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Abstract This paper investigates an m-product inventory system (m 2: 3) with a capacity constraint 
where products can have individual order intervals and orders be phased to reduce the maximum stock level 
of all the products on hand. The objective is then to find the optimal order quantity of each product by 
considering staggering time and order interval which minimizes the system cost per unit time. The problem is 
described in a non-linear integer programming problem which shows a very complicated nature to derive the 
solution analytically. Therefore, a heuristic algorithm is proposed and tested for its efficiency with various 
numerical examples as being superior to either the Lagrangian multiplier method or the fixed cycle method. 

1. Introduction 
This paper considers a multi-product inventory ordering problem of minimizing the av­

erage inventory cost subject to a capacity constraint. The Lagrangian multiplier method [3, 
7] and fixed cycle method [2, 6, 8, 10] have been llsed for solving such a problem. However, 
the Lagrangian multiplier method implicitly assumes that all products will be ordered simul­
taneously, or at least within an arbitrarily small time interval. Thus, the warehouse space 
utilization is about 50% and it usually results in higher average cost per unit time. Although 
the fixed cycle method allows the phasing of orders for the different products, it assumes 
that all products have the same order interval. In some cases, this restriction may lead to 
a higher average cost per unit time than that of the Lagrangian multiplier method. Hartley 
and Thomas [4, 9] and Chen et al. [1] propose an alternative approach in which different 
products may have different order intervals and these orders may be phased in certain cases 
to avoid having the maximum stock levels of different products on hand at the same time 
(see, for example, Figure 2). For the two - product problem we may assume without loss of 
generality that one of the staggering times is zero and the maximum stock level over time can 
be expressed explicitly as a function of the order intervals and the nonzero staggering time 
[4, 9]. Moreover, we can minimize the maximum ,.tock level with respect to the staggering 
time and express it as a function of the order intervals. The average cost per unit time can 
then be minimized by using such an expression. 

However, for m-product problems, m :::: 3, it is difficult to derive a similar relation­
ship among the maximum stock level, order intervals and staggering times. The problem 
rather reveals so complex nature that it is hard to solve. Therefore, this paper proposes a 
heuristic algorithm which is tested with various numerical examples for its superiority to the 
Lagrangian multiplier method and the fixed cycle method. It is shown that the proposed 
algorithm gives better solutions than the latter two methods. 
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2. Mathematical Formulation 

Assumptions: 

1. Demand can be approximated by a constant average demand over time. 
2. Planning horizon is infinite. 
3. Shortage is not allowed. 
4. Delivery is instantaneously made. 
5. Overall stock level is periodic. 

Notation: 

Ci = the order cost of product i. (Assuming that the order cost is independent of the 
order quantity.) 

Vi = the volume of product i per unit. 
di = the demand of product i per unit time. 
hi = the holding cost of one unit of product i per unit time. 
qi = the order quantity of product i. 
tj = the order interval of product i. (qj = djtj.) 
Si = the staggering time of product i. 

M = the warehouse capacity. 

The total variable cost is the sum of order costs and holding costs. For given ci, Vi, di, hi, 
i = 1, ... ,rn, and M, we let Z be the total variable cost per unit time and Smax (t, s) be the 
maximum stock level. Then, the problem is mathematically stated as follows: 

m c. m 

minimize Z = L -.!. + 0 . .5 L hjdjtj, (1) 
i=l ti i=l 

subject to Smax(t, s) ::; M, Si 2: 0, ti > 0, i = 1,· .. ,rn, (2) 

where t = (t1,···, tm) and s = (SI,···, sm). The objective is to find (t, s) that minimizes Z 
and satisfies the constraint (2). 

3. Staggering the Initial Orders 
Let l xoJ denote the largest integer which is smaller than or equal to Xo. Then, given the 

order interval ti and the staggering times Si, 0 ::; Si < tj, i = 1,· .. ,rn, the stock volume of 
product i is 

t - Sj 
fi(t,) = Vjditi + VidjSj - vjdj(t - l--Jtj). 

ti 

t-III(Sj ~ time t 

Figure 1. Stock level of product i. 
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S2=V2d2tl /(v Idl+V2d2) 

1"< i >1< 

stock level 

f 

Figure 2. Stock level over time with t:?, = 2t1 [2]. 

If tt, i = 1,···, m, are rational numbers, then fi(t) is periodic with the period t; and 
L~l fi(t) is also periodic with the period T = min{t I t is an integral multiple of ti,l = 
1,···, rn}. 

Theorem 1. Let ti, i = 1,· .. ,rn, be the period of fi(t). Then 

rn. 

