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Abstract Minoux considered the mazimum balanced flow problem of a two-terminal network, which is
the problem of finding a maximum flow f in the network such that each arc-flow f(a) (a € A) is bounded
by a fixed proportion of the total flow value from the source to the sink, where A is the arc set of the
network. He also proposed an algorithm for finding a maximum integral balanced flow, i.e., a maxiraum
balanced flow satisfying that the value of each arc-flow of the network is integral. Integral balanced flows
defined by Minoux can be regarded as one way to balance flows in the network. In this paper, we propose
another way to balance flows in a two-terminal network N. To be exact, we consider the mazimum vertez-
balanced flow problem in network N, i.e., the problem of finding a maximum flow f’ in N such that for cach
vertex v € V any arc-flow f'(a) (¢ € 6~ (v)) entering v is bounded by a fixed proportion of the total flow
22{f'(a) : @ € 6= (v)} entering v, where V is the vertex set of N and 67 (v) is the set of the arcs entering
v. We intended to propose an algorithm for finding a maximum integral vertex-balanced flow in network N,
but we found that the maximum integral vertex-balanced flow problem (IV BP) is difficult.

Our main purpose in this paper is to prove that problem ({VBP) is NP-complete and to propose a
polynomial-time approximation algorithm for (IVBP).

1. Introduction

Minoux [5] considered the mazimum balanced flow problem (B P), i.e., the prob-
lem of finding a maximum flow in a two-terminal network with an additional con-
straint described in terms of a balancing rate function o : A — R — {0}, where
A is the arc set of the network and R, is the set of nonnegative reals. To put it
another way, problem (BP) in the network is the problem of finding a maximum
flow f in the network such that each arc-flow f(a) (¢ € A) is bounded by a fixed
proportion afa) of the total flow value from the source to the sink of the network.
This problem ( BP) is motivated by Minoux’s research of reliability analysis of com-
munication networks. For example, consider a telephone network with its source
and sink corresponding to two cities A and B, respectively. When a telephone line
joining two adjacent spots breaks down, telephone routes through the broken line
from A to B are blocked. But if the telephone routing considered as a flow from the
source to the sink is balanced, then the number of the blocked routes is at most the
fixed proportion of the total number of current routes from A to B. Statistics in
[5] shows that few telephone lines break at the same time. If a flow from source s
to sink ¢ is balanced, then it is guaranteed that the value of the blocked arc-flow is

at most the fixed proportion of the total flow value from s to t. Several algorithms
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[1,5,6,7,9] are proposed for the maximum balanced flow problem.

Minoux [5] also considered the problem of finding a maximum integral balanced
flow of the network, i.e., that of finding a maximum balanced flow f satisfying that
each arc-flow of f is integral, and proposed an algorithm for this problem. By
the way, Zimmermann [9] generalized Minoux’s formulation of problem (BP) and
conjectured the maximum integral balanced flow problem is NP-hard. If a balancing
rate function « is constant, Cui’s O(min{m, |1/7|}T(n,m)) algorithm is known,
where m =| 4 |, a(a) = » for any arc a € A, |0] is the minimum integer greater
than or equal to € R, and T(n,m) is the time for the maximum flow computation
for a network with n vertices and m arcs.

In the present paper we propose another way to balance flows in a network.
More precisely, we consider the mazimum vertez-balanced flow problem of a two-
terminal network N i.e., a maximum flow problem with an additional constraint
described in terms of a vertez-balancing rate function vy : V —{s} — R, — {0} where
V is the vertex set and s is the source of N. The difference between a maximum
balanced flow f and a maximum vertex-balanced flow g is as follows : each arc-flow
of f is bounded by a fixed proportion of the total flow value from the source to the
sink of the underlying graph G = (V, A), while that of g entering each vertex v € V
is bounded by a fixed proportion of the total flow entering v.

