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Abstract Practically, it is not feasible to obtain the precise reliability of systems in a reasonable time, when 
the systems are large and complex. In this paper, we present some stochastic bounds on generalized systems 
of which state spaces are mathematically partially ordered sets. In the first place we introduce a notion of 
generalized systems and then present some stochastic bounds on the system reliability by using maximal 
and minimal elements of the structures of the systems. The bounds are generalization of the well-known 
max-min bounds on binary-state system reliability. Furthermore, we present the other stochastic bounds 
when systems are decomposed into several modules and satisfy a condition which is called MC (Maximal 
Coincidence) condition. We show that these bounds are tighter than the former. For a few simple systems, we 
give numerical examples and estimations of computational complexity for obtaining these stochastic bounds. 

1. Introduction 
In reliability theory it is important to obtain the precise reliability of systems. 

However, for the purpose of determining the precise system reliability, the indispens
able computational complexity increases exponentially with an increase in the number of 
both the components of the system and the states of them. For example, consider a 
multi-state system composed of n components. Supposing that the system and all the com

ponents have m states, for convenience, then the computational complexity to the pre
cise reliability becomes O(m n ). For this reason, L.D.Bodin [3] and D.A.Butler [4] have 
been proposed some stochastic bounds on the system reliability which can be obtained 

in a little computational complexity. [3] and [4] established stochastic bounds on bi
nary-state systems and on multi-state systems, respectively. 

lleccntly man) authors treat multi-SLate systems, e.g., Il.E.Harlow and A.S.Wu [2], 
E.EI-Neweihi et al[5]. W.S.Griffith [7]. D.A.Butler [4] and F.Ohi and T.Nishida [8,9]. 

S. Shinmori et al [11]. Roughly speaking, almost all works on the multi-state systems 
have the restriction that all the state spaces are finite totally ordered sets. There
fore, we can not use the notion of multi-state systems defined by the above authors for 
treating the system composed of units whose state spaces are partially ordered sets. 
Practically, there exist systems of which state spaces are not totally ordered sets, 

for example, the state of a system may be directly indicated by the two distinct fac
tors, as temperature and humidity. 

In this paper, we discuss stochastic bounds on more generalized systems that the 
state spaces of both the systems and all the components are defined only as partially 
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104 S. Shinmori & F. Ohi & T. Nishida 

ordered sets. The results of associated probability measures proposed by F.Ohi, S. 
Shinmori and T. Nishida [10J are applied in order to derive stochastic bounds. Further
more, we present stochastic bounds in case that all the state spaces are defined as 
finite partially ordered sets and systems are decomposed into several modules. 

In Section 2, we present the definition of generalized systems and some notation. 
A theorem which plays a crucial role in the sequence is presented. In Section 3, we 

discuss the precise system reliability and some stochastic bounds. 
consider stochastic bounds in case that the systems are decomposed 
present a few simple examples. In Section 5, we give a comparison 
complexity for stochastic bounds developed in sections 3 and 4. 

2. Prel i.inaries 

In Section 4, we 
into modules, and 

of the computational 

J. D. Esary et al [6J have introduced the notion of "association" which is vpry 
useful in discussing stochastic bounds on system reliability; 

Random variables TI , ... ,T n are said to be "associated" if 
Cov[ f (TI,"" Tn), g (TI,"" Tn)J ~ 0 for any nondecreasing functions f and g. 

In many physical reliability situations, the notion of association means that the func
tioning (failure) of a component contributes to the functioning (failure) of the re

maInIng components and so on (see Section 2 of Chapter 2 in [1]). Furthermore, F.Ohi 
et al in [10J have presented a definition of associated probability measures on general 
partially ordered sets, and showed the necessary and sufficient condition for a proba
bi I i ty P to be associated as follows: 

Definition O. Let 12 be a partially ordered set and let 3- be the a -field gener
ated by the class of all the increasing subsets of 12. A probability P on (12.3-) is 
called associated if and only if for any real-valued increasing measurable functions 
f and g such tha t f, g and fog are integrable wi th respect to p, 
(2.1) f 12 fog d P :;;-; f 12 f d P f 12 g d P 

Tbeore. O. Let 12 be a partially ordered set. A probability P on (12, 3-lis as-
sociated if and only if for every increasing subsets A and B of 3-. 
(2.2) P(A'IB) ~ P(A)P(B) 

Note that a subset A of a partially ordered set 12 is called increasing (decreas
ing) if and only if xE A and x<:;;y (y<:;;x) imply yE A. The concept of increasing and 
decreasing subsets will play an important role in our study. We denote by (0'';,112;, 

@i';,l3- i ) the product measurable space of (12;,3-;), i=I .... ,n. From Theorem 0 we ob
tain the next theorem which is useful for obtaining stochastic bounds on reliability 
of systems. 

