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Abstract There are 2n + 1 neigh boring cells in a straight line. An object is in one of all cells except 
for the cell which locates at the center of all cells, according to a known probability distribution which is 
assumed to be symmetric with respect to the cell at the center. A searcher is at the cell which locates 
at the center of all cells at the beginning of the search, and after he chooses an ordering of the 2n labels 
attached to the 2n cells, he examines each cell in that order. An ordering is considered to be optimal 
when the expected cost of the search is minimized. The cost comprises a traveling cost dependent on the 
distance from the last cell examined and a fixed examination cost. After basic observations on our model 
are made the Bellman's Principle of Optimality is applied to it. We have the optimal equation, from which 
some properties are derived. Approximately optimal search strategies arc defined and analyzed. Several 
discussions are provided. 

1. Introduction 
Let us imagine a search for a book in a library, for a word in a dictionary, or for a gas 

station in a street. We will have an experience of changes or reversals of direction. 
Gluss [4J considered a model in which there are n + 1 neighboring cells in a straight line, 

labeled from 0 to n in that order. An object is in one of them except for cell 0 with a priori 
probabilities PI, ... ,Pn. At the beginning of the search the searcher is at cell 0 that is next to 
cell 1. It is required to determine a strategy that will minimize the expected cost of finding 
the object. The examination cost vi(l s:; i s:; n) is associated with the examination of cell 
i(l s:; i s:; n). The only difference between his model and the previous one (See [3]) is that 
while vis are constant in the latter, they vary through time, that is, a traveling cost as well 
as the fixed examination cost is considered in the former (See [4]). Gluss treated two cases: 
PI ~ ... ~ Pn and PI s:; ... s:; Pn· He showed that the former case is trivial, that is, the 
searcher should examine each cell in the order of 1,2,· .. , n, and in the latter case he found 
approximately optimal strategies when Pi is proportional to i. These strategies are written 
by one parameter. 

Our model in this paper differs from his model in that at the beginning of the search 
the searcher is at the cell that locates at the center of all cells. For simplicity a priori 
proabilities are assumed to be symmetric with respect to the cell at which the searcher is at 
the beginning. Furthermore only the case is treated that a priori probabilities are monotone 
non-increasing as the cells become far away from the cent er. 

Both our model and the model by Gluss are special cases of the model developped 
by Lossner/Wegener [5J (Also see pp. 264-265 of [1]). But it seems to me that they are 
interested in the case with positive probabilities of overlooking the object. Indeed Theorem 
4.1 in [5J is about the existence of a periodic search which is optimal, and about probabilities 
of overlooking. Theorem:1.3 and Lemma 5.3 in [5J are most interesting. They give critical 
numbers and conditions in order to check what is the next cell to be examined. But they do 
not seem to be efficient for our special model since they have been argued in a more general 
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One-Dimensional Search 263 

setting. Also see p. 6 of [6]. Nakai [7] is a survey on the search theory. 
Given a more concrete model, our purpose is to propose a kind of search strategies a.nd 

to examine their properties. 
In the next section our model is stated in detail and a search strategy is defined. In 

Section 3 the expected cost under a search strategy is calculated and basic observations on 
it are made. In Section 4, the Bellman's Principle of Optimality is applied to our model. 
We have the optimal equation, from which some properties are derived. In Section 5, after 
the manner of Gluss [4], approximately optimal search strategies are defined and analyz.ed. 
Several discussions are provided in Section 6 as concluding remarks. 

2. The Model and a Search Plan. 
There are 2n + 1 neighboring cells in a straight line, labeled from -n to n in that order. 

An object is in one of all cells except for cell 0, with a priori probabilities such that 

n 

Pi > 0, all i( -n ::; i ::; nand i f:. 0), and L)Pi + P-i) = 1. (2.1) 
i=1 

-n -2 -1 o 1 2 _-----'_nJ 

Figure 1 

A probability of overlooking the object is equal to zero, when the right cell is searched. 
Associated with the examination of cell i( -n ::; i ::; nand i f:. 0) is the examination cost 
that consists of two parts: (i) a traveling cost dli - jl(d > 0) of examining cell i after having 
examined cell j, and (ii) a fixed examination cost c ~ o. (i) means that the examination cost 
varies through the search and is a function of which cell was last examined. It is assumed that 
at the beginning of the search the searcher is at cell o. Before sear'ching he must determine 
a search strategy that will minimize the expected cost of finding the object. For simplicity 
it is also assumed that 

Pi = P-i, all i(1 ::; i ::; n). (2.2) 

This assumption and (2.1) imply that 

n 1 
LPi = 2· 
i=1 

(2.3) 

In this paper we treat only the case that 

PI ~ P2 ~ .. , ~ Pn. (2.4) 

This leads to the following definition of a search strategy. A search plan is defined by 
8 = [ib·· . ,im] where fi(l ::; i ::; m) is a positive integer and 1 ::; fl < . , . < f m- 1 < fm =: n. 
8 indicates that first he (the searcher) examines each cell from -1 to -fb then goes back to 
cell 0, then searches each cell from 1 to f2' then goes back to cell -fb then examine each cell 
from -fl - 1 to -f3,···. Supposing that m is even and he examines from f m- 2 to fm' (m 
is odd and he examines from -fm- 2 to -fm) finally he examines from -fm-l to -fm (from 
f m- 1 to fm). We denote by S the set of all search plans, and by Sm the set of all search plans 
that have at most m turnabouts. Then S = Sn. 81 == [n] and 8 n == [1,2,··· ,n -l,n] are 
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the only elements in SI and Sn \Sn-l respectively. Hereafter we take into consideration only 
strategies in S. The first reason for this restriction is to avoid the difficulties in deducing 
"exactly optimal" search strategies and in enumerating the expected cost of each of the (;:)! 
possible order of examination (See p. 279 of [4]). The second reason is the paper by Beck 
[2]. Beck used a similar kind of strategy in case of linear search problem. 

Our problem is to find an optimal search plan, that is, a search plan that will minimize 
the expected cost of finding the object. A search plan in Sm (1 ::; m ::; n) is called m-optimal 
if of all search plans in Sm it minimizes the expected cost. 

