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Abstract Minoux considered the maximum balanced flow problem of a two-terminal network, which is 
the problem of finding a maximum flow f in the network :mch that each arc-flow f(a) (a E A) is bounded 
by a fixed proportion of the total flow value from the source to the sink, where A is the arc set of the 
network. He also proposed an algorithm for finding a n1hximum integral balanced flow, i.e., a maximum 
balanced flow satisfying that the value of each arc-flow of the network is integral. Integral balanced flows 
defined by Minoux can be regarded as one way to balanc" flows in the network. In this paper, we propose 
another way to balance flows in a two-terminal network /1'. To be exact, we consider the maximum vedex­
balanced flow problem in network N, i.e., the problem of fin ding a maximum flow f' in N such that for each 
vertex v E V any arc-flow f' (a) (a E 8- (v)) entering v is bounded by a fixed proportion of the total flow 
L{f'(~) : a E 8-(v)} entering v, where V is the vertex set of Nand 8-(v) is the set of the arcs entEring 
v. We mtended to propose an algorithm for finding a maximum integral vertex-balanced flow in network N 
but we found that the maximum integral vertex-balanced How problem (IV BP) is difficult. ' 

Our. main purpose in this paper is to prove that problem (IV BP) is NP-complete and to propose a 
polynOlmal-tlme approximation algorithm for (IV BP). 

1. Introduction 

Minoux [5] considered the mazimum balanced flow problem (BP), i.e., the prob­

lem of finding a maximum flow in a two-terminal network with an additional con­

straint described in terms of a balancing rate function a : A -t R+ - {O}, where 

A is the arc set of the network and R+ is the set of nonnegative reals. To put it 

another way, problem (BP) in the network is the problem of finding a maximum 

flow f in the network such that each arc-flow l(a) (a E A) is bounded by a fixed 

proportion a( a) of the total flow value from th·e source to the sink of the network. 

This problem (BP) is motivated by Minoux's rEsearch of reliability analysis of com­

munication networks. For example, consider a. telephone network with its source 

and sink corresponding to two cities A and B, respeciively. When a telephone line 

joining two adjacent spots breaks down, telepllone routes through the broken line 

from A to B are blocked. But if the telephone routing considered as a flow from the 

source to the sink is balanced, then the number of the blocked routes is at most the 

fixed proportion of the total number of current routes from A to B. Statistics in 

[5] shows that few telephone lines break at the same time. If a flow from source 8 

to sink t is balanced, then it is guaranteed that the value of the blocked arc-flow is 

at most the fixed proportion of the total flow value from 8 to t. Several algorithms 
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14 A. Nakayama 

[1,5,6,7,9] are proposed for the maximum balanced flow problem. 

Minoux [5] also considered the problem of finding a maximum integral balanced 

flow of the network, i.e., that of finding a maximum balanced flow f satisfying that 

each arc-flow of f is integral, and proposed an algorithm for this problem. By 

the way, Zimmermann [9] generalized Minoux's formulation of problem (BP) and 

conjectured the maximum integral balanced flow problem is NP-hard. If a balancing 

rate function 0: is constant, Cui's O(min{m, ll/1'J}T(n, m)) algorithm is known, 

where m =1 A I, o:(a) = l' for any arc a E A, lO J is the minimum integer greater 

than or equal to () E R+ and T(n, m) is the time for the maximum flow computation 

for a network with n vertices and m arcs. 

In the present paper we propose another way to balance flows in a network. 

More precisely, we consider the mazimum vertez-balanced flow problem of a two­

terminal network N i.e., a maximum flow problem with an additional constraint 

described in terms of a vertez-balancing rate function "y : V - {s} ~ R+ - {O} where 

V is the vertex set and s is the source of N. The difference between a maximum 

balanced flow f and a maximum vertex-balanced flow 9 is as follows: each arc-flow 

of f is bounded by a fixed proportion of the total flow value from the source to the 

sink of the underlying graph G = (V, A), while that of 9 entering each vertex v E V 

is bounded by a fixed proportion of the total flow entering v. 

