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Abstract In this paper, we consider a dynamic stochastic inventory model with fixed inventory holding 
and shortage costs in addition to a fixed ordering cost. WE discuss a sufficient and necessary condition for 
an (s,S) policy to be optimal in the class of such stochastic inventory models. Furthermore, we explore 
how such a sufficient and necessary condition can be rewritten when the demand distribution is specified. 
Several examples such as uniform, exponential, normal and gamma distribution functions are treated. The 
main purpose of this paper is to show that the (s, 5) policy is still optimal under a simple condition even if 
fixed inventory costs are involved. Although Aneja. and Noori [1] consider a similar model only with fixed 
inventory shortage cost, our proof for the optimality of an (8, S) policy in the multi-period model is different 
from and much simpler than theirs. 

1. Introduction 
It is well known (see Scarf[7] and Veinott[8] [9] [lO])that an (s,S) policy is optimal 

for the stochastic inventory control problem with fixed and proportional production costs. 
As to dynamic stochastic inventory control, the concept of J{ -convexity is crucial for the 
discussion of an optimal policy which is an (s,S) type. However, if the inventory cost includes 
a fixed cost, the (s,S) policy is no longer optimal. For example, Aneja and Noori[l] discuss 
a sufficient condition for the (s,S) policy to be optimal if the inventory shortage cost has a 
fixed part but the inventory holding cost is not fixed. 

In this paper, we shall discuss the relationship between the optimality of an (s,S) policy 
and the fixed inventory holding and shortage costs., in addition to the production cost with 
fixed cost. Our model is not only an extension of Aneja and Noori[l], but provides a different 
and simpler proof for the optimality of an optimal (s,S) policy for the dynamic stochastic 
inventory problem. Also, this paper aims to answer the following question: What is a 
sufficient condition for the (s,S) policy to be optimal if there is a fixed inventory cost? In 
other words, how robust is the (s,S) policy with respect to the inventory cost function? 
Furthermore, we analyze how such a sufficient condition can be rewritten and whether it 
holds or not when the demand distribution is specified, such as in the case of uniform, 
exponential, normal or gamma distributions. 

2. Preliminaries 
In this paper, we consider a finite period dynamic stochastic inventory problem with a 

single item. We require the following assumptions and notations: 

• The unsatisfied demand is lost. 

• If the demand is less than the stock level, then holding cost incurs at the end of each 
period. This holding cost consists of two parts, the fixed holding cost [El] and the 
proportional holding cost [h]. 
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• If the demand is bigger than the stock level, then shortage cost incurs. This shortage 
cost again consists of two parts, the fixed shortage cost [B2] and the proportional 
shortage cost [Plo 

• If an order is taken, then the ordering cost incurs. This ordering cost consists of the 
fixed ordering cost [K] and the proportional cost [cl. 

• The demand of each period is given by the random variable [e] which has the proba­
bility density function (p.d.f.)4>(e). We assume that p.d.f. 4>(e) is differentiable. 

• Both the cost functions and the p.d.f. of demand are identical over the periods. 

Let us assume that the planning horizon is discrete and finite, and consists of N periods. 
First, we consider the expected cost over n periods (n ::; N). If the stock level immediately 
after an ordering is y, then the sum of the expected holding and shortage costs to be charged 
during a period is given by 

where we assume that B2 is not equal to Bt. If B t = B 2 , then it is easy to see from 
equation(2.1) that the sum of the fixed holding and shortage costs is independent of y. 
Therefore, this model reduces to the classical stochastic inventory model with the only 
fixed cost being a fixed ordering cost. Let Cn(x) be the minimum of the expected total 
discounted cost over n-periods when x is the starting inventory level before an ordering at 
the beginning of period n. Then, we have from the principle of the optimality 

(2.2) 

where [y]+ = max{y,O}, n = 1,2, ... ,N, p is the discount factor, 0 < p::; 1, Co(x) = 0 for 
all x and H (.) is defined as follows; 

H( _ x) _ { 0, if y - x ::; 0; 
y - K + c· (y - x), otherwise. (2.3) 

The objective of this model is to find an optimal inventory policy which minimizes the 
expected total discounted cost. To prove the optimality of an (s,S) policy for the multi­
period model, we first consider the single-period model of this problem. 

3. Single-Period Model 
In this section, we discuss the optimality of the (s,S) policy in a single-period model. 

For N = 1, equation(2.2) reduces to 

Ct(x) = min{H(y - x) + L(y)}. 
y~., 

(3.1 ) 

Theorem 1. A sufficient and necessary condition for the optimality of an (s,5) 
policy for the single-period problem is that 

Condition (A) 

(3.2) 
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where ?R+ = {YIY ~ O}. 