3. Observations. 
In this section we dispose of a few cases that are easy to solve. Suppose that c and d 

are given and that he employs search plan s = [C},·· . , Cm]. The expected cost, written as 
E(s, c, d), is as follows: 

E(s, c,d) = d + c + [1 - Pl][d + c] + ... + [1 - q(1,C l -1)][d + c] 
+ [1 - q(1,CJ)][(Cl + 1)d + c] + [1 - q(1,Cl ) - pd[d + c] + ... 
+ [1 - q(1,CI) - q(1,l2 -- 1)][d + c] + [1 - q(1,lJ) - q(1,l2)][(ll + l2 + 1)d + c] 
+ [1 - q(1,lI) - q(1,l2) - PiJ+1][d + cl + ... 
+ [1 - q(1,lI) - q(1,l2) - q(ll + 1,l3 -1)][d + cl + ... 
+ [1 - q(1,lI) - q(I,l2) - q(ll + 1,l3) - ... - q(lm-2,lm)][(lm + Cm- l + 1)d + c] 
+ [1 - q(1,lJ) - q(1,l2) - q(Cl + 1,£3) _ ... - q(lm-2,lm) - P£~_1+1][d + c] 
+ ... 
+ [1 - q(1,lJ) - q(1,l2) - q(ll + 1,l3) - ... - q(lm-2,lm) - q(£m-l + 1,n - 1)][d + cl, 

(3.1 ) 

or 
£, 12 

E(s,c,d) = L ked + C)Pk + L[(2l1 + k)d + (ll + k)C]Pk 
k=l k=1 

£3 

+ L [(2l1 + 212 + k)d + (£2 + k)C]Pk + '" 
k=,£, +1 

n 

+ L [(2Cl + 2C2 + ... + 2lm + k)d + (n + k)clpk 

n 

= 2dA(s) + cB(s) + 2(d + c) L kPb 
k=1 

where A(s) = Lk=l LJ=1 £jq(lk_1 + 1'£k+1), B(s) = Lk=1 lkq(Ck_l + 1,Ck+d, q(i,j) 

L{=i Pb la = 0 and Cm+1 := n. Without loss of generality, we can assume d == 1. Then 
C can be alternatively interpreted as the ratio of fixed examination cost to traveling cost. 
Thus we have E(s, c) == E(s, c, 1) = e(s, c) + 2(1 + c) Lk=1 kPk where 

e(s,c) = 2A(s) + cB(s). 

It must be noted that A(s) > 0 and B(s) > 0 for all sin S. 

Lemma 1. SI = [n] is not. optimal if 

1 + c/2 
Pn < 4n - 2 + ne 

(3.2) 

(3.3) 
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Proof: Let s = [n - 1, n]. From (3.1) and (3.2) we have e(s, c) = (n -1)(2 + c)/2 + (4n-
2+nc)Pn and e(sl,c) = n(2+c)/2. SI is not optimal if e(sI,c) > e(s,c), that is, if condition 
(3.3) holds. Q.E.D. 

Lemma 1 asserts that if Pn is appropriately small then he should turn around before 
examining cell n or cell -no For example, let Pi = (n + 1 - i)/(n2 + n)(l ::; i ::; n) then 
condition (3.3) holds if n :::: 3. 

Suppose c is fixed. By S(c) and Sm(c)(l ::; m ::; n) denote the set of all optimal search 
plans and the set of all m-optimal (1 ::; m ::; n) search plans respectively. 

For s,s' E S, let R(s,s') == 2(A(s') - A(s))/(B(s) - B(s')). For s E S, let L(s) == 
max{R(s,s'): s' E S,B(s) < B(s')} and U(s) == min{R(s,s'): s' E S,B(s) > B(s')}. 

Lemma 2. sE S(c) if and only if 
(i) L(s) ::; c::; U(s) and, 
(ii) if there is s' E S such that B(s) = B(s') then A(s) ::; A(s'). 

Proof: sE S(c) if and only if 

2A(s) + cB(s) ::; 2A(s') + cB(s') for all s' E S, 

Le., c(B(s) - 11(s')) ::; R(s,s')(B(s) - B(s')) for all s' E S. 

Also S is a finite set. Q.E.D. 

Thus s E S can be optimal for some c :::: 0 if L(s) ::; U(s) and Lemma 2 (ii) holds. For 
s E S, let 1 ( s) == {c :::: 0 : s E S ( c)}. 

Lemma 3. (i) For every s E S, either l(s) = cp or l(s) = [L(s), U(s)]. 
(ii) For s, s' E S, one out of the three cases holds: (a) l(s) n l(s') = cp, (b) l(s) n l(s') is a 
one-point set, (c) l(s) = l(s'). 

Proof: (i) From Lemma 2 (i), l(s) C [L(s), U(8)]. Assume l(s) -j. cp. Assume [L(s), U(s)] 
\1(s) -j. cp. Then from Lemma 2 (ii), there is s* E S such that B(s) = B(s*) and A(s) > 
A(s*). This implies e(s,c) > e(s*,c) for all c :::: O. This contradicts l(s) -j. cp. Hence 
[L(s), U(s)]\1(s) =, <p. 
(ii) Assume c,c' E l(s) n l(s'). Then e(s,c) = e(s',c) and e(s,c') = e(s',c'). These imply 
(c - c')B(s) = (c - c')B(s'). Hence if c -j. c', B(s) = B(s') and A(s) = A(s'). Hence 
l(s) = l(s'). Q.E.D. 

Lemma 4. (i) Suppose Cl < C2. Suppose sand s' are in S(Cl) and S(C2) respectively. 
Then A(s) ::; A(s') and B(s) :::: B(s'). If either 8 is not in S(C2) or s' is not in S(cI), then 
B(s) > B~s') and A(s) < A(s'). 
(ii) Let S be the set of all search plans such that they minimize B(·), i.e., SB == {s E S : 
B(s) = min{B(s') : s' E Sl}' Let SB,A == {s E SB : A(s) = min{A(s') : s' E SB}}. Then 
there exists c* such that S ,A C S( c) if and only if c :::: c* . 
(iii) Sn E SB. Further there exist {PI,'" ,Pn} such that SI is not in S(O) and {PI,'" ,]In} 
such that Sn is not. in S(c) for any c :::: O. 