Especially, we consider the maximum integral vertex-balanced flow problem 

(IV BP) of finding the maximum vertex-balanced flow 9 of network N such that 

each arc-flow of 9 is integral. Let ni j be the number of telephone lines between 

two adjacent spots i and j in a telephone network. The integrality condition Gin~ of 

integral vertex-balaned flows of N would be justified from such a situation that ni j 

corresponds to arc-flow g( (i, j)) in the network. ( In the case when ni j is very large 

it would be sufficient that we have a vertex-balanced flow without the condition 

Gint of problem (VBP). We will discuss this case in future researches.) At first, we 

intended to give an algorithm for problem (IV BP), but we found that (IV BP) is 

difficult. The main purpose of this paper is to prove that problem (IV BP) is NP­

complete and to propose a polynomial-time approximation algorithm for (IV BP). 

The NP-completeness of problem (IV BP) means that (IV BP) is in class N P and 

that every problem in N P is reducible to (IV BP) in polynomial-time, where N P 

is the class of problems that ca.n be solved by nondeterminia!ic Thring machine in 

polynomial-time. 

2. The Maxinmm Vertex-Balanced Flow Problem 

In this section we give the motivation of considering the maXImum vertex­

balanced flow problem, compared to the maximum balanced flow problem by Mi-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Balanced Flow and its Complexity 

noux. First we describe the maximum balanced flow problem in the following sub­

section. 

2.1. The Maximum Balanced Flow Prohlem 

Let G = (V, A) be a directed graph with. vertex set V and arc set A, where 

V( G) (A( G» will also be used as the vertex ( arc) set of G. Given a directed 

graph G = (V, A), a capacity function e : A ~ Z+ and a balancing rate function 

a: A --t R+ - {O}, consider a two-terminal network N' = (G = (V,A),c,a,s,t) 

where s is the source and t is the sink of G. Given two-terminal network N', the 

ma:z:imum balanced flow problem (BP) by Minoux is formulated as follows. 

(BP): Maximize I(a*) 

subject to 

(2.1) D'I=O, 

(2.2) 0 ~ I(a) ~ eta) (a EA), 

(2.3) I(a) ~ a(a)/(a*) (a EA), 

where arc a* = (t, s) ~ A is added to the underlying graph G and D is the vertez­

arc incidence matri:z: of G. If a function I : A* --t R+ satisfies (2.1) and (2.2), 

then I is called a jealJible flow in network N', where A* = A U {a*}. If a feasible 

flow I satisfies (2.3), then I is called balanced. The value of a feasible balanced 

flow I is defined as value I(a*). Problem (BP) is the problem of finding a feasible 

balanced flow of maximum value, called a ma.llimum balanced flow. The mazim1l.m 

integral balanced flow is a maximum balanced flow I with the property that each 

arc-flow I(a) (a E A) is integral. In section 4 we will employ Cui's algorithm when 

we describe an approximation algorithm for the maximum integral vertex-balanced 

flow problem. 

2.2. The Maximum Vertex-Balanced Flow Problem 

A maximum balanced flow I in the previous subsection has the property that 

the value of each arc-flow of I in network N' is bounded by a fixed proportion of the 

total flow value from the source to the sink of N'. On the other hand, we give an 

another formulation of "balanced flows" in a Jlletwork from slightly different point 

of view. We consider a feasible flow 9 such thd for each vertex 'V E V any arc-flow 

g( a) (a E 6- ('V)) entering vertex 'V, is bounded hy a fixed proportion ofthe total flow 

entering 'V. We call 9 a verte:z:-balanced flow. Now we show a precise formulation of 

the maximum vertex-balanced flow problem. 