Especially, we consider the maximum integral vertex-balanced flow problem
(IVBP) of finding the maximum vertex-balanced flow g of network N such that
each arc-flow of g is integral. Let n; ; be the number of telephone lines between
two adjacent spots i and j in a telephone network. The integrality condition Ci,; of
integral vertex-balaned flows of N would be justified from such a situation that n; ;
corresponds to arc-flow g((%, j)) in the network. ( In the case when n; ; is very large
it would be sufficient that we have a vertex-balanced flow without the condition
Cint of problem (V BP). We will discuss this case in future researches.) At first, we
intended to give an algorithm for problem (IV BP), but we found that (IVBP) is
difficult. The main purpose of this paper is to prove that problem (IVBP) is NP-
complete and to propose a polynomial-time approximation algorithm for (IV BP).
The NP-completeness of problem (I'V BP) means that (IVBP) is in class NP and
that every problem in NP is reducible to (IV BP) in polynomial-time, where NP
is the class of problems that can be solved by nondeterministic Turing machine in

polynomial-time.

2. The Maximum Vertex-Balanced Flow Problem

In this section we give the motivation of considering the maximum vertex-

balanced flow problem, compared to the maximum balanced flow problem by Mi-
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noux. First we describe the maximum balanced flow problem in the following sub-

section.

2.1. The Maximum Balanced Flow Problem

Let G = (V, 4) be a directed graph with vertex set V and arc set A, where
V(@) (A(G)) will also be used as the vertex ( arc ) set of G. Given a directed
graph G = (V, A), a capacity function ¢ : A — Z, and a balancing rate function
a: A — Ry — {0}, consider a two-terminal network N' = (G = (V, 4),¢, e, 8,t)
where s is the source and { is the sink of G. Given two-terminal network N', the

mazimum balanced flow problem (BP) by Minoux is formulated as follows.

(BP): Maximize f(a*)
subject to

(1) D-f=0,

(22)  0<fl@)<cla) (a€4),

(2.3)  f(a) <ala)f(a*) (a€4),

where arc a* = (t,2) ¢ A is added to the underlying graph G and D is the vertez-
arc incidence matriz of G. If a function f : A* — R, satisfies (2.1) and (2.2),
then f is called a feasible flow in network N', where A* = AU {a*}. If a feasible
flow f satisfies (2.3), then f is called balanced. The value of a feasible balanced
flow f is defined as value f(a*). Problem (BP) is the problem of finding a feasible
balanced flow of maximum value, called a maximum balanced flow. The mazimum
integral balanced flow is a maximum balanced flow f with the property that each
arc-flow f(a) (a € A) is integral. In section 4 we will employ Cui’s algorithm when
we describe an approximation algorithm for the maximum integral vertex-balanced

flow problem.

2.2. The Maximum Vertex-Balanced Flow Problem

A maximum balanced flow f in the previous subsection has the property that
the value of each arc-flow of f in network N’ is bounded by a fixed proportion of the
total flow value from the source to the sink of N'. On the other hand, we give an
another formulation of ”"balanced flows” in a network from slightly different point
of view. We consider a feasible flow g such that for each vertex v € V any arc-flow
g(a) (a € §7(v)) entering vertex v, is bounded by a fixed proportion of the total flow
entering v. We call g @ vertez-balanced flow. Now we show a precise formulation of
the maximum vertex-balanced flow problem.

Let G = (V| A) be a directed graph. The number of the arcs coming in (going out
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of) a vertex v € V is called in-degree (out-degree) of v. Given a two-terminal network
N = (G = (V,A),c,v,s,t) the mazimum vertez-balanced flow problem (VBP) is

formulated as follows:

(VBP): Maximize g(a*)
subject to constraints (2.1), (2.2) and

(24)  max{g(a):a €67 (1)} < 1096 (v) (veEV —{s}),

where f should be replaced by g in (2.1) and (2.2), and v: V — {s} - R, — {0} is
a vertez-balancing rate function. §7(v) (6§ (v)) is the set of the arcs with v as their
initial (terminal) vertices in G, respectively and g(67(v)) = 3_{g(a) : a € § (v)}.
If a function g : A* — R, satisfies (2.1), (2.2) and (2.4), then g is called a feasible
vertez-balanced flow in network N. The value of a feasible vertex-balanced flow g is
defined as value g(a*). The maximum vertex-balanced flow problem is the problem
of finding a feasible vertex-balanced flow of maximum value.

In subsequent sections, we consider the mazimum integral vertez-balanced flow
problem (IV BP), i.e., the problem of finding a maximum vertex-balanced flow g
satisfying that the value g(a) of each arc a € A4 is integral. The example of the tele-
phone routing problem in the previous section would need this integrality condition.
The following proposition states the relation between in-degree of each vertex in N

and a feasible vertex-balanced flow in N.