Proof: (i) 
2A(s) + qB(s) ::; 2A(s') + CIB(S') < 2A(s') + C2B(S') 
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::; 2A(s) + c2B(s) 

since s is in S(ct),ct < c2,B(s') > 0 and s' is in S(C2). From these inequalities we have 
(C2 - q)B(s) ~ (C2 - cdB(s'), which implies B(s) ~ B(s') since C2 > Cl. From the first 
inequality we have 2A(s')-2A(s) ~ q(B(s) -B(s')). This implies A(s') ~ A(s) since Cl ~ 0 
and B(s) ~ B(s'). Furthermore, if s is not in S(C2)' then the last inequality of the first three 
inequalities strictly holds. Hence (C2 - cdB(s) > (C2 - cdB(s'), from which B(s) > B(s'). 
We also have cI(B(s) - B(s')) ::; 2A(s') - 2A(s). This implies A(s') > A(s). These are also 
proved in the case that s' is not in S(CI). 
(ii) By the definition, 

B(s) < B(s') for all s in SB and all s' in S\SB. (3.4) 

Since S is a finite set and A(·) is bounded, SB,A C S(c) if c is sufficiently large. Let 
c* = inf{c : SB,A C S(c)}. Since 2A(s) + cB(s) is continuous in c and S is a finite set, 
c* = min{c: SB,A C S(c)}. Suppose c > c*. Then for any sin SB,A and any s' in S\SB,A, 

2A(s') + cB(s') = 2A(s') + c* B(s') + (c - c*)B(s') 

~ 2A(s) + c' B(s) + (c - c')B(s) 

= 2A(s) + cB(s) 

by (3.4) and the fact that s is in S(c'). Hence s is in S(c). 
(iii) By the definition of B(.), for any sE S, 

m n 

B(s) - B(sn) = L: £kq(£k-l + 1,£k+1 - L: k(Pk + PHI) 
k=I k=I 
m ~ n 

= L: L: Pj(£k-I +£k) - L:Pj(2j -1) 
k=I j=/'k-I +1 j=I 

m i k 

= L: L: Pj[£k-l + £k - (2j - 1)] 

m tk 

= L: L: (Pj - Pr(j))[(£k - j) - (j - £k-I - 1)] 
k=I j=/'k-l+I 

~O (3.5) 

since j ::; tk and Pj ~ Pr(j) for all j and all k, where tk === l lk I ~/'dI J is the greatest integer 

lessthanorequaltolk-l~/'d·I,andr(j) ===£k+£k-I+l-j. FromLemmal,ifpn < 1/(4n-2) 
then SI is not in S(O). Next assume PI = P2 = ... = Pn-I and 0 < Pn < 1/(4n - 2). Let 
s = [2,3, ... , n - 1, n]. Then by the definition of B(.), B(s) = 2q(1, 3) + 3q(3,4) + 4q(4, 5) + 
'" + (n -1)q(n - l,n) + nq(n,n) and B(sn) = q(I,2) + 2q(2,3) + 3q(3,4) + 4q(4,5) + 
'" + (n -1)q(n -1,n) + nq(n,n). Hence if n ~ 3 then PI = P2 and B(s) = B(sn). Further 
:4(sn) = A(s) +q(3, 4)-tqi4.5)+ .. ·+q(n-l, n)+q(n, n)+q(l, 2)+3q(2,3) -2q(l, 3) > A(s) 
If n ~ 3. Hence Sn rf. S '. Q.E.D. 

The values of c' are given in Table 1 below when n is small and Pi = (n+l-i)/(n2+n)(1 ::; 
i ::; n). SB = SB,A = {sn}. If c ~ c* then Sn is optimal, i.e., Sn E S(c). 
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Table 1. 

15 
1078 

20 
2520 

25 
4862 

30 
8358 

267 

From Lemma 4 we see that the problem remains to be solved when C is appropriately 
small. Suppose C == O. Intuitively SI seems to be optimal. But, in general, a priori probabili
ties affect the choice of strategy. Lemma 4 (iii) asserts this fact. For example let n = 10, C == ° 
and Pi = (n + 1 - i)/(nZ + n)(1 :::; i :::; n). S = [7, 10] is optimal and SI = [10] not. PS,P9 
and PlO have relatively small values (See Table 2). 

Thus far we have seen that Sn minimizes B(·) but in general neither SI nor Sn minimizes 
A(·). From Lemmas 2, 3, and 4, we have a theorem. 

Theorem 5. There are numbers CO,C},C2," ',q and search plans s(O),s(1),· .. ,s(k) such 
that 

Co = ° < C} < C2 < ... < q < Ck+l = +00, and 
s(i) E S(c) if and only if C E [C;, C;+l] for i = 0,1"", k, and 
A(s(O)) < A(s(L)) < ... < A(s(k)), and 

B(s(O)) > B(s(1)) > ... > B(s(k)), and 

e(s(O), co) < e(,,(1), Cl) < ... < e(s(k), Ck). 

Proof: Since S is a finite set, there is at least one s E S such that l(s) has an interior 
point. Starting at c = Co = 0, we can find finite sequences of numbers and search plans as 
above. Here Ci = L(s(i)) = U(s(i-1)) for i = 1"", k. Also s(k) = Sn and Ck is equal to c· 

in Lemma 4 (ii), Ci =I- Ci+1 for i = 0,"" k and Lemma 4 (i) imply A(s(i)) < A(s(i+1)) and 
B(s(i)) > B(s(i+l)) for i = 0"", k - 1. e(s(i), Ci) < e(s(i+l), ci+d since e(s, c) is increasing 
in c for any s E S. Q.E.D 

Remark 6. For each s in S,g(s) == (A(s),B(s)) can be interpreted as a point in R~. Let 
G(S) == {g(s): s E S} and G(S) be the convex hull of G(S). s is called efficient if g(s) is an 
efficient point of G(S), that is, there is no x = (J:1,XZ) in G(S) such that either Xl < A(s) 
and X2 :::; B(s) or Xl :::; A(s) and Xz < B(s). Then we see easily that s is in S(c) for some 
C if and only if s is efficient. Moreover from Theorem 5, as C increases 9(S)(S E S(c)) moves 
in the south-east direction. Since Sn is in S(c) if C is sufficiently large (Lemma 4 (ii)), an 
algorithm may be considered such that it departs from Sn and traces the efficient search 
plans as C decreases. This algorithm, however, is not pursued in this note. 