Let G = (V, A) be a directed graph. The nu.mber of the arcs coming in (going out 
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16 Ao Nakayama 

of) a vertex v E V is called in-degree (out-degree) of v. Given a two-terminal network 

N = (G = (V,A),c,,),,s,t) the mazimum vertez-balanced flow problem (VBP) is 

formulated as follows: 

(VBP): Maximize g(a-) 
subject to constraints (2.1), (2.2) and 

(2.4) max{g(a) : a E o-(v)} ~ ')'(v)g(e-(v)) (v E V - {s}), 

where f should be replaced by 9 in (2.1) and (2.2), and')' : V - {s} --t R+ - {O} is 

a vertez-balancing rate function. 0+ ( v) (0- ( v» is the set of the arcs with v as their 

initial (terminal) vertices in G, respectively and g(o-(v» = 2:{g(a) : a E o-(v)}. 
If a function 9 : A- --t R+ satisfies (2.1), (2.2) and (2.4), then 9 is called a feasible 

vertez-balanced flow in network N. The value of a feasible vert ex-balanced flow 9 is 

defined as value g(a-). The maximum vertex-balanced flow problem is the problem 

of finding a feasible vertex-balanced flow of maximum value. 

In subsequent sections, we consider the mazimum integral vertez-balanced flow 

problem (IV BP), i.e., the problem of finding a maximum vertex-balanced flow 9 

satisfying that the value g( a) of each arc a E A is integral. The example of the tele­

phone routing problem in the previous section would need this integrality condition. 

The following proposition states the relation between in-degree of each vertex in N 

and a feasible vertex-balanced flow in N. 

Proposition 1. Let 9 be a feasible vertex-balanced flow in the network N. 

For each vertex v E V - {s}, we have the following (2.5) and (2.6). 

(2.5) If ')'(v) < 1/ 100-(v) I, then we have g(a) = 0 (a E o-(v». 

(2.6) If ')'(v) = 1/ lo-(v) I, then we have g(a) = g(o-(v)h(v) (a E e-(v)). 

Proof: Let 9 be a feasible vertex-balanced flow in N. From (2.3), for each 

vertex v E V - {s} we have 

(2.7) g(a) ~ ')'(v)g(o-(v)) (a E o-(v) ). 

Adding each inequality in (2.7), we have 

(2.8) 2:{g(a) : a E o-(v)} S; ')'(v)g(e-(v)) I e-(v) I. 

If gce-Cv»~ > 0 and ')'(v) < 1/ I e-(v) I, then from (2.8) we have a contradiction. 

Hence we have (2.5). Assume g(o-(v)) > 0 and ')'(v) = 1/ lo-(v) I. From (2.8), we 

have equlity case for the inequality of any arc a E e-(v) in (2.7). Hence we have 

(2.6) .• 

In the following section, we will prove that the maximum integral vertex­

balanced flow problem is in a class of difficult problems where we assume ')'( v) 2': 
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1/ I c5-(v) I (v E V - {8} ). 

3. NP-Completeness of the Maximum Integral Vertex-Balanced Flow 

Problem 

In this section we prove that a maximum vertex-balanced flow problem is NP· 

complete. The definition of NP-complete is described with additional preliminariel; 

in the following subsection. 

3.1. Additional Preliminaries 

Given a two-terminal network N = (G == (V,A),c,1',8,t), Consider the follow·· 

ing yes-no question (BQ): 

(3.1) (BQ): In,tance: J E Z+ - {O} and network N. 

QUf,tion : Is there a feasible integral vertex-balanced 

flow gin N such that g(a*) ~ J ? 

where Z+ is the set ofnonnegaiive integers. Let NP be the class of yes-no questions 

that can be solved by nondeternimi,tic Turin~, machine in polynomial-time. We say 

that a yes-no question L' is polynomial-time :reducible to a yes-no question L if we 

have a polynomial-time bounded Turing machine that for each input z produces an 

output y that is in L if z is in L'. A yes-no question L is called NP.complete if L is 

in class N P and each yes-no question in N P is polynomial-time reducible io L. In. 

subsequent sections we will prove that the question (BQ) in (3.1) is NP-complete. 