Smax(t,S) = maxn= Ji(t) 10::; t::; TJ 
;=1 

m 

= L Viditi - min{Sds1,···, Srn.) I k = 1,···, m}, where 
i=l 

Sk(Sl, ... ,srn.) = min {L Vidi(Sk + Ckktk - Si - ekiti) I eki E [0, ni - 1], ekk E [0, nk - 1], 
lkk,lk; i#k 

ni = Tit;, Cki , Ckk integer and SA + Ckktk - Si - Ckiti 2 0 for each i.}. 

Proof. It is clear that the maximum stock level will be attained immediately after one of 
the m products is ordered. Without loss of generality, we assume that the maximum stock 
level is attained at t = TJk when the product k is ordered. 
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Let rJk - Sk = !:.kktk where!:'kk = l(rJk - Sk)/tkJ is a nonnegative integer. 

m m 

'I:,!i(rJk) = L[Vjditj + V,diSi - Vjdj(rJk - l(rJk - Si)/t;jti)] 
i=1 j=1 

m 

= L Viditj - L Vjdi(rJk - Si - l(rJk - Si)/t;j ti) 
j=1 if.k 
m 

= L Viditj - L Vjdj(Sk + !:.kktk - Si - !:.kitj) 
i=1 i# 

(where fki = l(Sk + !:.kktk - Si)/tiJand £'ki E [O,ni -1] for each i.) 
m 

= L Viditi - min{L Vjdi(Sk + fkktk - Si - Ckiti) I €kj E [0, ni - 1], Cki integer, 
i=1 (hi) j# 

Sk + !:.kktk - Si - Ckiti 2: ° and ni = T /tj for each i.} 
m 

= L vjdjtj - Sd Sl,"', sm). 
i=1 

Hence, the proof is completed. o 

By Theorem 1, we can also formulate the problem (1) - (2) as a mixed-integer program­
ming problem as follows: 

m m 

minimize Z = L Cj + 0.5 L hjdjtj, 
i=1 tj i=1 

m 

subject to LViditi - L Vidj(Sk + Ckktk - Si - Ckiti) :S M, k = 1"", m, 
i=1 i# 

Sk + Ckktk - Si - Ckitj 2: 0, i = 1" .. ,m, k = 1"", m, i #- k, 
n T . 

O:S (,ki:S nj -l,ni = t:,t = 1"" ,m, 
Si 2: O,T > O,ti > O,Cki integer,i = 1"" ,m,k = 1"" ,m. 

(3) 

(4) 

(5) 

(6) 

(7) 

Although a branch and bound method [5] can be designed for solving (3) - (7), the complexity 
of constraints reveals that it may take a large amount of computational time to solve this 
problem even when m = 3, because for some problem instances a large number of Cki'S 
must be enumerated. Therefore, some approaches have been proposed for solutions in the 
subspaces of (4) - (7). For example, the Lagrangian multiplier method searches for the 
optimal solution in the subspace of (4) - (7) with SI = S2 = ... = Sm = ° and the fixed 
cycle method searches for the optimal solution in the subspace with tl = t2 = ... = tm. In 
this paper, however, we propose an algorithm which searches for a solution of (3) - (7) such 
that Si and ti, i = 1", . ,m satisfy some specific relationships. 

For m = 2, we may assume without loss or generality that SI = 0. By Theorem 1, 

It has been shown [4] that for given tl and t2, the optimal solution of (8) satisfies the following 
condition 

(9) 
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and the maximum stock level is 

(l0) 

In this case, the optimal solution of (1) - (2) can then be solved by using (9) - (10) [9]. 

For rn 2: 3, it is difficult to derive a similar relationship among the optimal staggering 
times Si and the order intervals tj, i = 1,···, rn, as that in (9). Therefore, we propose a 
heuristic approach for scheduling the initial orders We denote that 

Tjj = Tji = nijti = njitj = min{t I t is an integral multiple of tj and tj.}, 

where nij and nji are co-prime, i.e. gcd(nij, nJd =::: 1. For given k and (1';)i¥b Li¥k 1'j = 1, 
we consider product i and 1'j proportion of product k as a two-product problem and let the 
staggering times be of the form as that in (9). Therefore, if we let 

(ll ) 

and Sk = 0, then by (9) - (10) the maximum stock level is not greater than 

(12) 

When rn = 2, (L1) is reduced to (9) and (1:2) is reduced to (10) with k = 1, SI = 
0,1'1 = 0, n12 = nl and n21 = n2. Moreover, in Figure 3 and Figure 4, we consider 
a three-product problem. For fixed r, if we let the staggering times be SI = 0, S2 = 
(TI2/nI2n21)[v2d2/(1'vldl + V2d2)] and 83 = (T13/'lI3n3d[v3d3/((1 - 1')vl dl + V3d3)], then 
the stock volume of product 2 with 1'100% proportion of product 1 is not greater than 

and the stock volume of product 3 with (1 - 1') 100% proportion of product 1 is not greater 
than 
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~2~12 ~ 