Proposition 1. Let g be a feasible vertex-balanced flow in the network N.
For each vertex v € V — {s}, we have the following (2.5) and (2.6).

(2.5) M y(v) <1/| 8 (v)|, then we have g(a) =0 (a € § (v)).

(2.6) If y(v)=1/]8 (v)|, then we have g(a) = g(67 (v))7(v) (a € 6~ (v)).
Proof: Let g be a feasible vertex-balanced flow in N. From (2.3), for each

vertex v € V — {2} we have

(2.7 9(a) <y(v)g(67(v)) (a€b7(v)).

Adding each inequality in (2.7), we have

(2.8)  Y{g(a):a €67 (v)} < v(v)9(67(v)) [ 67 (v) |.

If g(67(v)) > 0 and 4(v) < 1/ | 6 (v) |, then from (2.8) we have a contradiction.
Hence we have (2.5). Assume g(6 (v)) > 0 and ¥(v) =1/ | 6~ (v) |. From (2.8), we

have equlity case for the inequality of any arc a € § (v) in (2.7). Hence we have
(2.6). m

In the following section, we will prove that the maximum integral vertex-

balanced flow problem is in a class of difficult problems where we assume y(v) >
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/16| (veV—A{s}).

3. NP-Completeness of the Maximum Integral Vertex-Balanced Flow

Problem

In this section we prove that a maximum vertex-balanced flow problem is NP-.
complete. The definition of NP-complete is described with additional preliminaries

in the following subsection.

3.1. Additional Preliminaries

Given a two-terminal network N = (G = (V, 4),c, v, ,t), Consider the follow-
ing yes-no question (BQ):

(3.1) (BQ): Instance: J € Z, — {0} and network N.
Question : Is there a feasible integral vertex-balanced
flow g in N such that g(a*) < J ?

where Z is the set of nonnegative integers. Let N P be the class of yes-no questions
that can be solved by nondeternimistic Turing machine in polynomial-time. We say
that a yes-no question L' is polynomial-time reducible to a yes-no question L if we
have a polynomial-time bounded Turing machine that for each input 2 produces an
output y thatisin L if 2 isin L'. A yes-no question L is called NP-complete if L is
in class NP and each yes-no question in N P is polynomial-time reducible to L. In

subsequent sections we will prove that the question (BQ) in (3.1) is NP-complete.

3.2. The Problem of Integral Network Flows with Multipliers

We introduce one of NP-complete problems, called the problem of integral net-
work flows with multipliers. Given a directed graph G’ = (V’, 4'), a capacity func-
tion c: A — Zy — {0} and a multiplier functien h : V — {s,t} — Z, — {0}, consider
a two-terminal network N}, = (G' = (V', 4"),¢, h,s,t), where §~(s) = 6¥(t) = 4.
The problem (M P) of integral network flows with multipliers is defined as follows:

(M P): Maximize g'(6~(t))

subject to
(3.2) 0<g(a)<c(a) (a€d)

(33)  h(v)d () =4'(6"(»)) (veV'—{st}),

where ¢’(B) = Y {¢'(a) : a € B} for B C A'. If a function ¢’ : A' - R satisfies
(3.2) and (3.3), then g' is called a feasible multiplier flow in the network N,. If each
arc-flow g'(a) (a € A') of a feasible multiplier flow ¢’ is integral, then g’ is called
integral. The value of a feasible multiplier flow g’ is defined as value g'(67(t)).
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The problem of integral network flows with multipliers is that of finding a feasible
integral multiplier flow of maximum value, called a mazimum integral multiplier

flow. Consider the following yes-no question (M Q):
(3.4) (MQ): Instance : J € Z* — {0} and network N;.

Question : Is there a feasible integral multiplier flow
g' in N} such that g'(67(¢)) > J ?
By the way, the question (M Q) is known as one of NP-complete problems:
Theorem 2. [3,8] Question (MQ) in (3.4) is NP-complete. B
Consider the following question (MQ)', a special case of (MQ) :
(3.5) (MQ)': Question (MQ) with function k' satisfying
max{h'(v) : v € V' — {s,t}} < max{|logc(a)] : a € A'},

where functin k in (M Q) should be replaced by A’ and |6] is the minimum integer
greater than or equal to 8 € R,. To show that the question (BQ) is NP-complete,
we will first prove that the question (M Q) in place of (M Q) is NP-complete and
then that (M @)’ is polynomial-time reducible to (BQ) in the following sections.