3.2. The Problem of Integral Network :Flows with Multipliers 

We introduce one of NP-complete problems, called the problem of integral net· 

work flow, with multiplier,. Given a directed graph G' = (V', A'), a capacity func­

tion c : A --+ Z+ .- {O} and a multiplier function h : V - {" t} ~ Z+ - {O}, consideI 

a two-terminal network Nf. = (G' = (VI ,A' ),c,h,8,t), where 6-(8) = 6+(t) = rP. 
The problem (M P) of integral network flows with multipliers is defined as follows: 

(MP): Maximize gl(e-(t)) 

subject to 

(3.2) 0 ~ g'(a) ~ c(a) (a E A'), 

(3.3) h(v)g'(e-(v» = g'(e+(v» (v E V' - {s, t}), 

where g'(B) = 2:{gl(a) : a E B} for B C A'. IT a function g' : A' --+ R+ satisfies 

(3.2) and (3.3), then g' is called a feasible multiplier flow in the network N/.. If each 

arc-flow lea) (a E A') of a feasible muliiplie:t flow g' is integral, then g' is called 

integral. The value of a feasible multiplier How g' is defined as value g'(c5-(t». 
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18 A. Nakayama 

The problem of integral network flows with multipliers is that of finding a feasible 

integral multiplier flow of maximum value, called a mazimum integral multiplier 

flow. Consider the following yes-no question (MQ): 

(3.4) (MQ): In,tance : J E Z+ - {O} and network N~. 

Que,tion : Is there a feasible integral multiplier flow 

g' in N~ such that gl(e-(t)) ~ J '? 

By the way, the question (MQ) is known as one of NP-complete problems: 

Theorem 2. [3,8] Question (MQ) in (3.4) is NP-complete .• 

Consider the following question (MQ)/, a special case of (MQ) : 

(3.5) (MQ)/: Question (MQ) with function hi satisfying 

max{h/{v): v E V' - {"t}}:::; max{llogc{a)J : a E A'}, 

where functin h in (MQ) should be replaced by hi and LOJ is the minimum integer 

greater than or equal to e E R+. To show that the question (BQ) is NP-complete, 

we will first prove that the question (MQ)' in place of (MQ) is NP-complete and 

then that (MQ), is polynomial-time reducible to (BQ) in the following sections. 

3.3. NP-Completeness of a Subproblem in Problem of Integral Network 

Flows with Multipliers 

We transform SUBSET SUM{SS) to (MQ)/, where SUB. SET SUM is a yes-no 

question defined as follows: 

(3.6) (SS): Instance: J E Z+ - {O}, ,(e) E Z+ - {O} (e E S). 

Question: Is there a subset S' cS such that L:{,(e) : e E S'} = J '? 

where S is a finite set. For the question (SS) we have: 

Theorem 3. [3] Question (SS) is NP-complete .• 

Given positive integers ,(i) (1 :::; i :::; 1'), let 

(3.7) ,(i) = L:{b(i,j)2i : 0:::; j:::; Llog,{i)J,b(i,j) E {O, I}}, 

(3.8) O(,(i)) = {j + 1: 0:::; j:::; Llog,(i)J,b(i,j) = I}, 

where l' =1 S 1 and S = {i: 1:::; i:::; 1'}. Note that b(i,j) is the coefficient of binary 

expansion of ,(i). Simply we put O(,(i)) = {OJ i E Z+ - {O} : OJ i < ej i+1, 1 :::; j :::; 

nil, where nj =1 O(,(i» I. Let P(h) = (at, a2, ... , a,,) be ( an elementary directed ) 

path of length h, where the terminal vertex of arc aj is equal to the initial vertex of 

arc ai+t for each i (1 :::; i :::; h - 1) and the length is the number of the arcs. Now 

do the following construction: 
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Construction-I: 

Given positive integers J and s( i) (1 ~ i ~ .,.) I make a network 

Nrll = (GII = (VII, All), ell, hll, s, t) as follows: 

Step 1: Construct the graph GII = (V', A') as in Fig. 1.1, i.e., 

V" = {s,w,t} U{U{V(Hi): 1 ~ i ~ .,.}, 

A" = ((s,st),(si,w): 1 ~ i ~ "'}U{(w,t)}UA,., 

where A,. == U{A(Hi) : 1 ~ i ~ d and V(Hd (A(Hi)) is the vertex (arc) set 

of graph Hi in Fig. 1.2. Each Hi (1 ~ 'i ~ .,.) is defined as follows. 

V(Hi) = U{V(~ j): 1 ~ j ~ nil, 

A(Hi) = U{A(Pi j) : 1 ~ j ~ nd, 

where Pi j = P«()i j) and V(Pi j) (A(P; j)) is the vertex (arc) set of the path 

of length ()j j in Fig. 1.3. Pi j is defined. as follows. 