£12 = 0 £12 = 1 £12 = 2 £12 = 3 £12 = 4 

• product 2 
~ 11 ~ 

I I • 
£11 = 0 £11 = 1 £11 = 2 £11 = 3 product 1 

I • 

£13 = 0 £13 = 1 £13 = 2 £13 = 3 £13 = 4 £13 = 5 £13 = 6 
product 3 

Figure 3. Staggering times and order intervals of three products. 

Tl2 V2d2 
/ nt2 n21 (rvldl +V2d2) 

S2 
I~ >1< 12 ~ 

_ T12 rvldlV2d2 
n12 n21 (rvldI +V2d2) 

(l-r)v Id It 1 +v 3d 3t3 

_ Tl3 (t-r )vldIV3d3 
n13 n31 (( l-r )vI dl +V3d3) 

time I 

Figure 4. Stock level of three-product inventory over time. 

For each k,l :::; k :::; rn, we consider a simplified problem which is obtained from (1) -
(2) by replacing (2) with an approximation of capacity constraint by using (12). 

m c' m 
mmlffilze L...!. + 0.5 L h;d;t;, 

;=1 ti i=1 
( 13) 
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(14) 

Tij = Tji = nijti = njjtj = min{t I t is an integral multiple of ti and tj.}, (15) 

L rj = 1, ri 2: 0, ti > 0, nik > 0, nki > 0, nib nki integer. (16) 
if,k 

For each k, we will solve (13) - (16) for an approx;lmate solution of (1) - (2). We then select 
the best one of these m solutions. In the following sections, a procedure is proposed for 
solving (13) - (16). 

4. A Heuristic Method 
For given k, (13) - (16) can be formulated as follows: 

. . . ~ nik 1 ~ nki 
mmlmlze W = (Ck + L -Ci)- + 0.5(hkdk + L -hidi)tb 

ii-k nki tk ii-k nik 
( 17) 

. nki 1 rjvkdkVidj 
subject to (Vkdk + L -Vidi - L - d d )tk :s M, 

ii-k nik ii-k nik 1'iVk k + Vi i 
( 18) 

L ri = 1, rj 2: 0, tk > 0, nik > 0, nki > 0, nik, nkj integer, (19) 
if,k 

where (17) and (18) are derived from (13) and (14) respectively. For given (nik)if,k = 
(!bk)ii-b we can further convert this mixed-integer programming problem into a simplified 
problem by minimizing the objective function W with respect to tk. Note that W is a convex 
function of tk. For i =I k, let ai = nki!?1.ik' The solution of 8W/8tk = 0 is 

Substituting tk by l.k in (17), we have 

W = <1>( a!, ... , ak-ll ak+!, ... , am) = f;'( Ck + L Ci )( hkdk + L aihjdi). 
. ~ . ~kaj ~k 

Consider the problem 

(20) 

and let (at)if,k be an optimal solution of (20). Because W is a convex function of (nki)i#, 

the optimal solution (nk;)if,k associated with (ai),i'k would be nki == l?1.ikaiJ or l?1.ikaiJ + 1 
for each i =I k. For given (nki)if,k where nki = LlLikaiJ or L?1.ikaiJ + 1, we then search for 
an optimal solution (rt)i# which minimizes the left-hand side of (18) with tk = l.k and 
(nik)if,k = (!bk)ii-k' 

Thus, if 

(21 ) 

then 
min{<1> I nki = lllikaiJ, lllikaiJ + 1, i = 1, .. ·, m, i =I k, 
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( d '" nki d '" 1 rivkdkvidi) M} 
Vk k + L...J -Vi i - L...J *. ik S 

i# llik i# llik ri Vkdk + Vidj 

yields an optimal solution for (17) - (19) with tk = ik and (nidi# = (llik)i#. Otherwise, 
by the property of complementary slackness, the capacity constraint (18) is tight. If the 
capacity constraint is tight, we let I.k = M/~ where 

Substituting tk by t'k in (17), we have 

Then, (17) - (19) can be written as follows: 

minimize Il!( aI, ... ,ak-1, ak+1, ... ,am, rI, ... ,rk-1, rk+1, ... ,rm ), (22) 

subject to L ri = 1, ri ~ 0, aj ~ 0, for all i. (23) 
i# 

Similarly, we solve (22) - (23) for a solution (ai,rn#. 
Hence, for given (llik)i# and (ai)i#' if the capacity constraint (21) is satisfied with 

