Yokohama National University 

(Received October 6, 1989; Fim,l February 14, 1991) 

Abstract In this paper, the batch arrival cyclic service multiqueue system is studied. For a compound 
Poisson arrival cyclic service multiqueue system, we derive useful equalities with respect to the weighted sum 
of the mean waiting times for E-limited and G-limited service disciplines. Using these equalities, the upper 
bound of the mean waiting time at each queue is derived j()r symmetric system. Further, for general batch 
arrival cyclic service multi queue system, an approximate formula with respect to the weighted sum of the 
mean waiting times is derived. For symmetric system, this approximate formula reduces to the approximate 
formula of the mean waiting time for exhaustive, gated, E-limited and G-limited service disciplines. In 
numerical results, these characteristic quantities are evaluated by comparing those to simulation results and 
other approximate resu\t,s. 

1. Introduction 

Cyclic service multiqueue systems are frequently used to model token ring and token bus 
local area networks. In the system under consideration, there are N queues with infinite 
waiting rooms served in cyclic order by a single server. Customers arrive at each queue 
according to general arrival process. Until now, four main service disciplines have been 
analyzed: exhaustive, gated, E-limited and G-limited service disciplines. They differ in 
the instants at which the server moves from one queue to another. "Exhaustive" means 
that the server continues to serve each queue until it is emptied. "Gated" means that 
the server serves only those customers present at the server's arrival epoch to that queue. 
"E-limited" means that the server serves until either k j customers have been served or the 
queue becomes empty when the server visits queue i. "G-limited" means that if the server 
encounters nj customers upon arriving to queue i, the server serves min(nj, k j ) customers 
before the server departs queue i. Note that when ki tends to infinity, E-limited service 
approaches exhaustive service, while G-limited service approaches gated service. Also note 
that E-limited service and G-limited service are identical if k j = 1. The special case k j == 1 
is often called "nonexhaustive service". For a detajled discussion of these systems and other 
multiqueue systems, see Takagi [10], [11]. 

For a Poisson arrival cyclic service multiqueu€ system (M/C/1 type multiqueue) with 
E-limited and G-limited service, Fuhrmann [6] derived an upper bound for a weighted sum 
of the mean waiting times at the various queues. Fuhrmann and Wang [7], and Everitt [4] 
derived approximate formulae of the mean waiting times at each queue. Further in Everitt 
[5] and Takagi [11], a pseudo-conservation law is derived. This pseudo-conservation law is 
represented by using the second moment for the number of customers served at each queue 
per visit of the server. 

This paper studies the batch arrival cyclic service multiqueue system. For a compound 
Poisson arrival cyclic service multiqueue system, we derive useful equalities with respect to 
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the weighted sum of the mean waiting times for E-limited and G-limited service disciplines. 
By u~ing these equalities, the upper bound of the mean waiting time at each queue is derived 
for symmetric system. Further, for general batch arrival cyclic service multiqueue system, an 
approximate formula with respect to the weighted sum of the mean waiting times is derived. 
For symmetric system, this approximate formula reduces to the approximate formula of the 
mean waiting time for exhaustive, gated, E-limited and G-limited service disciplines. 

The organization of the rest of the paper is as follows. In section 2, we consider the 
compound Poisson arrival cyclic service multiqueue system and give the notation for this 
system. In section 3, we extend a stochastic decomposition theorem by Boxma and Groe­
nendijk [1] to the system described in section 2. By using the pseudo-conservation law which 
holds for the system in section 2, we obtain useful equalities with respect to the weighted 
sum of the mean waiting times for E-limited and G-limited service disciplines. Further, for 
symmetric system, we obtain the upper bound of the waiting time at each queue. In section 
4, for general batch arrival cyclic service multiqueue system, the approximate formula with 
respect to the weighted sum of the mean waiting times is derived. Further, for symmetric 
system, the approximate formula of the mean waiting time is derived for exhaustive, gated, 
E-limited and G-limited service disciplines. In section 5, for symmetric system, the upper 
bound of the mean waiting time for compound Poisson arrival system and the approximate 
formula of the mean waiting for general batch arrival system obtained in section 3 and 4, 
respectively, are evaluated by comparing those to simulation results and the approximate 
results by Yanagiya and Takahashi [14]. 