V(Pj j) == {Vi j(m) : 0 ~ m ~ ()j il, 
A( Pi j) =: {(Vi j (m - 1), Vj j (m)) : 1 ~; m ~ () i il, 

where Vj j(O) = st and Vi j«()j j) = si. 

Step 2: Define the capacity function ell as 

ell«s,st)) = 1, ell«si),w)) = 8(i) (1 ~ i ~ .,.), ell«w,t)) = J, 

For arcs of each path Pi j ( 1 ~ i ~.,., 1 ~ j ~ nj), define 

ell«vj j(m -l),vj j(m)) = 2m (1 ~; m ~ ()j j). 

8:1- s~ 
• 1, 

o ----70 Hi 

'''~ W 

8+ 8;-,. 

H,. 

Fig. 1.1 

tll 
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20 A. Nakayama 

Step 3: Define multiplier function hll as 

hll(St) = ni, hll(si) = 1 (1::; i::; '1'), hll(W) = 1, 

For vertices of each path Pi i (1 ::; i ::; '1', 1 ::; j ::; ni), define 

h"( Vi j(m)) = 2 (0 ::; m ::; 8; j - 1). 

graph Hi : Pi 1 

Pi n, 

Fig. 1.2 

path Pi j = P(8; j) : 

o 0---7 --»7-'0 > .. ~ 
Vi j(O) = si Vi j(m) Vi i(Oi i) = si 

Fig. 1.3 

We easily have the following proposition, which shows that we may assume 

{i : s (i) ~ 3, 1 ::; i ::; r} i= ifJ. 

Proposition 4. If s(i) ::; 2 for each i (1 ::; i < '1'), then we can find a 

polynomial-time algorithm for the problem (SS) .• 

From Proposition 4 we have: 

Proposition 5. (SS) is polynomial-time reducible to (MQ)'. 

Proof: Assume {i : s( i) ~ 3, 1 ::; i ::; 'I'} i= ifJ. Given positive integers J and 

s(i) (1 ::; i ::; '1'), we see that it takes 0('1'172) to construct network N~II' where 

17 = max{Llog s(i)J : 1 ~ i ::; 'I'}. For the function h" we have 

(3.9) max{h"(v): V E V" - {s,tD::; max{17,2}::; max{llogc"(a)j : a E A"}. 

From Con$t1'uction-Iand (3.9), we can use N~'II as an instance of{MQ)'. If there is 

a subset S' c S such that 2: {s( i) : i E S'} = J, then define a function 9 satisfying 
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the following (3.10) rv (3.12): 

(3.10) g«w,t» = cll«w,t», 

(3.11) For each i E S', 

g«",t») = c"«",t», g«,;, w» = c"«,;, w», 

g(a) = cll(a) (a E A(H;) ). 

(3.12) For each i E S - S', g«",t» = g«8i, w» = 0, g(a) = 0 (a E A(Hi ». 

Then it is easy to see that g is a feasible integral multiplier flow in N~" such that 

gce-et)) = J. Assume that we have a feasible integral multiplier flow g' in Nf"',, 
satisfying g/(6-(t)) ~ J. Then we have g'(6- (t» = J. Let S" = {i : g/{(",t» = 

I, 1 :::; i :::; 1'}, and we have (3.10) rv (3.12) for g' and S" where 9 and S' should be 

replaced by g' and S". From (3.10) rv (3.12) a.nd h"(W) = I, we have ~{'(i) : i E 

S"} = J .• 

Now we have the following theorem needed in later discussion: 

Theorem 6. The question (MQ)' in (12) is NP-complete. • 

Proof: It is easy to see that (M Q)' E N P. From Theorem 3 and Proposition 5 

we see that (MQ)' is NP-complete. 

In the following section, we present how to reduce (MQ), to (BQ). 

3.4. Reduction of the Subproblem to the Maximum Integral Vertex­

Balanced Flow problem 

Given a network N~, = (G' = (V', A'), c, h', s, t,) of (MQ)/, we construct a new 

network NN' = (H = (X, E), co, 1', s", t") with source ," and sink t" (Sll, t" E X) 
h' 

from N~, by the following construction, where we have 6-(,) = 6+(t) = <p for the 

graph G' . Moreover we may assume that G' has no arcs joining, and t. 