Example 7. Let n = 5 and Pi = (n + 1 - i)/(n Z + n) for i = 1"",5. There are 
25 = 16 search plans. By calculating directly A(s) and B(s) for each s, we see that Cl = 
4, C2 = 20, C3 = 40, s(O) = [3,5], s(1) = [2,4,5]' 8(2) = [1,3,4,5], and s(3) = [1,2,3,4,5]. 
e(s(O), c) = 4.6 + 2c, e(s(1), c) = 5 + 1.9c, e(s(2), c) == 5.666·· . + 1.8666··· x c, and e(s(3), c) = 
7 + 1.8333 ... x c. 

Comparing the expected costs directly we have the next necessary condition for a search 
plan to be optimal. In other words we are considering difference inequalities. 
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Theorem 8. If S = [£1'···' £m] is optimal then Pi(k) > Pi(k)+1 for all k = 1,···, m-I 
where i(k) = £k. 

Proof: By sk(£)(l S k S m-I) we mean a search strategy such that only £k is replaced 
by £(£k-I S £ S £k+d and the others are the same as those of s. If either £ = £k+1 
or £ = £k-l then Sk(£) is not in S. But even if not, the expected cost for Sk(£) can be 
calculated. Observing the symmetry of a priori probabilities, that is, assumption (2.2), we 
see that Sk(£) is redundant in this case. For example, suppose that he examined cells 1 and 
2 in this order, then went back to cell 0, then examined cells -1 and -2 in this order, and 
he is now at cell -2 . The object has not been detected. Then clearly he should not turn 
around but examine cell -a. Hence if Sk( £) is redundant there should exist s' in S such that 
e(s',c) S e(sk(£)'C). We finally have 

e(s,c) :<::; e(sk(£k + l),c) and e(s,c) S e(sk(£k -l),c) (3.6) 

for all k(l S k S m-I) if S is optimal. (3.6) becomes Pi(k)+1 S QI Land Pi(k) ? (2Pi(k) + 
2Pi(k)+l + Q)IL where Q== 2q(£k + 2,n) + 2q(£k-l + 1,n) + cq(£k_1 + 1,£k+d and L == 
2(£k +£k+l) +C(£k+1 -£k-I). By (1) and the definition of search plan, Q and L are positive. 
This with (2.1) implies Pi(k) > QI L ? Pi(k)+I. Q.E.D. 

Corollary 9. (i) Assume PI = ... = Pn. Then SI == [n] E S(c) for all c. Furthermore 
SB = Sand SB,A = {st}. 

(ii) Assume PI > P2 > ... > Pn > o. Then SB = SB,A = {sn}. 

Proof: (i) By theorem 8 and the definitions of B(·) and A(-). 
(ii)By (3.5), B(sn) = B(s) and PI > P2 > ... > Pn imply S = Sn· 

4. An Approach by Dynamic Programming. 

Q.E.D. 

The purpose of this section is to develop a method of finding optimal search plans. First 
we have the recursive relation, applying Bellman's Principle of Optimality ([3]). Second we 
examine the case of c = 0, applying this relation, since this case is not clear intuitively. 

Let prl(x S Ijl S n) be the conditional probability that the object is in cell j, given 
that all cells labeled from -(x - 1) to x-I were examined, the object was not detected, 
and he is at cell x-I now. That is, pr1 = pj/[l - 2q(1, x-I)]. This probability depends 
on only x. Observing this, we define by W(x)(l S x S n) the expected cost of examining 
2(n - x + 1) cells under an optimal search plan, given the same condition as in the definition 
of pr l

. We let 
W(n + 1) = o. 

By Bellman's Principle of Optimality, we have 

C 

W(x) = min {(I + c) L(j - x + l)p
J
X

-
I 

x<C<n . - - J=X 

C C 
+ L(j + 2£ - x + l)prl + c L(j + £ - 2x + 2)prl 

J=X J=X 

(4.1 ) 

+ [3£ -;r + 1 + 2(£ - x + l)c + W(£ + 1)] x 2qx-l(£ + 1,n)} (4.2) 

where qx-l (i, j) = "Lt=i p'k- I . In the right hand side £ is the control variable. After exam
ining each cell from x to £, he goes back to cell -x, then examines each cell from -x to -£, 
and follows an optimal search plan there after. 
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For simplicity of calculation let V(x) = 2q(x, n)W(x)+(2x-2)q(x, n)+c(3x-3)q(x, n)+ 
2(1 + c) Ej:i jpj. Then (4.2) becomes 

Vex) = min {(2R + c(1- x))q(R + l,n) + (2 + c)Rq(x, n) + V(R + I)} (4.3) 
x~l~n 

and 
n 

V(n + 1) = 2(1 -+- c) "L,jPj. (4.4) 
j=} 

Thus we can find recursively Rm = n, Rm- I ,'" , R2 , R}, which give an optimal search plan. 
When n is small, (4.3) and (4.4) are very useful for numerical computation. Let PI = 
(n + 1- i)/(n2 + 1£)(1::; i ::; n). Table 2 below indicates optimal search plans when n = 10. 