(ri)i¥k = (rik#, then an approximate solution of (13) - (16) can be obtained by solving 

min{<J> I nki = lllikaiJ, lllikaiJ + 1, i = 1,,,,, rn, if:. k, 

( d '" nki d '" 1 rivkdkvidi) M} 
Vk k + L...J -Vi i - L...J * I.k S . 

i# llik i# llik ri Vkdk + Vidi 
(24) 

Otherwise, a solution is obtained by solving 

min{1l! I nki = lllikaiJ, lllikaiJ + 1, i = 1"", rn, if:. k, 

(, d '" nki .d. '" 1 rivkdkVidj M} Vk k + L...J -v, I - L...J * )ik S . 
i¥k llik i¥k llik 1'i Vkdk + Vidi 

(25) 

We conclude that a solution (tn of (13) - (16) can be obtained by solving either (24) or 
(25) for all possible values of llik' In order to solve (24) or (25) efficiently, we will derive an 
upper bound of nik for each i f:. k in the next section. 

5. An Upper Bound of nik 

Let 

m C' m m 

p,(B) = min{L -.!. + 0.5 L hiditi I L Viditi S M + B, ti > 0, i = 1,,,, ,rn}. (26) 
i=l t, i=l i=l 

If B = 0, then p,(0) is a convex program which can be solved by the Lagrangian multiplier 
method [3]. Assume that A* is an optimal multiplier of (26) with B = O. Then 

p,(B) ~ p,(0) - A* B for any B ~ 0 [9]. 
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For given k, let 
Bk = L ~ 1'iVkdkVjdi 

i#k nik 1'jvkdk + Vjdi 

and V be the objective value associated with a feasible solution of (1) - (2) such that 
J.l(Bk) ~ V ~ J.l(O). Then an upper bound Uik of nik can be derived by the following 
inequality 

V ~ J.l(O) - >..;Bk· 

Note that the total volume of product k can not be greater than M, i.e. tk ~ v~t. Therefore, 

Hence, 

(27) 

6. Algorithms and Computational Results 

Based on the theoretical results presented in the previous sections, we now propose a 
heuristic algorithm for solving the problem (1) - (2). 

Algorithm 1: 

Step 1: Solve (1) without capacity constraint (2) a,nd obtain the Economic Order Quantity 

(EOQ) solution Si = 0, ti = J2ci/ hidi, i =: 1"" ,m. If the EOQ solution satisfies 
(2), then it is optimal and stop. Otherwise, go to Step 2. 

Step 2: Solve (26) with B = 0 for the optimal Lagrangian multiplier >..* and let V = J.l(0). 
Step 3: For k = 1,'" , m ,perform Step 4 to Step 9. 
Step 4: If a feasible solution of (1) - (2) with the objective value V',J.l(Bk) ~ V' < V, is 

available, then V is replaced by V'. For each i, i f- k, calculate the upper bound Uik 
of nik according to (27). 

Step 5: For each (Ilik )i#, 1 ~ Ilik :s Uib i f- k, perform Step 6 to Step 8. 
Step 6: Solve (a1')i# and (1'7);# such that <I> is minimized. If (21) is satisfied with (ai)i# = 

(ai);# and (1'i)i# = (1'i);#b then solve (24) for given (Ilidi# and go to Step 8. 
Otherwise, go to Step 7. 

Step 7: Solve (an# and (1'n#, such that \lI is minimized and solve (25) for given (Ilik)i#' 
Step 8: If a feasible solution of (1) - (2) with the objective value V', J.l(Bk) ~ V' < V, is 

obtained, then V is replaced by V' and Uikl if- k, are updated by using (27). 
Step 9: Set Lk = V. 

Step 10: Output the heuristic solution with the objective value L* = min{Lk I k = 1"", m}. 

A reasonable way to improve the current feasible solution (tj, Si) is to search for a better 
solution in its neighborhood. In the following, we propose such an algorithm. 

9 
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Algorithm 2: 

Step 1: Give a positive constant Ii and positive integers ( and N. b / ( is the step size for 
the neighborhood search and N is the maximum number of iterations allowed in the 
algorithm. Set ti = tj, si = Si, i = 1"" ,m and 1=0 (I is a counter of the number 
of iterations.) 

Step 2: Set I = I + 1. If I ::; N, perform Step 3 and Step 4 for all the combinations of 
integer values lJl, ... ,1Jm such that 11Jil ::; (, i = 1, ... ,m. Otherwise, go to Step 5. 