Construction-IT: 

Step 1 (Definition of the vertex set X of H) : Taking triple 

vertices V1,V2 and V3 for each v E V' - -(" t}, define 

X 123 = Xl U X 2 U X3 U {,II, t"}, 

where Xi == {Vi: V E V' - {" t}} (1~; i :::; 3). 

Step 2 (Definition of the arc set E of H) : 

(2.1): Define five sets El, E2 i (i = 1,2), E, and Et by 

El = {(V3,Wl) E X 123 x X 123 : (v,w) ~ A','II,w 'I- {8,t}}, 

E2 i = {(vi,vi+d E X 123 x X 123 : '11 E V' - {s,t}}, 
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E, = {(all, ut} E {all} x X 12a : (a,u) E A',u E V'}, 

Et = {(ua,tll ) E X 12a x {t"}: (u,t) E A',u E V'}. 

(2.2): Make the multiple arc set E(v) defined by 

~(v) = {(a ll ,v2)i : 1 ~ i ~ h'(v) -I}, 

where v E W = {w E V' - {a, t} : h'(w) > I}. Let 

E = El U E, 1 U E, , U E, U Et U Ew, 

where Ew = U{E(v): v E W}. 

Step 3: Define a vertex-balancing rate function -y : X - {a"} -+ R+ 

and a capacity function CO : E -+ R+ as follows. 

-y(v,) = Ilh'(v) (V2 EX,), 

-yew) = 1 (w E Xl U Xa U {tll}), 

eO«Va,Wl» = e(v,w) 

eO«vl,V,» = e(e-(v» 

eO«V2,Va)) = e(c+(v» 

eO«all,ul» = c«a,u» 

eO«ua,tll» = e«u,t» 

«va,wt}EEl ), 

( ( Vl, V2) E E2 t}, 

«V2,Va) E E2 2), 
«all, ut} E E,), 

« ua, t") E Et), 

For each v E W, eO(e) = e(c-(v» (e E E(v». 

Then we have: 

Proposition 7. We have a feasible integral vertex-balanced flow I : E -+ R+ 

in the network N N~, satisfying 1(6- (tll) 2': J if and only if we have a feasible integral 

multiplier flow 9 : A' -+ R+ satisfying g( 6- (t» 2': J in the network N~" 

Proof: Let 9 : A' -+ R+ be a feasible integral multiplier flow satisfying 

gce-et»~ 2': J in N~" Then we define a function f : E -+ R+ by using 9 as fol­

lows: 

(3.13) f«Va,Wl» =g«v,w» «Va,Wl) EEl), 

(3.14) 1«vl,v2» = g(e-(v» «Vl,V2) E E2 t}, 

(3.15) 1« v" va» = g( 6+ (v» « V2, va) E E2 ,), 

(3.16) I«a", Ul» = g«a, u» «a", Ul) E E,), 

(3.17) I«ua,t ll » = g«u,t» «ua,t") E Et), 

(3.18) For each E(v) (v E W), I(e) = g(6-(v» (e E E(v». 

From (3.13) ('..J (3.18) and the property of the flow g, we have a feasible integral vertex­

balanced flow f satisfying I(e-(t"» 2': J. Let I : E -+ R+ be a feasible integral 

vertex-balanced flow satisfying 1(6-(t"» 2': J in NN~" Then define So function 

9 : A' -+ R+ by using f as follows: 
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(3.19) 

(3.20) 

(3.21) 

g«v,w»=/«va,wl)) «v,W) EA', vi=s, wi=t), 

g« s, u)) = 1« s", Ul)) «s, u) EA'), 

g« u, t)) = 1« ua, t")) « u, t) EA'). 

From (3.19) '" (3.21), Proposition 1 and the property of the flow I, it is easy to see 

that 9 is a feasible integral multiplier flow satisfying gee-et»~ ~ J. Note that the 

function h' of (MQ)' is bounded by a polynomial function of the size of input data 

and thus it takes 0(1 V' I max{Llog c(a)J : a E A'}+ I A' I) time to construct NN~, •• 

We give our main theorem: 

Theorem 8. Question (BQ) is NP-com:plete. 