3.3. NP-Completeness of a Subproblem in Problem of Integral Network
Flows with Multipliers
We transform SUBSET SUM(SS) to (MQ)', where SUB- SET SUM is a yes-no

question defined as follows:
(3.6) (SS): Instance: J €Z, — {0}, s(e)eZy —{0} (e€S).
Question : Is there a subset S’ C S such that Y {s(e):e € S5’} =77

where S is a finite set. For the question (SS) we have:

Theorem 3. [3] Question (S9) is NP-complete. B
Given positive integers s(i) (1 < i < »), let
(37) s = S{6,P 10 < < logs(i)], b(i,3) € (0,1},
(38)  6(s(i)) = (i+1:0<j < [log (i)}, bir7) = 1},
where » =| S | and § = {i:1 < i < r}. Note that b(i, j) is the coefficient of binary
expansion of 8(i). Simply we put 0(s(i)) = {6; ; € Z+ — {0}:60; ; <6; ;41,1 <j <
n;}, where n; =| 0(s(i)) |. Let P(k) = (a1,a3,...,ax) be ( an elementary directed )
path of length k, where the terminal vertex of arc a; is equal to the initial vertex of

arc a;41 for each i (1 < ¢ < k — 1) and the length is the number of the arcs. Now

do the following construction:
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Construction-I:

Given positive integers J and s(¢) (1 < ¢ < r), make a network
N =(G" =(V",A4"),c" ", s,t) as follows:
Step 1: Construct the graph G” = (V’, 4’) as in Fig. 1.1, i.e.,
V' ={s,w,t} U{U{V(H:) : 1< i<},
A" = {(s,87), (57, w) : 1 < i < U{(w, )} U A,
where A, = J{A(H;) :1 < i< 7} and V(H;) (A(H;)) is the vertex (arc) set
of graph H; in Fig. 1.2. Each H; (1 < ¢ < r) is defined as follows.
V(H;) = U{V(P ;) :1 <35 <m},
A(H;) = H{A(P; ;) : 1 <5 <mi}y
where P; ; = P(0; ;) and V(P; ;) (A(P, ;)) is the vertex (arc) set of the path
of length 8; ; in Fig. 1.3. P; ; is defined as follows.
V(P ;) =A{vi j(m):0<m <6; ;},
A(P; ;) ={(vi j(m—1),0; j(m)) : 1 <m < 6; 5},
where v; ;(0) = s} and v; ;(8; ;) = 5.
Step 2: Define the capacity function ¢" as
(o)) =1, ()=o) (<i<n), ()=,
For arcs of each path P; ; (1<i <7, 1< j<ny), define
((vi j(m—1),v; ;(m)) =2 (1< m <O ;).

graph G; = (V", 4") :

Fig. 1.1
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Step 3: Define multiplier function k" as
W) =ns, K()=1 (L<i<e), W(w)=1,
For vertices of each path P, ; (1 <i <7, 1<j<n;),define
R (v j(m))=2 (0<m<6;;-1).

graph H; : Fia
Py ;
i i

Pi ny

Fig. 1.2

path P; ; = P{6; i)
v i(0)=of v j(m) % (6 ;) = of
Fig. 1.3

We easily have the following proposition, which shows that we may assume

(o) 23,1<i<r)#4.

Proposition 4. If s(:) < 2 for each ¢ (1 < 7 < 7), then we can find a
polynomial-time algorithm for the problem (SS). W

From Proposition 4 we have:
Proposition 5. (SS5) is polynomial-time reducible to (MQ)'.

Proof: Assume {7 : 3(i) > 3,1 < i < r} # ¢. Given positive integers J and
s(i) (1 < i < r), we see that it takes O(ryn’) to construct network N}, where
n = max{(log s(¢)] : 1 <14 < »}. For the function A" we have

(3.9) max{h'(v):v € V" ~{s,t}} < max{n,2} < max{|logc”(a)] : a € A"}.