2. Model description 
The multi queue model considered in section 2 and 3 can be characterized by the following 

assumptions. 
(1) The server walks around among N queues. Assuming that the server arrives at queue 
i, the server serves customers depending on the service discipline at queue i (exhaustive 
service, gated service, E-limited service or G-limited service) and then moves on to the 
subsequent queue i+ 1, 1 :~ i ~ N (when the server is in the queue N, it moves on to queue 
1). 
(2) At queue i, customers arrive in batch according to independent Poisson processes with 
rate Ai (1 ~ i ~ N). Batch sizes (the number of customers in the arriving batches) are 

i.i.d. random variables with mean gi, a finite second moment g;2) and probability generating 
function (pgf) Gi(z). 
(3) At each queue, customers are served nonpreemptively in an order that does not depend 
on their service times. The service times for customers arriving at queue i are i.i.d. random 
variables with a distribution Bl)' mean f3i and a finite second moment f3F). 
(4) The walking times from queue i to queue i + 1 are i.i.d. random variables with mean s, 

and a second moment s~2), We further define Pi = ).,gif3i as the server utilization at queue 
i, P = E~l Pi as the total server utilization, and sand S(2) as mean and the second moment 
of the total walking time during a cycle of the server, respectively. Based on Kuhen's 
terminology [9], this is referred to as M X IG/1 type multiqueue. 

For future reference, we define the cycle time Gi for queue i as the time between two 
successive arrivals of the server at queue i. It is well known that E( Gi) is independent of 
i and is also independent of the particular service discipline as long as all the queues are 
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stable. If we denote this common value by E(C). we have 

E(C) = ---':~-. 
1 _. p (1) 

Now some remarks about the conditions for ergodicity of these cyclic service multiqueue 
systems are in order. Clearly p < 1 is a necessary condition. For exhaustive and gated 
service, this condition is also sufficient. For E-limited and G-limited service, it can be seen 
that 

Aj9jS 1 
--<~:i 
1-p 

is an additional necessary condition for the stability of queue i (1 ::; i ::; N). 

3. An extension of a pseudo-conservation law 

(2) 

In this section, we first consider the cyclic service multiqueue system whose walking 
times are taken to be zero. For this system, a conservation law holds for the total amount 
of work in the system since the server works whenever there is work in the system and is 
idle when there is no work in the system. Total amount of work in cyclic service multiqueue 
system does not depend on the order of service, and should hence equal the amount of work 
in an MX /0/1 queue with batch arrival rate A := L~1 Ai and the distribution of sum of 
service time in an arriving batch 

N A 
BG (-) = L ~O,(Bi('))' 

i=1 

(3) 

This system is denoted as the "corresponding" MX /0/1 queue and the amount of work 
in this system is denoted by VM X/G/l' If we call ,'l,n arriving batch in the "corresponding" 
M X /G/1 queue a snpercustomer, then VMx /G/l is the waiting time of the first customer of 
an arbitrary supercustomer, since Poisson arrivals see time averages (PASTA) (see Wolff 
[13]). If we denote B to be the random variable with distribution BGU, then by using well 
known results of M X /0/1 queue (see, e.g. Cooper [3] or Kleinrock [8]) and (3), we have 

E(V ) 
_ AE(B2) _ ~ Aj9,/S'P) + ~ Ai{gr2

) - g;}(3; 
MX/G/I - - ~ ---- ~ 

2(1 - p) i=1 2(1 -- p) i=1 2(1 - p) . 
(4) 

By treating an arriving batch in the "corresponding" M X /0/1 queue as a supercustomer, 
we have the next Theorem which is evident from Boxma and Groenendijk [1], [2]. 
Theorem 1. Consider a single server cyclic service multiqueue system described in section 

2. Assume that the system is ergodic and stationary. Then the amount of work in this 
system at an arbitrary epoch, Vc, is distributed as the sum of the amount of work in the 
"corresponding" MX /G/1 system at an arbitrary epoch, VM X/G/l, and the amount of work, 
Y in the cyclic serV1:ce system at an arbitrary epoch in a walking time. In other words, 

(5) 

where g stands for equality in distribution. Moreover VMx /G/I and Y are chosen to be 
independent. 0 

Next we explain a pseudo-conservation law for a cyclic service multiqueue system de­
scribed in section 2in the case of exhaustive and gated service disciplines, which is derived 
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in [2]. Further we derive related results for two limited service disciplines (E-limited and 
G-limited) . 