Proof: We reduce the question (MQ)' to (BQ). It is easy to see (BQ) E N P. 

From Proposition 7 and Construction-Il, we see that (MQ)' is polynomial-time 

reducible to (BQ). From Theorem 6, we conclude that (BQ) is NP-complete .• 

Here, we give an example showing the relation between a feasible integral vertex­

balanced flow with requirement in NN' and a feasible integral multiplier flow with ", 
requirement in Nh,. 

Example. Consider network N~, = (G' == (V', A'), c, h', s, t) in Fig.2 and J = 
15 as an instance of (MQ)', where G' with source s and sink t has V' = {s,u,v,t} 

and A' = {(s,u),(s,v),(u,v),(v,u),(u,t),(v,t)}. The ordered pair (c(a),g(a)) is 

attached to each arc a E A', where g(a) (a E A') is the value of arc-flow of a 

feasible integral multiplier flow 9 satisfying g("- (t)) ~ 15. After Construction-I I, 

we have the network NN~, = (H = (X, E),cO,-y, s",t") in Fig.3, where the ordered 

pair attached to each arc a E E is (CO( a), I( a)) and I( a) is the value of arc-flow of a 

feasible integral vert ex-balanced flow I satisfying 1(6- (t)) ~ 15, which is obtained 

from g. 

(3,2) (6,5) 

(2,0) (1,1) 
8 

(2,2) 
(15,12) 

Fig.2 

23 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



24 

'-----

A. Nakayama 

(6,5) 

(1,1) 

(2,2) (2,0) 

(15,12) 

Vl (3,3)!] (17,12) 

(3,3) -Y(1£2) = 1/3, -y( V2) = 1/4 
-Y(1£t} = -Y(1£3) = -y(vt} = 1 

(3,3) -Y(V3) = -y(tO) = 1 

Fig.3 

4. Approximation AIgoritlun for the Maxinmm Integral 

Vertex-Balanced Flow Problem 

In the previous section we showed the maximum integral vertex-balanced flow 

problem (IV BP) is NP-complete. Here, we propose an approximation algorithm for 

problem (IV BP). Let I be an integral vertex-balanced flow in network N = (G = 
(V, A), c, -y, a, t). Then we put the following assumption: 

(4.1) max{/(a): a E A} :::; I(a*), 

where a* = (t,s) (j. A. The assumption (4.1) means that any arc-flow of network N 

is less than or equal to the total net flow I(a*) from the source s to the sink t of 

N. We can have (4.1) since any arc-flow on cycles in the underlying graph G does 

not affect the total flow from a to t, though it may affect constraint (2.4). Moreover 

we omit constraint (2.4) to employ an algorithm for the maximum balanced flow 

problem (BP). For network N, define function a/ : A - R+ - {O} by 

(4.2) 

(4.3) 

For each v E V - {a}, a/(a) = -y(v) 

For each (1£, a) E A a/«1£,a» = 1, 

(a E C-(v)), 

where a is the source of N. If we apply Minoux's algorithm ofthe maximum integral 

balanced flow problem (IBP) for network Nal = (G = (V,A),c,a',a,t) with con-
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stant balancing rate function ai, then we have an approximate maximum integarl 

vertex-balanced flow of network N. We also give another approximate approach of 

problem (IV BP) for network N. We use Cui's algorithm for problem (IBP) with 

a constant balancing rate function. First we relax balancing rate function a' as 

follows: 

Proposition 9. We have positive integers (d .. : a E A) such that 

(4.4) d .. /n < a'(a) ~ (d .. + 1)/n, 

where n =1 V I· 
Proof: We assumed 'Y( v) ~ 1/1 6- ( v) 1 for each v E V - { ,} in Section 2. From 

l/n ~ 1/ 16-(v) 1 ( v E V - {,} ), we have this proposition .• 

Then do the following Con,truction-III, where A' = {a EA: a'(a) # I}. 