From Construction-I and (3.9), we can use N;', as an instance of (M Q)’. If there is
a subset S’ C S such that ) _{s(z) : i € S’} = J, then define a function g satisfying
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the following (3.10) ~ (3.12):

(3.10)  g((w,t)) = "((w, 1)),
(3.11) Foreachic &,

9((s,57)) = ¢"((5,7)), 9((s7,w)) = ¢"((s7 ,w)),

g9(a) =c"(a) (a€ A(H:)).
(312) Foreachic §—5, gl(s,s}) =g((s7,0)) =0, g(a)=0 (ac A(H:))
Then it is easy to see that g is a feasible integral multiplier flow in N, ,’:,, such that
g9(67(t)) = J. Assume that we have a feasible integral multiplier flow g’ in N},
satisfying g'(67(t)) > J. Then we have ¢g'(§7(t)) = J. Let 8" = {i: g'((s,8])) =
1, 1 < i< r}, and we have (3.10) ~ (3.12) for g’ and S” where g and S’ should be
replaced by g’ and $”. From (3.10) ~ (3.12) and A"(w) = 1, we have > _{s(i) : i €
5"=J. n

Now we have the following theorem needed in later discussion:
Theorem 6. The question (MQ)' in (12) is NP-complete. W

Proof: It is easy to see that (MQ)' € NP. From Theorem 3 and Proposition §
we see that (M Q)' is NP-complete.

In the following section, we present how to reduce (M Q)' to (BQ).

3.4, Reduction of the Subproblem to the Maximum Integral Vertex-
Balanced Flow problem

Given a network N}, = (G' = (V', 4'),¢, k', 3,1,) of (MQ)', we construct a new
network Ny = (H = (X,E),c°9,s",t") with source s" and sink t" (s",t" € X)
from N}, by the following construction, where we have §~(s) = §7(t) = ¢ for the

graph G'. Moreover we may assume that G’ has no arcs joining s and ¢.

Construction-II:

Step 1 (Definition of the vertex set X of H) : Taking triple

vertices v1,v; and vs for each v € V' — {s,t}, define
X128 = X1 U X U X5 U{s",t"},
where X; = {v; ;v e V' - {5,¢}} (1 <i<3).
Step 2 (Definition of the arc set E of H) :
(2.1): Define five sets By, Bz ; (i = 1,2), B, and E, by
Ey = {(v3, w1) € X123 x X133 : (v,w) € 4 ,v,w ¢ {s,t}},

By = {(vi,vit1) € X123 x X123 : v € V' — {s,t}},
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E, ={(s",u1) € {8"} x X135 : (s,u) € A", u € V'},
By = {(us,t") € X123 x {t"} : (v,t) € A ;u e V'}.
(2.2): Make the multiple arc set E(v) defined by

E(v) = {(s",v2)i : 1 <i<h'(v)-1},

where v € W = {w € V' — {s,t} : h'(w) > 1}. Let
E=FE UE, UE; ;UE, UFE U Bw,

where By = |J{E(v): v e W}.

Step 3: Define a vertex-balancing rate function v: X — {8} - R,
and a capacity function ¢°: E — R as follows.
v(v2) = 1/h'(v) (v € Xa),
(w)=1 (weX1UXzU{t"}),
((vs,w1)) = c(v,w)  ((vs,w1) € By ),
((v1,v2)) = (67 () ((v1,22) € Bz 1),
*((v2,3)) = (67 (v)) ((va,v3) € Ez 2),
((s",v1)) =c((s,2))  ((¢",w1) € E,),
*((us,t")) = c((w,t))  ((us,t") € Ey),
For each v € W, c®(e) = ¢(67 (v)) (e € E(v)).

Then we have:

Proposition 7. We have a feasible integral vertex-balanced flow f : E — R
in the network N, N, satisfying f(6§~(t") > J if and only if we have a feasible integral
multiplier flow g : A’ — R satisfying g(67(t)) > J in the network N;,.

Proof: Let g : A’ — R, be a feasible integral multiplier flow satisfying
g(6~(#)) > J in N;,. Then we define a function f : E — R, by using g as fol-
lows:

(3.13)  f((os,w1) = 9((20)) (35, 01) € ),

(3.14)  f((v1,v3)) = 9(§7(v)) ((v1,%3) € Ez 1),

(315)  F((vs,20)) = 9(6* (@) ((v3,05) € Er 2),

(3.16)  £((s"w1) = g((s,w)) ((s",m1) € E.),

(317)  f((us, ") = g((,1) ((us,t") € E),

(3.18) For each E(v) (v € W), f(e) =g(6” (v)) (e € E(v)).