Proof: (Sufficiency) It suffices to prove for the case, B2 - BI < 0, because the 
proof of the case, B2 - BI > 0, can be applied to Aneja and Noori's result as B == B2 - BI . 
Let FI(Y) be the quantity inside the braces of the right-hand-side of equation(3.1) and put 
GI(y) = FI(Y) - K + ex. For y > x, we have 

GI(y) = ey + h !oY (y -e)4>(Ode + BI!oY 4>(e)dCt- P 1';<) (e - y)4>(e)de + B21°O 4>(e)d( (3.3) 

In this case, the first and second derivatives of the function GI (y) are 

and 

G~(y) = h4>(y) + BI 4>'(y) + p4>(y) - B24>'(y) 
= (h + p)4>(y) - (82 - BJ)4>'(y). 

From condition (A), we obtain 

G~(y) = (h + p)4>(y) - (B2 - BJ)4>'(y) ~ 0, 

which concludes that GI(y) is convex in y. 
If y = x, then we have GI(x) - ex = FI(X). 

(3.5) 

(3.6) 

GI(x) = ex+h fox(x-e)4>(e)de+BI!ox 4>(e)de+p L;<)(e-x)4>(e)de+B21°O 4>(e)d( (3.7) 

The first and second derivatives of equation(3_ 7) are 

and 

G~(x) = h4>(x) + BI 4>'(x) + p4>(x) - B24>'(x) 
= (h + p)4>(x) - (B2 - BJ)4>'(x). 

(3.9) 

Since this equation is identical with equation(3.6), equations (3.6) and (3.9) imply that 
GI (y) is a convex function of y ~ x. 
Therefore, 

FI(Y) = { GI(y) + K --- ex, ~f y > Xj 

GI(x) - ex, If y = x. 

Here, the minimum value function CI(x) should be given by 

CI(x) = { GI(S) + K - ex = GI(s) - ex, if x < Sj 

GI(x) - ex, if x ~ S 

where 
S = argmin{GI(y)}, 

S = min{zIGI(S) + K = GI(z)}. 

Consequently, under the condition (A) an optimal inventory policy is as followsj 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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1. if x < s, order (5 - x), 

2. if x ~ s, do not order. 

Such a policy is called the (s,S) policy. 
(Necessity) Suppose that condition (A) does not hold; that is, there exists some Y E ~+ 
such that 

4>'(Y){>} h+p 
4>(Y) < B2 - Bl 

(3.14) 

Then, we shall show that there are values of parameters K and c for which any (s,S) policy 
cannot be optimal. We shall prove it for the case of B2 - Bl > o. The proof for the case 
B2 - Bl < 0 is similar and hence omitted. We can find some Y large enough such that 

4>'(y) < 0, (3.15) 

where 4>(y) is assumed to be continuously differentiable. Because 4>' (y) is continuous and 
negative for sufficiently large y, there exists Yo such that 

4>'(yo) h + p 
4>(yo) = B2 - Bl . 

(3.16) 

In the case that there are several Yo's for which this might be true, let Yo be the largest 
value satisfying(3.16). For all y with y ~ Yo, an inequality 

(3.17) 

holds, which implies that 
G~(y) ~ o. (3.18) 

On the other hand, in the left neighborhood of Yo, we have 

G~(y) ::; 0 for y E (yo - 8, Yo), 8 > o. (3.19) 

Now, consider the function f(y) = G~(y) - (c- p) which can be rewritten as 

f(y) = (h + p)~(y) - (B2 - Bl )4>(y), (3.20) 

where ~ is the cumulative distribution function(c.d.f.) of 4>. Since f'(y) = G~(y), it follows 
from (3.18) and (3.19) that f(y) attains a local minimum at Yo. (Assuming that this min­
imum is also global, a shape of f(y) is as shown in Figure 1). By an appropriate choice of 
c, we can ensure that G~(y) = f(y) + (c - p) = 0 at Yl and Y2 such that G~(Yl) < 0 and 
G~(Y2) > o. Thus, the function G~ (y) has at least two consecutive zeros, one at Yl where 
Gl (y) is concave and the other at Y2 where Gl (y) is convex and there are no zeros beyond 
Y2.Thus, Gl(y) assumes a local maximum at Yl and a local minimum at Y2. Therefore, we 
can choose an appropriate K < Gl(Yl) - Gl (Y2). Summing up the above argument, we 
obtain the optimal inventory policy as follows: 

1. order (Y2 - x), if a ::; x ::; b, 
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fey) 

o Yo 

(p - c) ------- ---------~----------

o a 

, 

Figure 1: Shape of the function fey) 

, 
_________ .1 -------, , , 

b 

Figure 2: The expected one period cost function 
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2. do not order, otherwise, 

which is no longer an (s,8) policy(see Figure 2). Thus, condition (A) is necessary for the 
(s,8) policy to be optimal. 

o 

Remark: Theorem 1 concludes that condition (A) is a sufficient and necessary con­
dition for the (s,5) policy to be optimal. If the right-hand-side of condition (A) is positive, 
condition (A) holds for all nonincreasing p.d.f. Furthermore, note that our model includes 
Aneja and Noori{1} type(B2 = B, BI = 0) and Scarf[7} type(B2 = BI = 0). 