Construction-m 

Input: (G=(V,A), «d .. +l)/n:aEA), a/,e) 

Output: (G* = (V*,A*),a*,c*) 

Step 1: (Definition of G*) For each a E A', replace a by arc (8+(a), :1: .. ) and 

multiple-arc set A .. ::::::: {(:I: .. , 8-(a))i : 1 :s: i ~ dv + I}, where 8+(a) (8-(a)) 

is the initial ( terminal) vertex of arc et and :1: .. fJ- V is a new vertex. Define 

V* = Vu {:I: .. : a E A'}, 

A* = ((8+(a), :1: .. ) : a E A'} U {a: a E A. - A'} u (U{A .. : a E A'}). 

Step 2: Define a balancing rate function a* by 

a*(a) = l/n (a E U{A .. : a E A'} ), 

a*(a) = 1 (a E {(8+(a),:I: .. ): a E A'} U{a: a EA - A'}). 

Step 3: Define a capacity function c* by 

c*«8+(a), z .. )) = c(a) «8+(a), z .. ) E {(8+(a), z .. ) : a E A'} ), 

c*(a) = c(a) (a E {a : a E A - A'} ), 

For each a E A', c*(e) = c(a) (e E A .. ). 

Consider two networks Nand N* = (G* = (V*, A*), c* ,a*, " t). Then we have the 

following proposition : 

Proposition 10. Let VN ( VN- ) be the value of a maximum integral vertex­

balanced ( balanced) flow in network N ( N* ), respectively. Then we can find the 

value VN- such that VN ~ VN- in polynomial time. 

Proof: From Con&truction-III, we have: 

25 
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(4.5) 1 V* 1 ~ 1 VI + 1 A I, 

(4.6) 1 A* 1 ~ 1 V 11 A I, 

where G = (V, A) (resp. G* = (V*, A*) ) is the underlying graph of network N 
(resp. N* ). By using Cui's algorithm for the maximum integral balanced flow 

problem with a constant balancing rate function, it takes Q( nT( n + m, nm» time 

to obtain the value VN0 where n =1 V I, m =1 A 1 and T(n, m) is the time for the 

maximum flow computation for a network with n vertices and m arcs. It is easy to 

see that we have VN ~ VN0 •• 

5. Conclusion and Future Research 

In this paper we showed that the maximum integral vert ex-balanced flow prob­

lem (IV BP) is NP-complete, and proposed an polynomial approximation algorithm 

for problem (IV BP). In this section we give one direction of the generalizations of 

the maximum vertex-balanced flow problem (V BP). Zimmermann [9J generalized 

the maximum balanced flow problem (BP) for network N' = (G = (V,A),o:,,8,I,t), 

where G = (V, A) is a directed graph, 0: : A --t R+ - {O} is a balancing rate function, 

Co : A --t R+ and CO : A --t R+ are two capacity functions, ,8 : A --t R is a function, 

I is the source and t is the sink of G. The constraints in Minoux's formulation are 

(2.1) '" (2.3), while those of Zimmermann's are (2.1), together with 

(5.1) coCa) ~ f(a) ~ cOCa) ( a EA), 

(5.2) f(a) ~ o:(a)f(a*) + ,8(a) (a EA), 

where constraint (5.2) means that each arc-flow f(a) ( a EA) of network N' is 

bounded by a fixed proportion 0:( a) of the total flow f( a*) from source I to sink 

t plus a fixed constant ,8(a). Zimmermann conjectured that the maximum integral 

balanced flow problem (IBP) is NP-hard. On the other hand, we generalize problem 

(VBP) for network Nil = (G = (V, A),')', 1],I,t), where,), : V - {I} --t R+ - {O} 

is a vertex-balancing rate function and 1] : V - {I} --t R. The constraints in our 

formulation are (2.1), (5.1) and 

(5.3) max{f(a): a E 8-(v)} ~ ')'(v)f(8-(v» + 1](v) (v E V - {I} ). 

By modifying Conltruction-Ill slightly and employing Cui's algorithm for problem 

(IBP) with a constant balancing rate function, we can also have an approximate 

maximum integral vertex-balanced flow of network Nil in polynomial-time. 
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