From (3.13) ~ (3.18) and the property of the flow g, we have a feasible integral vertex-
balanced flow f satisfying f(67(¢")) > J. Let f : E — R, be a feasible integral
vertex-balanced flow satisfying f(67(¢")) > J in N N, Then define a function
g: A > R, by using f as follows:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Balanced Flow and its Complexity 23

(319) g((vaw)) = f((v3vw1)) ((vaw) € A,i v :I'é 8, w # t)a
(3‘20) g((’:“)) = f((’”’ul)) ((3"”') € AI)’
(321)  g((u,t)) = f((us,t")) ((w,t) € 4').

From (3.19) ~ (8.21), Proposition 1 and the property of the flow £, it is easy to see
that g is a feasible integral multiplier flow satisfying g(6~(¢)) > J. Note that the
fanction h' of (M Q) is bounded by a polynomial function of the size of input data
and thus it takes O(] V' | max{|logc(a)| : a € A'}+ | A' |) time to construct Ny B

We give our main theorem:

Theorem 8. Question (BQ) is NP-complete.
Proof: We reduce the question (M@Q)' to (BQ). It is easy to see (BQ) € NP.

From Proposition 7 and Construction-II, we see that (MQ)' is polynomial-time
reducible to (BQ). From Theorem 6, we conclude that (BQ) is NP-complete. H

Here, we give an example showing the relation between a feasible integral vertex-
balanced flow with requirement in N N, and a feasible integral multiplier flow with

requirement in Nj,.

Example. Consider network N}, = (G’ = (V’, A’),c,h’,s,t) in Fig.2 and J =
15 as an instance of (MQ)', where G’ with source s and sink ¢ has V' = {s,4,v,t}
and A' = {(s,u),(s,v),(%,v), (v,v),(%,t),(v,t)}. The ordered pair (c(a),g(a)) is
attached to each arc a € A’, where g(a) (a € A') is the value of arc-flow of a
feasible integral multiplier flow g satisfying g(57(t)) > 15. After Construction-II,
we have the network NN;" =(H = (X, E),c°,s",t") in Fig.3, where the ordered
pair attached to each arc a € E is (c°(a), f(a)) and f(a) is the value of arc-flow of a
feasible integral vertex-balanced flow f satisfying f(6~(t)) > 15, which is obtained
from g.

v K() =3

(15,12)
v h'(v) =4

Fig.2
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(5,2)

A RN

(5,:2)

(3,2) ¢

(15,12)

(3,3)
u 39 (17,12)
5.3) 2(0) = 1 1) = 14
(3,3) ) e
Fig.3

4. Approximation Algorithm for the Maximmum Integral
Vertex-Balanced Flow Problem

In the previous section we showed the maximum integral vertex-balanced flow
problem (IV BP) is NP-complete. Here, we propose an approximation algorithm for
problem (IVBP). Let f be an integral vertex-balanced flow in network N = (G =
(V, A),¢,7,8,t). Then we put the following assumption:

(4.1) max{f(a) :a € 4} < f(a*),

where a* = (t,5) ¢ A. The assumption (4.1) means that any arc-flow of network N
is less than or equal to the total net flow f(a*) from the source s to the sink ¢ of
N. We can have (4.1) since any arc-flow on cycles in the underlying graph G does
not affect the total flow from s to ¢, though it may affect constraint (2.4). Moreover
we omit constraint (2.4) to employ an algorithm for the maximum balanced flow
problem (BP). For network N, define function o/ : 4 — R — {0} by

(4.2) ForeachveV —{s}, a'(a)=7(v) (a€s (v)),
(4.3) For each (u,8) € 4 o'((u,8)) =1,

where s is the source of N. If we apply Minoux’s algorithm of the maximum integral
balanced flow problem (IBP) for network Ny = (G = (V, A),¢,a’,s,t) with con-
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stant balancing rate function o', then we have an approximate maximum integarl
vertex-balanced flow of network N. We also give another approximate approach of
problem (IV BP) for network N. We use Cui’s algorithm for problem (I BP) with
a constant balancing rate function. First we relax balancing rate function o' as

follows:
Proposition 9. We have positive integers (d, : a € A) such that
(44) do/n < d(a) < (do+1)/n,
where n =| V' |.
Proof: We assumed y(v) > 1/| 6§ (v) | for each v € V — {s} in Section 2. From
1/n<1/]|6(v)| (v €V —{s} ), we have this proposition. B

Then do the following Construction-III, where A’ = {a € A : &’(a) # 1}.