4. Multi-Period Model 
In this section, we shall show that condition (A) is also sufficient for the (s,8) policy to 

be optimal in the multi-period model. This is not true in Aneja and Noori[1] because their 
proof is different from ours. Define Gn (y) by 

(y > x) (4.1 ) 

where n = 1, ... , N. We shall prove Theorem 2 by using properties of a [{ -convex function 
which is defined as follows; 

Definition(K-convexity[7]). Let [{ 2: 0, and let Gn(x) be a differentiable 
function. We say that Gn(x) is [{ -convex if 

(4.2) 

for all positive a and all x and n. 

Before presenting Theorem 2, we require Propositions 1 and 2 whose proofs can be found 
in the respective references. 

Proposition 1(Scarf[7]). 

1. O-convex function is ordinary convex. 

2. If f(x) is [{-convex, then f(x + h) is [{-convex for all h. 

3. If f and 9 are [{I-convex and [{2-convex, respectively, then (af+(3g) is 
(a[{l + (3[{2)-convex for a and (3 positive. 

4. If gn(x) is [{ -convex, so is 1000 gn(X - O<p(Od~. 

Proposition 2(Denardo[2]). Let h(y) be convex and non decreasing on Y. 
Let C(x) be [{-convex on a set X ;2 {h(y)ly E Y}. If all elements a < c of X have 
C(a) ~ C(c) + [{, then C[h(y)] is [{-convex on Y. 

Theorem 2. If condition (A) holds, then Gn(y) is [{-convex in y for each n. 
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Proof: The Proof is by induction on n. F:or n = 1, we have G1 (y) = cy+L(y) which 
is convex under condition (A), as we have seen in section 3. Following Scarf's argument (or 
from equation (3.11)), C1(x) is K-convex. Assume that Cn - 1 (·) is K-convex. Define 

(4.3) 

and put 

Gn(y) = { Fn(ylx) - K + cx, ~f y > x 
Fn(xlx) + cx, If y = x. 

(4.4) 

For y 2 x, 

(4.5) 

Since the sum of the first two terms is G1(y), il; is O-convex under condition (A). The 
K -convexity of the third term can be derived as follows; in a context of proposition 2, 
take C(x) = Cn- 1 (:I:) and h(y) = [y - el+. Since Cn_1 (x) is K-convex, then Cn_1(a)­
Cn _ 1 (c) ~ K for a < c ~ S, or a < S < c. Since Cn _ 1 (x) is nondecreasing in x 2 S, 
then Cn_1(a) ~ Cn __ 1 (c) + K for all S < a < c. On the other hand, h(y) = [y - el+ is 
nondecreasing and convex in y. Hence, the composite function Cn - 1 ([y - el+) is K -convex 
in y. Therefore, it is easy to see from a simple version of proposition 1-4 that 

(4.6) 

is pK -convex. By definition of K -convexity, pK -convexity is K -convexity for 0 < p ~ 
1. Since Gn (y) is the sum of O-convex and K --convex functions, it is K -convex from 
proposition 1-3. 

o 

Theorem 3. If the p.d.f of demand, 1jJ(~), satisfies condition( A), then an (sn' Sn) 
policy is optimal for our multi-period inventory problem. 

Proof: From theorem 2, we have established Gn(y) is K -convex for all nand 
hence, following exactly Scarf's classical arguments, the optimal policy for the n-period 
problem is (sn' Sn) where: 

(4.7) 

This policy states that when inventory on hand is below the reorder point Sn, sufficient 
stock is ordered to raise the inventory level to the order-up-to-level Sn and should not 
order, otherwise. The minimum expected total cost of following such a policy would be 

o 
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5. Examples 
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Table 1: Left-hand-side of the Condition (A) 
functions 

distributions </J </J' 7 
Uniform ~a 0 0 

Exponential aexp( -ay) -a2 exp( -ay) -a 

Normal ~ 
y I' e Y -71-" 21rq V21rq3 

Gamma fffl l' yJlV -1 ay ~-a ['v ['(v)y y 

e(y) == exp( -(y _/)2), F(y) == avyV-Iexp( -ay), v f:. 1 
20' 

In this section, we explore condition (A) when p.d.f. </J(.) is specified. If p.d.f. </J(.) is 
uniform, exponential, normal or gamma, condition (A) can be rewritten as in Table 1. We 
discuss two cases. 