Theore. 2.1. Let 12; (i=l, ... , n) be a partially ordered set and let 3-; be the a
field generated by the class of all the increasing subsets of 12;. If P is an associ
ated probability on (Oi';,IQ;,@i';,l3- i ), then we have 
(2. 3) 1 n ,';,1 i 1 - P, ( A ; )} ~ P (0 i';,l A ;) :;;-; 0 [;,1 R ( A ; ) 

for any increasing sets A;E3-;(j=l, ... ,n), where R is the restriction of P to 12;. 
Proof: Noticing that ni';,IA;=nJ~dAjxO[;,I';'JQ;) for any increasing sets A;E3-; 

(i=I ..... n). from Thocrcm 0, it follows that 
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Stochastic Bounds fOT Generalized Systems 105 

(2.4) P (ll ,';" Ai) = P {I~I j';" (A jX II ,';,1, .. ; ~2 ,)} ~ II j';" P (A jX II ,';" ... ; Q i) 

= n j~, {B (A j) n ~I,,,; R (Q i)} = n ~,R (A i). 

Therefore. we have p(n~,Ai)~ll~,R(Ai) for any increasing sets A,E.},(i=1. .... n). 
It follows that (ll[;,Q,)\(ll[;,(Q,\A,)} ::J ll[;,A, for any increasing 

sets AiE.}i (i=1. .... n). so that 

(2. 5) P [( II ~, Q , ) \ {n~, (Q i \ A , ) } ] = P (n [,~, Q j) - P { II ~, (Q i \ A j ) } 

~ 1 - n ~, R (Q j \ A j ) = 1 - II ~, {I - R ( A j ) } • 

since Q j \ A i is a decrea sing set. Therefore. we have 

l-ll~dl-R(Ai)} ~ P(Jl~,Ai) for any increasing sets AiE.}i(i=l, .... n). 

Q. E. D. 

Now we give a definition of generalized systems which includes almost all the 

multi-state systems. 

Definition 2.1. A generalized system is a triplet (ll,';"Q ,. S.!P) satisfying the 

following conditions: 

(i) Q, (i=1. .... n) and S are partially ordered sets. 

o i} !p is an increasing surjecti ve mapping from the product ordered set II :~, Q j to S. 

We use "increasing" in place of "nondecreasing" and the common symbol "~" in 

order to indicate the "order" on Q, (i=I ..... n) and S. Further we use the follo'l.ing 

notation for a system (I1,';"Qi'S,!P) throughout this paper. where SES. and ~E 

II ,';" Q j. 

(1) c ~- i 1 , n i . that is. C denotes the set of all the components. 

( 2) 1f5' ( s ~ ) = {~; s ~!p (~)} . ( 3) 1f5' ( s ;$ ) = {~; s ;$!P (~)} 

(4) 1f5'(~S)= {~;!P(~)~s}. (5) 1f5'(S) = {~;!P(~)=s} 

(6) M [A] is the set of a 11 the maximal elements of a set A. 

(7) N[A] is the set of all the minimal elements of a set A. 

(8) pro. Q.; is the projection map from II ,';" Q i to Q j (j E C). 

(9) 15....A denotes pro. 11 Q . (1!...l. where A (*" <P ) CC. 
i E A I 

3. Stochastic Bounds by Maxi.aI and Mini.aI HIe.ents. 
In this section. we present stochastic bounds on the generalized system (ll,';"Q ,. 

S.!P) given in Definition 2.1. and apply them to some concrete systems. Applying sto-

chastic bounds obtained in this section to an ac:ual system. the point is whether the 

assumption of association holds or not. If all the components. whose state spaces are 

the same finite totally ordered sets. are mutual:.y independent. the assumption of asso

ciation al~ays holds. As stated in [10]. it is notable that the assumption of associa

tion may be also satisfied for the generalized system composed of independent compo

nen t s. 

3.1 Stochastic bounds 
Let (ll,';"Qj. S.!P) be a generalized system. We define Ws. 'I/S(sE S) as follows: 

Ws= {w;w is an increasing subset of gr(Ss) such that w=n~,pro.Qi (w)}. 

Vs = {v; v is a decreasing subset of 1f5' (S~) such that v = II [;,pro. Qi (v)}. 

Then. for Ws and Vs (sE S ). the next property holds. 

Property 3.1. Ws and Vs are inductive with respect to the inclusion relation be-
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tween sets as an order. 

Since it is obvious from the definition of Ws and Vs. the proof is omitted. 

From Property 3.1 and lemma due to Zorn. we see that Ws and Vs have some maximal 

elements. Hence let w
7
s (7Er) and Vas (aE~) be all the maximal elements of Ws 

and Vs. respectively. Then the following property and lemma hold. 

Property 3.2. For every s of S. we have 

(3.1) cp'(So,)=I~' 7Erw7s. and cp'(Sf,)=UaE~ vi 
Since it is obvious from property 3.1 and the notation of cp'(ss) and cp'(S~). the 

proof is omitted. 

I.e .. a 3.1. For every s of S. we have 

(3.2) cp' (sd = , , 7 E r w/ = (n i~' Q i) \ I_I a E ~ Vas. and 

(3.3) '1 7E I'w/ C iff'(ss) C (n{:,.Qi)\rlaE~Vas. 