Construction-III
Input: (G =(V,A), (da +1)/n:a € A), o’,c)
Output: (G* =(V*, 4%),a"*,¢")

Step 1: ( Definition of G* ) For each a € A’, replace a by arc (8%(a),2,) and
multiple-arc set A, = {(24,07(a)); : 1 <i < d, + 1}, where 81 (a) (87 (a))
is the initial ( terminal ) vertex of arc a and 2, € V is a new vertex. Define

V*=VU{e,:a€ 4'},
A* ={(0%(a)y2.) :a€ A'}U{a:ac A - AYU(U{4. :a € 4'}).

Step 2: Define a balancing rate function o* by
a*(a)=1/n (a€U{4.:a€A'}),
a*(a)=1 (a€{(0T(a),2s):a€AYU{a:acA-AY}).

Step 3: Define a capacity function ¢* by

c*((0%(a),22)) =ca) ((8%(a),2s) € {(87(a),20) 10 € A'}),
c*(a)=cla) (a€f{a:ac A-4"}),
Foreacha € A', c*(e) =c(a) (e€ A,).

Consider two networks N and N* = (G* = (V*, A*),c*,a*, 5,t). Then we have the

following proposition :

Proposition 10. Let vy ( vn- ) be the value of a maximum integral vertex-
balanced ( balanced ) flow in network N ( N* ), respectively. Then we can find the

value vy« such that vy < vy« in polynomial time.

Proof: From Construction-III, we have:
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(45) |V*|<|VI+]4],
(46) |4 |<| V] 4],
where G = (V, A) (resp. G* = (V*,A*) ) is the underlying graph of network N

(resp. N* ). By using Cui’s algorithm for the maximum integral balanced flow
problem with a constant balancing rate function, it takes O(nT(n + m,nm)) time
to obtain the value vy. where n =| V |, m =| A | and T(n,m) is the time for the
maximum flow computation for a network with n vertices and m arcs. It is easy to

see that we have vy < vy.. B

5. Conclusion and Future Research

In this paper we showed that the maximum integral vertex-balanced flow prob-
lem (IV BP) is NP-complete, and proposed an polynomial approximation algorithm
for problem (IV BP). In this section we give one direction of the generalizations of
the maximum vertex-balanced flow problem (V' BP). Zimmermann [9] generalized
the maximum balanced flow problem ( BP) for network N' = (G = (V, A),a, B, s,1),
where G = (V, A) is a directed graph, a : A — R —{0} is a balancing rate function,
¢co:A— Ry and ¢®: A — R, are two capacity functions, 8 : A — R is a function,
8 is the source and t is the sink of G. The constraints in Minoux’s formulation are
(2.1) ~ (2.3), while those of Zimmermann’s are (2.1), together with

(5.1) clo) < f@)<e(a) (acA),
(5.2) fla) < oa)f(a*) +B(a) (a€d),

where constraint (5.2) means that each arc-flow f(a) (a € A ) of network N’ is
bounded by a fixed proportion a(a) of the total flow f(a*) from source s to sink
t plus a fixed constant 5(a). Zimmermann conjectured that the maximum integral
balanced flow problem (IBP) is NP-hard. On the other hand, we generalize problem
(VBP) for network N' = (G = (V, A),v,7,,t), where v : V — {s} —» R, — {0}
is a vertex-balancing rate function and % : V — {s} — R. The constraints in our
formulation are (2.1), (5.1) and

(5.8) max{f(a):a €67 (v)} <HV)f(67(v)) +n(v) (veEV —{s}).
By modifying Construction-III slightly and employing Cui’s algorithm for problem
(IBP) with a constant balancing rate function, we can also have an approximate
maximum integral vertex-balanced flow of network N'' in polynomial-time.
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