Table 2. 

optimal search plan Range of c 
[7,10] 0-0.4 
[6,10] 0.4 - 28/15 = 1.87 
[5,9,10] 1.87 - 44/9 = 4.89 
[4,8,10] 4.89 - 34/3 = 11.33 
[3,7,9,10] 1l.33 - 52/3 = 17.33 
[3,6,9,10] 1'7.33 - 25 
[3,6,8,10] 2:) - 30 
[1,4,7,9,10] 30 - 31 
[2,5,7,9,10] 3L -178/3 = 59.33 
[2,4,6,8,9,10] 59.33 - 106 
[1,3,5,7,8,9,10] 106 - 214 
[1,2,4,6,7,8,9,10] 2L4 - 286 
[1,2,3,5,6,7,8,9,10] 286 - 322 
[1,2,3,4,5,6,7,8,9,10] 322 - +00 

Define U(x) == V(:r + 1) - V(n + 1) for x = 0"" , n -1. Also define f(x, y) == (2y - cx)q(y + 
1, n) + (2 + C)yq(3: + 1, n) for 0 ::; x < y ::; n. Then (4.3) and (4.4) become 

U(x) = m.in {f(x,y) + U(y)},and 
x+}~y~n 

U(n) = O. 

( 4.5) 

( 4.6) 

Example 7 (Continued). Suppose c = o. f(x,y) = y{(x - 6)(x - 5) + (y - 6)(y - 5)}/30. 
Let ay == 30U(y). Then as = 0, a4 = 10, a3 = min{32 + a4, 30 + as}, a2 = min{54 + a3, 56 + 
a4, 60+as}, a} = min{64+a2, 78+a3, 88+a4, 100+as}, and ao = min{50+a}, 84+a2, 108+ 
a3, 128 +a4, 150 +as}. From these we see [3, 5] and [4, 5] are optimal search plans. ao = 138. 
Hence U(O) = 138/30 = 4.6 = e(s(O), 0). 

The following theorem states a property of fO or U(.). 
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Theorem 10. Suppose the optimality equation is given as (4.5) with (4.6), without giving 
f(·) explicitly. Assume fx,z(y) == f(x,y) - f(z,y) is strictly increasing in y, where x < z ~ 
y ~ n. Then there are y(O), y(1), ... ,y(k) such that 

(i) 0 < y(k) < y(k-l) < ... < y(O) < n, and 
(ii) for j = 0" .. ,k + 1, for all x with y(j) ~ x < y(j-l), 

U(x) = f(x, y) + U(y) ( 4.7) 

for some y == y(x) with y(j-l) ~ y < y(j-2), where y(k+1) = 0, y( -1) = nand 
y(-2) = +00. Moreover x < x, implies y(x) ~ y(x' ). 

Proof: From (4.5) and (4.6), y(n -1) = n. Suppose y(x) = n for some x ~ n -1. Assume 
y(w) = n for w = z + 1"", n - 1, where x ~ z. Let's check if y(z) = n. For w with 
z + 1 ~ w ~ n -1, 

f(z,w) + U(w) - f(z,n) ~ f(z,w) + f(x,n) - f(x,w) - f(z,n) 

= fx,z(n) - fx,z(w) > O. 

Hence y(z) = n. Thus there exists y(O) such that 0 ~ y(O) ~ n - 1,y(x) = n if and only if 
y(O) ~ x. y(O) = 0 means k + 1 = O. 

Assume y(O) > O. U(y(O) - 1) = f(y(O) - 1, w) + f( w, n) by the definition of y(O) and 
since y(O) ~ w ~ n - 1. This implies y(y(O) - 1) = w. Suppose y(O) ~ y(x) for some 
x ~ y(O) - 1. We show y( z) ~ y(O) for all z such that x ~ z ~ y(O) - 1. Assume 1/(0) ~ y( w) 
for w = z + 1"" ,y(O) -1, where z ~ x. Let's check if y(O) ~ y(z). Let 

fI(t) == f(z, t) + U(t) - min{J(z, u) + f(u, n) : y(O) ~ u < n}. 

If t ~ y(O) then fI (t) ~ 0 by the definition of fI (t). If z + 1 ~ t < y(O), then 

fI(t) ~ f(z, t) + [f(x, y(x)) + f(y(x), n) - f(x, t)]- min{J(z, u) + f(u, n) : y(O) ~ u < n} 

~ f(z, t) + [f(x,y(x)) + f(y(x), n) - f(x, t)]- [J(z,y(x)) + f(y(x), n)] 

= fx,z(y(x)) - fx,z(t) > O. 

Hence we have U(z) = f(z,y(z)) + f(y(z),n) and y(O) ~ y(z). 
Moreover, by the definition of y(z), 

o ~ f(z,y(x)) + f(y(x),n) - [f(z,y(z)) + f(y(z),n)] 

~ f(z,y(x)) + [J(x,y(z)) + f(y(z),n) - f(x,y(x))]- [J(z,y(z)) + f(y(z),n)] 

= fx,z(y(z)) - fx,z(Y(x)). 

Hence we must have y(z) 2 y(x) since fx,z is strictly increasing. 
Thus there is y(1) such that 0 ~ y(1) < y(O) < n, and y(O) ~ y(x) < n if and only if 

y(1) ~ x < y(O). 
Assume for j = m - 2, m - 3" .. ,0, it holds y(j-l) ~ y(x) < y(j-2) for every x with 

y(j) ~ x < y(j-l). Suppose x < y(m-2) and y(m-2) ~ y(x) < y(m-3). By the definition of 
y(m-2), we have y(m-2) ~ y(y(m-2) _ 1) < y(m-3). Assume y(m-2) ~ y(w) < y(m-3) for 

w = z + 1"" ,y(m-2) -1, where x ~ z. Let's check if y(m-2) ~ y(z) < y(m - 3). Let 

h(t) == f(z, t) + U(t) - min{J(z, u) + U(u) : y(m-2) ~ u < y(m-3)}. 
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If t 2: y(m-3) then het) 2: 0 since z < y(m-2). If y(m-2) S t < y(m-3) then het) 2: 0 by the 
definition of het). If y(m-2) > t > z, then 

het) 2: fez, t) + [f(x, y(x)) + U(y(x)) _. f(x, t)] 

- min{f(z,u) + U(u): y(m-2) S u < y(m-3)} 

2: fez, t) + [f(x,y(x)) + U(y(x)) _. f(x, t)]- [fez, y(x)) + U(y(x))] 

= fx,z(y(x)) - fx,z(t) > O. 