From Theorem 1, we have 

(6) 

Let Wi denote the waiting time of an arbitrary customer at queue i and U, the amount 
of work the server leaves behind at queue i when the server departs from queue i. Then 
from [1], 

N S(2) s N 

E(Y) = ~ E(U,) + PT; + 2(1- p) (p2 - ~p:). (7) 

If we let Xi to be the number of type i customers waiting at an arbitrary epoch, then we 
have 

N N !f.2) 

= "L E (Xi)f3i + "LPi~ 
i=l i=l 13. 
N N f3~2) 

= ~PiE(Wi) + EPi 2f3i' 

By using (4), (6), (7) and (8), we have 

N N 

"L PiE(W;) = A + "L E(Ui), 
i=l i=l 

where 

",N A' .(3(2) ",N A.{ (2) . }f32 (2) 
A L...i=l .g. i + L...i=l • gi - g. i + s = p P--

2(1-p) 2(1-p) 2s 
N 

+ 2(1~P)(p2-Epn. 

For exhaustive and gated services, the following formulae have been derived in [1]. 
For exhaustive service at queue i, 

E(Ui ) = 0 

and for gated service at queue i, 

2 

E(Ui) = p2E(C) =~. 
, 1- P 

For E-limited and G-limited service disciplines, the following useful equalities hold. 
Theorem 2. Consider a cyclic service multi queue system. 

(A) Suppose that queue i is served by E-limited service discipline with limit k;. Then 

A {(2)} 2 
E(Ui) = Pi igi 8 E(Wi) + Pi gi - gi s + Pi s 

ki(l - p) 2kigi(1 - p) ki(l - p) 

(1- Pi)f3icp;2) 

2ki 

(B) Suppose that queue i is served by G-limited service discipline with limit k i • Then 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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{ (2) } 2 ( ) (2) 
E(U;) = PiAigi s E(Wi) + Pi gi - gi S + ~ _ 1 + Pi (3i<Pi , 

ki(l - p) 2kigi(1 -- p) 1 - P 2ki 
(14) 

where <p~2) is the second factorial moment for the number of customers served at queue i per 
visit of the server. 
Proof: Proof of (A). Let Li denote the number of customers present at queue i when 
the server arrives, Mi the number of customers present at queue i just after an arbitrary 
customer departs from queue i and Ni the number of customers served per visiting queue 1 by 
the server. Note that E(Ni) = AigiE(C). On the average E(Ni) customers are served during 
the visit of the server, and another PiE(Ni) customers arrive while the server is present. 
Therefore, when the server departs from queue i, there are on average E(Li) - (1- pi)E( Ni) 
customers remaining. This gives the mean unfinished work as 

E(Ui) = {E(Li) - (1 -- Pi)E(Ni)}(3i. (15) 

Define Rij(Z) to be the pgf of the queue lengtfl of queue i at the end of the jth service 
attempt in a cycle. If the LST of the service time distribution at queue i is defined by B;( s), 
then the pgf at the end of the (j + l)th service oLttempt is calculated from the recurrence 
formula whose technique is derived in vacation and polling model analysis (e.g., see [5], [10] 
and [11]) 

R,,)+l(Z) = [Ri)(Z) - Ri)(O)] B;(\ - \Gi(z)) + Rij{O). 
Z 

(16) 

If we define Pin to be the probability that n customers are served at queue i, we have 

) 

Rij(O) = L: Pin· (17) 
n=O 

Then solving recursively for Rij(Z) starting from RiO(Z) = 1/Ji(Z), where 1/Ji(Z) is the pgf of 
L i , we have 

(18) 