Case{1): 

for all y E ?R+ , B2 - BI > o. (5.1 ) 

If sUPo<y<oo { ~(:l} ~ B~~~l holds, then the condition( A) is immediately satisfied. Therefore, 
any uniform and exponential distributions satisfy the condition (A) from Table 1. 

On the other hand, if </J is a normal distribution with parameters (1-', a), then condition(A) 
reduces to 

(h + p)O'2 

y? I-' - BB> O. 
2 - I 

Because Pr{-4O' + I-' < y < 40' + I-'} :::::: 1 and Pr{O ~ y < co} 
condition (A) is satisfied when 

40' ~ J-l and 

(5.2) 

1 in our model, the 

(5.3) 

If (h + p) is large enough compared with IB2 - BII, then the inequality(5.3) may hold. 
For a gamma distribution with parameters (a, v), condition (A) reduces to 

(5.4) 

Therefore, if 
O<v<l (5.5) 

holds, then condition (A) holds. Furthermore, if (5.5) does not hold but (h + p) is large 
enough compared with IB2 - BII, then the inequality(5.4) may hold(see Fig. 3). 

Case (!!): 

for all y E ~+ , B2 - BI < o. (5.6) 
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o 

Figure 3:The Inventory costs in the 
case El < E2 

y o 

Figure 4:The Inventory costs in the 
case El > E2 
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If info<y<oo { ~l;l} 2 B~~Bl holds, then condition (A) is satisfied and hence a uniform dis­
tribution immediately satisfies condition (A). 

For an exponential distribution with mean 1/0, condition (A) reduces to 

Ui.7) 

In this case, if (h + p) is large enough compared with I B2 - Bll, then the inequality (S. 7) 
may hold( see Fig. 4). 
For a normal distribution with parameters (JL,O'), condition (A) reduces to 

(h + p)O·2 
Y~JL- «JL). 

B2 - BI 
(S.8) 

Because Pr{ -40' + JL < Y < 40' + JL} I=:;j 1 and Pr{ 0 ~ Y < oo} = 1 in our model, condition 
(A) is satisfied when 

and 
(h+p)O' 

- -8 B > 4 . 
. 2 - 1 

Ui.9) 

If (h + p) is large enough compared with IB2 - Bll, then the inequality (5.9) may hold. 
For a gamma distribution, condition (A) reduces to 

Therefore, if 

o:(B2 - Bd + h + p < 0, 

lo:(B2 - B I ) + h + pi ~: 0, 

(5.10) 

(5.11) 
and /I> 1, 

then the inequality (5.10) may hold. Summing up the above discussion, we have the following 
proposition which is also summarized in Table 2. 
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Table 2: Examples of the results 
distributions 

case Uniform Exponential Normal Gamma 
(1) 0 0 D. : (5.3) D. : (5.4) 
(2) 0 D. : (5.7) D. : (5.9) D. : (5.10) 

o:Condition (A) holds without any assumptions. 
LJ.:If the inequality in the parenthesis holds, then Condition(A) holds. 

Proposition 3. 
Case(l) 
For any uniform distribution or exponential distribution, condition (A) holds. 
If 4> is a normal distribution with (5.3), or a gamma distribution with (5.4), then condi-

tion (A) holds. 
Case(2) 
For any uniform distribution, condition (A) holds. 
If 4> is an exponential distribution with (5.7), a normal distribution with (5.9), or a 

gamma distribution with (5.10), then condition (A) holds. 

6. Conclusion 
In this paper, we have shown under condition (A) that the (s,S) policy is optimal for 

finite period stochastic inventory models with fixed inventory holding and shortage costs, 
in addition to a fixed ordering cost. Our proof fo~ this result is different from and much 
simpler than the one offered by Aneja and Noori[l]. This paper also provides an answer to 
the question of how robust the class of (s,S) policies is for stochastic inventory models with 
fixed costs . 

Furthermore, we have demonstrated that condition (A) is a sufficient one for the (s,S) 
policy to be optimal for multi-period models. However, this condition may limit the can­
didates of demand functions to a certain class. When the probability density function of 
demand is specified such as uniform, exponential, normal or gamma, we have discussed in 
section 5 how condition (A) can be rewritten and whether or not it holds. 
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