Hence y(m-2) S y(z) < y(m-3). 
Moreover 

OS f(z,y(x)) + U(y(x)) - [f(z,y(z)) + U(y(z))] 

S f(z,y(x)) + [f(x,y(z)) + U(y(z)) - f(x,y(x))] - [f(z,y(z)) + U(y(z))] 

= fx,z(y(z)) - fx,z(Y(x)). 

This implies y(z) ;::: y(x) since fx,z is strictly increasing. Q.E.D. 

In our model, 

fx,z(Y) = c(z - x)/2 - c(z - x)q(l, y) + (2 + c)yq(x + 1, z). 

For y > y' :::: z, 

fx,z(y) - fx,z(y') = (2 + cl(y - y')q(:r + 1, z) - c(z - xlq(y' + 1, y) 

= (y _. y')(z - x){(2 + c)q(x + 1,z)/(z - x) - cq(y' + 1,y)/(y - y')} 

>0 

by (2.1) and (2.4) .. Thus fx,z is strictly increasing, and Theorem 10 applies. 
An optimal search plan, s = [RI,'" ,Rm] E S(c), gives U(O), that is, U(O) = f(O,Rd + 

f(R 1,R2 ) + ... + f(Rm-1,Rm). 
Here we generalize the notation. Let S( x) be the set of all search plans after starting 

at x-I, given that all cells labeled from -(x - 1) to :r - 1 were examined, the object 
was not detected, and he is at cell x-I now. Let Sex, c) be the set of all optimal search 
plans after starting at x -1, under the same assumption. Define Sm(x) and Srn(x,c) in the 
same way. Note that 5 = 5(0), Srn = Sm(O),S(c) = 5(0, c), and Sm(c) = Sm(O, c). Thus 
U(x) = f(x, RI) + ... + f(Rm-l, Rm) for some [f t ,···, Rm] E Sex, c), where x < RI < R2 < 
... < Rm = n. 

Lemma 11. Suppose [RI,'" ,lm] E Sm(:r), wllere x < RI < R2 < ... < Rm = n. Assume 
(i) f(x,R I )+···+ f(Rm- 1, lm) S f(x, T1)+"'+ f{1']-l, TJ ) for all [rJ, ... , Tj] E Sm+l(x), 

and 
(ii) RI :::: y(m-2). 

Then U(x) = f(x .. lI) + ... ,+ f(lm-l, Rm). That is, [l], .. . ,Rm] E Sex, c). 

Proof: From assumption (i) we see x < y(m-2). RI < y(m-3) by the definition of y(m-.l), 
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... ,y(O). Let z = y(m-2)_ t. Then y(m-1) :::; z < y(m-2), and there is [rt,··· ,rmJ E Sm(z,c). 
Let z = y(m-2) - 2. Suppose x :::; z. Assumption (ii) implies z < 1'1. Thus 

J(z,z + 1) + U(z + 1) - [J(Z,1'l) + J(1'I,.e2) + ... + J(.em- 1,1'm)J 

~ J(z, z + 1) + [J(x,.et} + ... + J(.em-b.em) - J(x, z + 1)] 

- [f(Z,f1) + J(.e1 ,.e2) + ... + J(.em- 1,.em)] 

= J(z,z + 1) + J(x,.e1) - J(x,z + 1) - J(z,.e1) 

= Jx,z(.eJ) - Jx,z(z + 1) > O. 

This implies 

J(z,z + 1) + U(z + 1) > min{J(z,w) + U(w): y(m-2) :::; w < y(m-3)}, 

which implies y(m-l) :::; z < y(m-2), and there is [rI, ... , rmJ E Sm(z, c). 
Assume for y = z + 1" .. , y(m-2) - 1, 

J(y, w) + U(w) ~ min{J(y, w') + U(w') : y(m-2) :::; w' < y(m-3)}. 

Let y = z.o For w with z + 1:::; w < y(m-2), 

Hence 

J(z,w) + U(w) - [f(Z'£I) + J(.e1 ,.e2) + ... + J(.em-1,.em)J 

~ J(z,w) + [f(x,1'J) + ... + J(1'm-l,i'm) - J(x,w)] 

- [J(z,i'J) + J(.e1 ,.e2) + ... + J(.em- 1,.em)] 

= J(z,w) + f(x,i'J) - J(x, w) - J(Z,i'l) = Jx,z(i'l) - Jx,z(w) > O. 

J(z,w) + U(w) > J(Z,i'l) + J(i'1'£2) + ... + J(i'm-1,.em) 

~ min{J(z, w') + U(w') : y(m-2) :::; w' < y(m-3)}. 

This implies y(m-2) :::; y(z) < y(m-3) and y(m-1) :::; z < y(m-2). By letting z = x, we have 
the desired result. Q.E.D. 

The converse of Lemma 11 is clearly seen by the definition of U(·). Thus we have 

Theorem 12. [f1 ,··· ,fm] E S(x,c) if and only if (i) and (ii) in Lemma 11 hold. 

Corollary 13. For each x: 1 :::; x:::; n - 1, U(x) = J(x, n) if and only if 

J(x,n) :::; J(x,y) + J(y,n) for y : x + 1:::; y :::; n. (4.8) 

Proof: .e1 = n. Thus Assumption (ii) in Lemma 11 is satisfied. (4.8) is just Assumption 
(i) in Lemma 11 Q.E.D. 

If we let x = 0 in Corollary 13, we have the next proposition. 

Corollary 14. [n] is optimal if and only if 

4y + cy 
q(l,y):::; fory=I, .. ·,n. 

4n + 4y + 2nc 
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Proof: (4.8) is rewritten. Q.E.D. 

In particular, if c = +00, then q(l, y) ::::: !n for y = 1"", n. This, (2.3), and (2.4) imply 
Pi = 2~ for i = 1" .. ,n (See Corollary 9). 