Differentiating and setting Z = 1, we have the mean queue length at the end of the jth 
service attempt in a cycle as 

)-1 )-1 

R:)(I) = E(Li) - (1 - p,)[L: npin + j(l - L: Pin)]. (19) 
n=O n=O 

After tedious calculations, we have 

E(M) = 2:;::1 R:)(I) = k.E(L.) ___ k (1 _ ) + (1 - p.)<p;2) 
• E(N.) E(Nt ) t Pt 2E(Nt ) 

(20) 

Also note that 
gF) - gi 

E(Mi) = Aigi{E(Wi) + (3;} + . 
2gi 

(21) 
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Equation (21) follows from Little's theorem and the interpretation that the second term 
of the right-hand side of equation (21) is the mean number of customers that. had arrived 
together with the tagged customer in one batch but that were behind the tagged customer. 
From equations (15), (20) and (21), the equality (13) holds. 

Proof of (B). Let Li, Mi and Ni be defined as in (A). Also let M;* and Rij(z) be defined 
analogously, but to include only those customers already present when the server arrives to 
queue L Similarly to (A), we have 

R~ (z) - R* (0) 
Ri,j+l(Z) = 'J z 'J + Ri)(O). (22) 

If we define gin to be the probability that n customers are present at queue i when the server 
arrives, we have 

) 

Rij(O) = L gin' 
n=O 

Then solving recursively for Ri)(z), we have 

./, () ,,)-1 n )-1 
R*( ) = 'f'i Z - L..m=O gin Z + '"' . 

.) Z zj L.. gm' 
n=O 

Differentiating and setting z = 1, it follows that 

j-l j-l 
R::(1) = E(Li) - L ngin - j(l - L gin)' 

n=O n=O 

Also we have 
E(M*) = L;~1 R:;(1) = k.E(L.) _ k + <p~2) • 

• E(N.) E(N.) • 2E(Ni) 

(23) 

(24) 

(25) 

(26) 

Next let Y; denote the number of customers who arrive after the server arrives but before 
the tagged customer is served and Zi the number of customers who arrive while the tagged 
customer is served. Then we have 

E(Z;) = Pi. (27) 

Let li) denote the probability that an arbitrary chosen customer is the jth customer served 
after the server arrives to queue i. Then it is clear that 

Thus we have 

P(Ni ~ j) 
li) = E(N,) (j = 1, ... , k i ), 

ki 

E(Y;) Pi L(j - l)li) 
j=1 

= Pi I: (j - l)P(Nj ~ j) 
j=1 E(Ni) 

(2) 
<Pi 

(28) 

(29) 
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Since E(Mi) = E(Mt) + E(Y;) + E(Zi), we have 

E(M) = kiE(Li) _ k + ~~1 + Pi)<p~2) + . 
, E(Ni) , 2E(Ni) p,. (:30) 

From (15), (21) and (30), we finally get the equality (14). 0 
Remark 1. For M IG/1 type multiqueue, the conservation laws for E-limited and G-limited 
disciplines are obtained in Everitt [5] and Takagi [11]. The equalities (13) and (14) are an 
extension of the conservation law to the batch arrival case. 
Corollary 3. 

(A) Suppose that queue 1,2, ... , N are served by E-limited service discipline with limit 
k1' k2"'" kN! respectively. Then 

N )..9 S L: Pi{1- ~(; ~ ) }E(Wi) 
,=1 "P 

N {(2) } N 2 
< A + L: Pi 9i - 9i S + L: Pi 8 

i=1 2ki9i(1 - p) i=l k i (l - p) 
(:U) 

t (1 - p,)(3i max {o, ()..i9i 8 ) 2 _ )..i9i8 } . 
• =1 2ki 1 - P 1 - P 

(B) Suppose that queue 1,2, ... , N are served by G-limited service discipline with limit 
k1' k2"'" kN, respectively. Then 

~ { \9i 8
} ( ) L..Pi 1- ---- E Wi 

i=1 k i (l - p) 