Step 3: Set ti = tt + lJi(Ii/O, i = 1"", m. If the objective value Z associated with (tj) is 
less than that associated with (tn, then go to Step 4. Otherwise, check the next 
combination of integer values lJl,' .. ,1Jm. 

Step 4: Calculate the nij's and solve 

If the optimal value is not greater than M for k = ko and (1'j)i#o = (1'ik#o' then 
set sko = 0, si = (tko/niko)[vjd;j(1'ivkodko + Vidi)], i = 1", . ,ko -1, ko + 1" ", m and 
ti = tj, i = 1" ", m, and go to Step 2. Otherwise, check the next combination of 
integer values lJl, ... , lJm. 

Step 5: Output the solution (tn .and (si), i = 1" ", m. 

In the following, we consider three-product problems with various warehouse capacities. 
These problems are solved by three different approaches and their computational results are 
shown in Table 3. 

Table 1. A three-product problem. 

1 2 3 

Ci 50 50 50 m =3 

hi 10 4 16 M = 15000 

di 1000 1000 2000 

Vi 50 20 80 

Table 2. The solutions of EOQ method and the proposed algorithm. 

Solution tl t2 t3 Total Maximum 
Method Cost Stock Level 

EOQ 0.1000 0.1581 0.0559 3421.11 17106 
Algorithm 1 0.1106 0.1659 0.0553 3427.20 15000 

SI = 0.0000 S2 = 5.5 X 10-9 S3 = 0.0385 
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Table 3. Solution inventory costs from four algorithms. 

Warehouse Lagrangian Fixed Cycle Algorithm 1 Algorithm 1& 
Capacity Multiplier Method (C) Neighborhood (C)/(A) (C)/(B) 

M Method (A) (B) Search 100% 100% 
100 292644.04 265447.78 249574.47 249574.47 85.28 94.02 
200 146337.02 132743.39 124804.86 124804.86 85.29 94.02 
300 97574.68 88517.25 83222.83 83222.83 85.29 94.02 

400 73198.51 66410.69 62437.69 62437.69 85.30 94.02 
500 58576.81 53151.94 49971.31 49971.31 85.31 94.02 
600 48832.34 44317.12 41664.31 41664.31 85.32 94.01 
700 41874.86 38010.24 35734.09 35734.09 85.34 94.01 
800 36659.25 33283.33 31289.37 31289.37 85.35 94.01 
900 32604.89 29609.73 27834.98 27834.98 85.37 94.01 
1000 29363.40 26673.45 25073.81 25073.81 85.39 94.00 
2000 14831.70 13531.69 12713.21 12713.21 85.72 93.95 

3000 100.54.47 9237.75 8671.:17 8671.37 86.24 93.87 
4000 7715.85 7155.77 6709.22 6709.22 86.95 93.75 

5000 6352.69 5958.57 .5578.D6 5578.96 87.82 93.63 

6000 5477.23 5203.77 4864.G1 4864.61 88.82 93.48 
7000 4880.49 4701.75 4387.D5 4387.95 89.91 93.33 
8000 4457.93 4357.73 4059.g5 4057.85 91.07 93.16 

9000 4151.49 4119.05 3830.,'7 3830.77 92.27 93.00 

10000 3926.34 3954.10 3666.44 3666.44 93.38 92.73 
11000 3760.31 3842.77 3558.:14 3558.34 94.63 92.59 

12000 3638.62 3771.66 3487.g5 3487.85 95.86 92.48 
13000 3551.03 3731.48 3448.28 3448.28 97.11 92.41 

14000 3490.24 3715.61 3428.29 3428.29 98.23 92.27 

15000 3450.89 3714.84 3427.20 3427.20 99.94 92.26 
16000 3428.96 3714.84 3427.00 3427.00 99.94 92.25 

17000 3421.38 3714.84 3421.~;8 3421.36 100.00 92.10 

17106 3421.11 3714.84 3421.11 3421.11 100.00 92.09 

In Table 2 and Table 3, we note that if M ~ 17106, then the problem can be solved with­
out capacity constraint. In this case, both the EOQ method and the Lagrangian multiplier 
method yield the optimal solution. It can be seen that as the restriction on the warehouse 
capacity gets tighter, the fixed cycle method is often better that the Lagrangian multiplier 
method. However, for some problem instances the fixed cycle method may never generate an 
optimal solution for any given M > o. In fact, these two methods do not solve the problem 
in an optimal way. Thus, when faced with the warehouse capacity restriction, it is essential 
to use the staggering policy and allow different products to have different order intervals. 
In Table 3, we also note that the proposed algorithm is significantly better than the two 
methods mentioned above. 
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