Example 7. (Continued). Assume c = O. Then U(x) = f(x,5) for 2 ::::: x ::::: 5,U(1) = 
f(1,4) + U(4) and U(O) = f(0,3) + U(3). Thus y(O) = 2. 

Example 15. Suppose Pi = b - ai for i = 1", " n. Assume c = O. Let T(y) == nU(y) for 
all y. Then T(n) = nf(n, n) = 0 and T(n -1) = nf(n-l, n) = n-an2(n-l). (4.5) becomes 
T(x) = minx+l~y~n {v(x, y)}, where v(x, y) == y(n, - y)(l - ay) + y(n - x )(I/n - ax) + T(y). 
Assume T(y) = nf(y,n) for all y : x + 1 ::::: y ::::: n. Thus v(x,y) = (n - y)(l - nay)(n + 
y) + y(n - x)(l - nax). After simple calculation, we see v(x,n) ::::: v(x,y) + v(y,n) for all 
y : x + 1 ::::: y ::::: n -- 1 if and only if 

1 1 
x2 + y2 _ (_ + n)x + (n - -)y ::::: 0 for all y: x + 1 ::::: y ::::: n - 1. (4,9) 

na na 

This is equivalent to: 

2 2 1 1 x +(n-1) -(-+n)x+(n--)(n-1):::::0, 
na na 

(4. LO) 

since the left hand side of (4.9) is incresing in y if y 2 n - l/(na). Here a < 1/(n2 - n) 
implies n -l/(na) < 1. From (4.10) we have x 2 [n + l/(na) - )",(n, a)]/2, where l/(n,a) == 
-7n2 + 12n - 4 + 6/a - 4/(na) + 1/(n2a2). Thus 

(0) n 1 )",(n, a) 
y = Int[- + - - ] + 1. 

2 2na 2 
(4.11 ) 

Assume 

n->oo 
(4.12) 

0::::: a < 1/(n2 - n) implies 0::::: t ::::: 1. From (4.11) and (4.12) we have 

. y(O) 4t - 2 

nl~~ ---;- = .\(t) == t + 1 + VI + 6t - 7t 2 
(4.13) 

t < 1/2 implies .\(t) < O . .\(1/2) = 0, and .\(1) = 1. .\'(t) = 6+10 v'I+6t-7t
2 > O. Hellce 

(t+I+ I+6t-7t2)2 
.\(.) is increasing in t. 

For example, suppose a = n2~n' Then from(4.11), y(O) = Int[n + 1- J4n -7/4] + 1. 

From (4.12), we have t = 1, and .\(1) = 1. n = 10 implies y(O) = 5. Remember that [7, 10] 
is optimal (Table 2). 

From Corollary 14, [n] is optimal if and only if 0 ::::: a ::::: 4n2+c!2-2n' 

Proposition 16. Assume c is sufficiently large. Then for y = 0"", n-l, U(y+l)-U(y) = 
f(y,y+l). 

Proof: We can put f(x, y) = cyq(x+l,n)-cxq(y+l,n). Then f(x,x+l)+ f(x+l, x+2) = 
c(x+ l)q(x+ 1, n) --cxq(x+2, n )+c(x+2)q(x+2, n) -c(x+ 1 )q(x+3, n) = c(x+2)q(x+ 1, n)-
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cxq(x+3, n )-cq(x+1, n )-cq(x+3, n)+2cq(x+2, n) = f(x, x+2)-CPx+1 +Cpx+2 ::::: f(x, x+2). 
That is, f(x, x + 1) + f(x + 1, x + 2) ::::: f(x, x + 2). Applying this inequality repeatedly, we 
have the desired result. Q.E.D. 

Let's assume c = O. That is, only the traveling cost is taken into account. Actually 
we want to minimize the expected time that it takes to find the object. We use the D.P. 
equation (4.5) and (4.6) repeatedly. By letting c = 0 in Corollaries 13 and 14 we have 

Corollary 17. Assume c = o. U(x) = f(x,n). If and only if 

q(y + 1, n) / q( x + 1, n) ~ (n - y) / (n + y) for y : x + 1 ::::: y ::::: n - 1. (4.14 ) 

In particular by letting x = 0,81 == [n] is optimal if and only if q(l,y) ::::: y/(n + y) for 
y : 1 ::::: y ::::: n. 

For example, if Pi = b·- ai for i = 1"", n. Then [n] is optimal if and only if 0 ::::: a ::::: 
1 

2n2 -7I' 

5. Approximately Optimal Search Plan. 
In general it is difficult to deduce exactly optimal search plans. In this section we rewrite 

(4.5) and (4.6) in order to find 3-optimal search plans. A search plan in 53 is written as 
8 = [x, y, n] where 1 ::::: x :::: n and x + 1 ::::: y ::::: n. Since we are concerned on 3-optimal 
search plans, we rewrite U(·) as UO(·),U1(·),U2(-), and U3(-), after reviewing the definitions 
of W(.), V(-) and U(.). Then we have 

U1(x) = f(x,n) + Uo{n) = f(x,n) for 0::::: x::::: n, 

U2(X) = min {f(x,y) + U1(y)} for 0::::: x::::: n,and 
x+l::;y::;n 

U3(0) = min {f(O,x) + U2(x)}. 
1::;x::;n 

(5.1 ) 

Of course, Theorem 10 and Lemma 11 apply to Ui(i = 2,3). The following proposition is an 
analogue of Theorem 10. 

Proposition 18. Assume fx,z(y) == f(x, y) - f(z, y) is strictly increasing in y, where 
x < z ::::: y ::::: n. Then there are z(O) and z(1) such that 

(i) 0 < z(1) < z(O) < n, and 

(ii) U2(x) = f(x, n) if and only if x ~ z(O), and 
(iii) U3(x) = f(x, n) if and only if x ~ z(O), and U3(x) = f(x, y(x)) + f(y(x), n) for some 

y(x) ~ z(O) if and only if z(1) ::::: x < z(O), and U3(x) = f(x,y(x)) + U2(y(X)) for 
z(1) ::::: y(x) < z(O) if and only if x < z(1). 