N {(2) } N 2 
< A + L: Pi 9i - 9i 8 + L: ~ 

i=l 2k i 9i(1 - p) i=l 1 - P 
(:J2) 

t (1 + p,)(3i max {o, ()"i9i 8 )2 _ Ai9i 8 }. 
i=1 2k, 1 - P 1 - P 

Proof: Since <p~2) == E[Ni(N. - 1)] ~ {E(Ni)P - E(Ni), we have 

(2) {( )..;9i8 ') 2 )..i9i8 } <Pi ~ max 0, -- - -- . 
1-p. 1-p 

(:J3) 

The equality (31) is obtained from (9), (13) and (33). Similarly, the inequality (32) is ob­
tained from (9), (14) and (33). 0 

Remark 2. If the cyclic service multiqueue system is symmetric (i.e., the defining parame­
ters are same at each queue), then an upper bound of the mean waiting time of an arbitrary 
customer at each queue is got via Corollary 3. 

4. An approximate formula for general batch arrival system 
In this section, we propose an approximate formula of the weighted sum of waiting times 

for general batch arrival cyclic service multiqueue system by extending the results obtained 
in section 3. 

Suppose that customers arrive in batch to queue i. Interarrival times of batches to queue 
i are i.i.d. random variables with mean )..i1 and a coefficient of variation CA.' Other param­
eters are same as the M X IG/1 type multiqueue described in section 2. Based on Kuehn's 
terminology [9], the model in this section is referred to as G/x IG/1 type multiqueue. 
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Similarly to the discussion in section 3, we consider the cyclic service multiqueue system 
whose walking times are taken to be zero. Further we define a new queueing system called as 

~ x ~ 

"corresponding" Cl jCj1 system. The arrival process of this system is the superposition 
of N arrival processes in cyclic service multiqueue system. The service time distribution of 
type-i customer is B i (·). 

~ X ~ 

Let VdJx /C/1 denote the amount of work in the "corresponding" Cl jCj1 system at an 

arbitrary epoch. Recently Takahashi [12] proposed an approximate formula for E(VdJx /0/1) 

by using diffusion approximation with elementary return boundary. According to [12], 

N {(2) }(3 N A (3(2) L Pi 9i - 9i i + L i9i i 
i=l 29i i=l 2 

(34) 

P N 9(2) _ 92 

+ 2(1 _ ) L Pi(3i{9iC~. + c~. +' . '}, 
P ,=1 ~ 

where Cs. is the coefficient of variation of the service time of type-i customer, and is given 

by cs. = J {(3?) - (3n j (3t. 
..... x ..... - x -

By assuming that Theorem 1 holds for Cl jCj1 system and E(Y) in Cl jCjl system 
is approximately equal to E(Y) in M X jCj1 type multiqueue system, we finally propose the 
following approximate formula for the weighted sum of the waiting times. 

N N {(2)}(3 N (2) 2 
'" PiE(Wi) ;:::: '" p, 9, - 9, , + P '" .(3.{ . 2 + 2 + f!.i.- - 9i} (35) 
L..... L..... 2 2(1- ) L.....P. • 9. cA. cs. 
i=l ,=1 9. P .=1 9i 

S12) S N N 

+ P~:-; + 2(1- p) (p2 - ~pn + ~ E(Ui ). 

Remark 3. For exhaustive and gated service disciplines, E(U;) is explicitly given by (11) 
and (12), respectively. For E-limited and G-limited service disciplines, E(Ui) is approx­
imated by the right-hand side of (13) and (14), respectively. Furthermore, by using the 
right-hand sides of (31) and (32), the weighted sum of the mean waiting times for E-limited 
and G-limited services. That is, for E-limited service, 

~ { Ai9iS } ) 
L..... Pi 1 - k (1 ,- E(Wi 
i=l i - P) 

and for G-limited service, 

N ).;9i S 

~P;{l- k
i
(l- pj}E(Wi ) 

N {(2) }(3 
'" Pi 9i - 9i i ;:::: L..... 
i=l 29i 

P N g<2) _ 92 

+ 2(1 _ ) L Pi(3;{9iC~. + c~. + · . '} 
P ,=1 9, 

S(2) S N 

+ Pz;- + 2(1 _ ) (p2 - L>;) 
P .=1 

N {9(2) _ 9.}S N p2 s 
+ LPi' · + L ----'-:'--:'----,-

i=l 2ki9i(1 - p) i=l ki{1- p) 

t (1 - Pi)(3i max {o, (Ai9i S ) 2 _ Ai9;S} , 
;=1 2ki 1 - P 1 -- P 

N {(2) }(3 
'" Pi 9i - 9i i 

;:::: L..... 
i=l 29i 

(36) 

(37) 
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N (2) 2 
P .~ {2 2 g. - g. 