Proof: In the same way as in Theorem 10, (i) and (iii) are shown. Also U2(x) = f(x,n) 
if and only if x ~ w(O). We must show z(O) = w(O). If x ~ z(O), then U3(x) = f(x,n). 
This implies U2(X) = f(x,n), that is, x ;::: w(O). Hence w(O) ::::: z(O). Assume w(O) < z(O). 
Suppose w(O) = z(O) - 1. Then U3(W(O)) = f(w(O),y(w(O))) + f(y(w(O)),n) < f(w(O),n). 
Hence U2(w(O)) = f(w(O),y(w(O))) + f(y(w(O)),n). This contradicts the definition of w(O). 
Suppose w(O) < z(O) - 1. Let x == z(O) -1. U3(X) = f(x,y(x)) + f(y(x),n) < f(x,n) and 
U2(X) = f(x,n). A contradiction. Consequently z(O) = w(O). Q.E.D. 
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The argument in the proof of Proposition 18 applies to the case of m-optimality for 
m = 2,3, - - -. Thus we find y{i) = z{i) for i = 0,1, .. " where y{i) appeared in Theorem 10. 
In order to calculate y{O), Corollary 13 is useful. We must find the minimum x such that 
(4.8) holds. In our model (4.8) becomes 

(2 + c)(n - y)q(x + 1, n) :::; [2(n + y) + c(n - x)]q(y + 1, n)for y with x + 1 :::; y :::; n. (5.2) 

Example 7 (Continued). f(x, y) = (2y - cx)(y -- 6)(y - 5)/60 + (2 + c)y(x - 5)(x - 6)/60_ 
Let Ti(Y) == 60Ui(Y). Then Tl(Y) = 5(2+c)(y-5)(y-6), T2 (x) = minx+l~y::;s{(2y-cx+IO+ 
5c)(y - 5)(y - 6) + (2 + c)y(x - 5)(x - 6)}, T3(0) == minl~x~5{2x(x - 6)(x - 5) + 30x(2 - c) + 
T2(X)} = min{276 -I- I20c, 296 + llSc, 300 + 114c}, where the first, the second, and the third 
in the last blacket correspond to [3, 5], [1,4,5]' and [2, 4, 5] respectively_ Finally we have 1:3, 
5] is 3-optimal if 0:::; c :::; 4 and [2,4,5] if 4:::; c. Note that Cl = 4, 60e(s{O), c) = 276 + 120c, 
and 60e(s{l),c) = 300 + 114c. 

Example 19. Next we attempt to treat (5_1) in the case of Pi == b - ai where b == 
2~ + ntl a, and 0 :s. a < n2~n' f(x, y) = (y - C;)( ay - *)(y - n) + (1 + ~ )y( ax - * )(x - n)_ 
Uz(x) = minx+l~y~n{g(x,y)},g(x,y) == (2y - ex + n + nc)(ay - I/n)(y - n)/2 + (1 + 
c/2)y(ax - l/n)(x - n)}. Assume g(x,.) attains its minimum at y* = y*(x) = Int[y#] 
where Y# satisfies ag/ay = 0 and a2g/ayZ > O. Then U3(0) = minl<x<n{h(x)},h(x) = 
x( ax - I/n )(x - n) + x(2 + c)/2 + g(x, y*). Assume h(.) attains its mini~ur~~ at x* = Int[x#] 
where x# satisfies dh/dx == 0 and d2h/dx2 > 0_ Then we have a system of equations of 
degree 2 with respect to x and y : 

(ay - l/n)(y - n) + (2y - ex + n + nc)(2ay - an - l/n)/2 
+ (2 + c)(ax - I/n)(x - n)/2 == O,and 

3a:c2 
- 2anx - 2x/n + 2 + c/2 - c(ay - l/n)(y - n)/2 

+ y(2 + c)(2ax - an - l/n)/2= 0_ 

By solving this we have a 3-optimal search plan. 

(5.3) 

Suppose n --+ 00. Assume x/n --+ u and y/n - .. v and n2a --+ a. Then (5.3) becomes 

(v -1)(av - 1) + (2v - cu + 1 + c)(2av - a -1)/2 + (1 + c/2)(u - 1)(au - 1) = O,and 

(2au - 1)(u - 1) + u(au -1) + 1 + c/2 - c(v - 1)(av - 1)/2 + v(1 + c/2)(2au - 1 - a) 

== O. 

6. Remarks. 
(i) From Table 2, we see, for example, €m-l becomes 7,6,9,8,9,9,8" _. as c becomes 

large. In this sequence we can find no regularity. 
(ii) Limiting Case of n --+ +=_ If limn~oo npi exists, then denote by h( -) the probability 

distribution function that is obtained after this limiting operation. If we hold €k/ n = Yk(1 :::; 
k :::; m-I), then (:3.6) reduces to an equation: 

2(yk + Yk+l) + C(Yk+l - Yk-d 
= [2(1- H(Yk)) + 2(1 - H(Yk-d) + C(H(Yk+l) - H(Yk-d)J/h(Ykl, (6.1) 

where H(.) is the cumulative distribution function of h_ Suppose Pi = b - ai( 1 :::; i :::; n) and 
a = 0(n-2 ). Then h(t) = 1 - Itl(O < It I :::; 1), and == O(ltl > 1). Here we let h(O) == 1 for 
convenience of calculation. From (6.1) we also induce the same equations as in Example 19. 
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(iii) If PI ~ P2 ~ ... ~ Pn then of all search plans in S, SI minimizes the expected 
cost, as is shown from Theorem 8. In this case, however, other search strategies should be 
considered. We illustrate this by a numerical example. Let n = 2, PI = 1/6, and P2 = 1/3. 
SI = [2]. Denote by S the strategy indicating that he examines cells -2, -1, 2 and 1 in this 
order. Clearly S is not in S. E(sI) = (11 + 8c)/3 and E(s) = (13 + 7c)/3. Hence he should 
use a strategy other than SI if c > 2. 
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