+ 2(1- ) ,~pd3. g,CA; + cs; + . } 
P .=1 g. 

8(2) 8 N + P- + ____ (p2 - L pn 
28 2(1 - p) .=1 

N {g(2) _ g'}8 N p28 

+ LP.' · +L-·-· 
,=1 2ki9i(1 - p) i=l 1 - P 

f. (1 + P.)!3. max {O, (>...g'S)2 _ >".9iS} . 
• =1 2k, 1 - P 1 - p 

For symmetric multiqueue system, an approximate formula of the mean waiting time 
at each queue is obtained via (36) for E-limited service and (37) for G-limited service, 
respectively. 

Also note that when the input process at ea,ch queue is compound Poisson, that is, 
c~; = 1, the right-hand sides of (36) and (37) correspond to the right-hand sides of (31) and 
(32), respectively. 

5. Numerical results 
In this section, for symmetric multiqueues with G-limited service discipline, the upper 

bound of the mean waiting time derived in section 3 and the proposed approximate for­
mula of the mean waiting time derived in section 4 are numerically validated by comparing 
those to simulations and an approximate formula. by Yanagiya and Takahashi [14] (Y-T). 
Throughout this section, it is assumed that the number of queues, N, is equal to 10 (N =10), 
the mean service time at queue i, !3i, is equal to 1.0 (!3i = 1.0) and the arrival batch size 

to queue i is constant and its mean is 4 (9; = 4, 9i2
) = 16). The walking time from queue i 

to queue i + 1 is constant and is equal to 0.1, that is Si = 0.1, S = 1, s(2) = 1. Further, the 
simulation results represent 95% confidence intervals. 

In Table 1 and 2, we show the upper bounds of the mean waiting times for M X /M/l 
type multiqueue and M x / E4/1 type multiqueue. It is found from Table 1 and 2 that our 
upper bounds are very tight and can be used as an approximate formula of the mean waiting 
time, especially when the limit, k., is large. Also note that the upper bounds are exact for 
the case k. = 1 or k, = 00. 

Table 1. Mean waiting time in the M x/M /1 type multiqueue system 

p = 0.4 p = 0.6 

k. Baba Y-T Simulation k • Baba Y-T Simulation 
1 7.00 6.71 6.87±0.25 1 12.15 11.6 11.9±0.4 
2 5.47 5.16 4.93±0.22 2 9.14 8.45 8.33±0.29 
3 4.98 4.86 4.46±0.16 3 8.24 7.84 7.45±0.26 
5 4.59 4.82 4.02±O.14 5 7.55 7.72 6.68±O.23 

10 4.31 4.80 3.99±0.15 10 7.06 7.69 6.57±0.24 
00 4.28 00 6.95 
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p = 0.8 

ki Baba Y-T Simulation 
1 36.17 33.7 35.1±2.6 
2 22.44 19.8 20.3±1.2 
3 19.27 17.2 17.1±0.9 
5 17.07 16.2 14.9±0.8 

10 15.57 16.1 14.0±0.6 
00 14.95 

Table 2. Mean waiting time in the M X 
/ E4/1 type multiqueue system 

p = 0.4 p = 0.6 

ki Baba Y-T Simulation k • Baba Y-T Simulation 
1 6.73 6.42 6.67±0.17 1 11.49 11.2 l1.0±0.3 
2 5.21 4.87 4.71±0.11 2 8.53 8.08 7.60±0.28 
3 4.72 4.57 4.22±0.09 3 7.65 7.48 6.71±0.28 
5 4.34 4.52 3.77±0.09 5 6.97 7.36 5.96±0.23 

10 4.06 4.51 3.74±0.O8 10 6.49 7.34 5.85±0.23 
00 4.03 00 6.38 

P = 0.8 
k i Baba Y-T Simulation 
1 33.67 32.9 31.5 ±2.2 
2 20.56 19.2 18.1±1.1 
3 17.54 16.7 15.3±1.1 
5 15.44 15.7 13.3±1.0 

10 14.01 15.7 12.6±0.9 
00 13.45 

In Table 3 and Table 4, we show the proposed approximate formula of the mean wait­
ing times for Ef / E4/1 type multiqueue and Hf / H2/1 (c~. = c}. = 1.5 with symmetry 
condition) type multiqueue, respectively. It is found from Table 3 that the accuracy of our 
approximation is better than that of [14], when the total server utilization, p, is large and 
the limit, ki' is large. But the accuracy of our approximation is worse than that of [14], when 
ki is small or p is small. Also note that our approximation gives overestimation. In Table 
4, it is found that our approximation always gives overestimation, but the approximation of 
[14] gives overestimation for some parameters and underestimation for different parameters. 

Table 3. Mean waiting time in the Ef / E4/1 type multiqueue system 

p = 0.4 p = 0.6 

k i Baba Y-T Simulation k • Baba Y-T Simulation 
1 6.02 4.17 4.39±0.03 1 9.72 9.63 8.64±0.16 
2 4.52 3.20 3.16±0.04 2 6.90 7.30 6.09±0.12 
3 4.04 3.00 2.86±0.04 3 6.07 6.86 5.50±0.11 
5 3.67 2.95 2.56±0.04 5 5.43 6.86 4.91±0.10 

10 3.39 2.95 2.56±0.04 10 4.96 6.79 4.90±0.10 
00 3.37 00 4.89 
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p = 0.8 

k • Baba Y-T Simulation 
1 27.00 23.4 20.5±1.4 
2 15.56 15.2 12.2±0.4 
3 12.92 13.7 1O.5±0.4 
5 11.09 13.3 9.19±0.32 

10 9.84 13.2 8.98±0.30 
00 9.45 

Table 4. Mean waiting time in the Hf / Hd1 type multi queue system 

p = 0.4 p = 0.6 
k • Baba Y-T Simulation k • Baba Y-T Simulation 
1 7.83 7.35 7.81±0.32 1 14.35 13.4 14.3±1.2 
2 6.38 5.60 5.61±0.25 2 11.16 9.48 9.91±0.86 
3 5.83 5.26 5.06±0.22 3 10.21 8.70 8.82±0.77 
5 5.44 5.21 4.58±0.20 5 9.48 8.51 7.96±0.70 

10 5.15 S.17 4.53±0.20 10 8.96 8.47 7.72±0.66 
00 5.12 00 8.83 

p = 0.8 

k • Baba Y-T Simulation 
1 44.50 43.4 40.5±5.1 
2 28.69 24.1 27.5±4.4 
3 25.04 20.5 23.4±3.8 
5 22.50 18.9 20.6±3.4 

10 20.78 18.7 19.3±3.0 
00 19.95 

6. Conclusion 
In this paper, for M x /0/1 type multiqueue systems, we present an upper bound of the 

weighted sum of the mean waiting times for E-limited and G-limited service disciplines. For 
OIx /0/1 type multiqueue systems, we present an ,;j.pproximate formula of the weighted sum 
of the mean waiting times for exhaustive, gated, E-limited and G-limited service disciplines. 
Especially, for symmetric multiqueue systems, an upper bound of the waiting time and an 
approximate formula of the waiting time at each queue are derived for M X /0/1 type and 
OIx /0/1 type, respectively. Numerical results show that the accuracy of our upper bounds 
and approximate formulae seems to be good enough for practical use. 

For future study, if the second factorial moment for the number of customers served 
at queue i per visit of the server, <p;2), is tightly approximated, then a new approximate 
formula of the mean waiting time can be obtained. Further, for asymmetric batch arrival 
multiqueue systems such as M X /0/1 type and OI x /0/1 type, it is important to derive an 
approximate formula of the mean waiting time at each queue for various service disciplines. 
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