Furthermore. for every s ofS. any 7 of I' and a of ~. we have 

(3.4) w
7
s C cp" (ss) C (IIi~.Qi)\ Vas 

Proof: From (3.1). it follows that 

{I' rWS)II{11 S A Vss) = cp'(ss)Ucp'(Sf,) nc,.Qi. - 7 E 7 ~ - u E u u 

Sin c e cp' ( ss ) Ii cp' ( S$ ) = r/> (t he em pt y set). we h a v e 

cp' (So,) = , I 7 E I' w/ = (n c,. Q i) \ 1_' a E ~ Vas 
(3.3) and (3.4) are obvious from (3.2). Q. E. D. 

Since (II i~' Q i. S.!P) is a general ized system. we see that !p is a measurable 

function from (n,~,Qi.~i~,Jj) to (S.J). where J is the a-field generated by the 

class of all the increasing subsets of S. Letting P be a probability on (IIC,.Q j. 

~i~'.}i), P {cp'(s») means the system reliability that the performance of the system 

becomes state s. where s belongs to S. If we obtain the system reliability P {cp·(s») 

for any s of S. the another probability P Icp·(ss»). of which the state is greater 

than or equal to s. can be directly computed as L P {cp'(t»). Hence we see that the 
ss t 

probability P{cp'(ss») is equivalent to the system reliability Plcp'(s»). Further. 

throughout all the results of this section. we may replace Plcp'(ss») with Plcp'(A»). 
where A is an increasing subset of S. since {yE S ; SSy) belongs to the class of al J 

the increasing subsets of partially ordered set S. From a physical point of view. 

however. we conclude that P {cp'(ss») is noteworthy and clearly easy to treat. For the 

above reasons. we consider the probabi 1 i ty P {cp' (ss») as the system rei iabi 1 i ty in 

the follow ing. 

The system reliability P {cp'(So,») and some stochastic bounds on the system relia-

bility are derived from Lemma 3.1 as follows: 

Tbeore. 3.1. Suppose that (II {:,. Q j. S.!P) is a generalized system and P isa prob

ab i I i ty on (n c,. Q j . ~ i~. J j ). Then for each s of S. we have 

(3.5) p{naE~(IIC,.Qj\vas») = P{cp'(ss») = I-p{n7Er(IIC,.Qj\w7s»). 
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s 
and U ')' Er w')' 

from (3.2) .. we see that 

( n GoI Q i ) \ n ')' E r (n l~1 Q i \ W')'s). 

ep' (s::;) = "0 E I'; (TI L~I Q i \ VOs) (TI ~I Q i) \ n ')' E r (TI ~I Q i \ W')'s). 

Si nee P ( [[ L~I Q i) \ , , ')' E r (n i~1 Q i \ w')'S) I = 1 - P (I~I ')' Er (n:;1 Q i \ w')'S) I. 
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the proof is complete. Q.E. D. 

Theore.3.2. Under the same assumption of Theorem 3.1. the following inequality 

holds: 

(3.6) p(n')'Erw')'s) ~ suP')' Er P(w
r
s ) ~ P{epl(SS») 

~ 1 - sup 0 E I'; P ( VoS) ~ 1 - P (It 0 E I'; vos). 

Further. under the additional assumption that P is associated. we have 

(3.7) n L~IR (pro.Q; (1-' r E rWrs)1 ~ sup')' E r n'~IR {pro.Q; (W')'s) I 

~ Plep'(s::;)1 l-suPOEl';ni~IE{pro.Q;(vos)1 

~- n'~IE {pro.Q; (1-1 0 El'; Vos»). 

Proof: Since ,I rE r W
r
s 

C W
r
s 

holds for any rE r. and from (3.4), 

P (n rEI' W
r
S) ~ P (W

r
S) ~ sU P r 

E I' P (W
r
s ) ~ P {ep'(SS»). 

Similarly. for vos(o E 1';). we have 

P {ep'(S:;;)I ~ inf 0 E I'; P {(n~IQ i)\ v<'5
s

) ~ 1 -supo E I'; P(VOS) 

~ p{(ni~IQi)\noEI'; vos) ~ l-p(nOEI'; vOS). 

Let P be associated. Then we see that n[,~IR {pro.Q; (wrS)1 ~ P(w/). from 

Theorem 2.1, so that 

sU P r 
Ern I~IR {pro.Q; (w

r
S») ~ sU P r E I' P(w

r
S
). 

Hence the second inequality in (3.7) follows from (3.6). 

Since pro. Q; (,1 ')' E r W')'s) C pro. Q; (w')'S) holds for each i of C and ')' of r, 

the first inequality follows. The third and fourth inequalities follow similarly. 

Q. E. D. 

Thcore. 3.3. Under the same hypotheses of Theorem 3.1 and the additional assump-

t i on that P is associated and r and I'; are at most countable. the fol Jowing inequali-

ty holds: 

(3. 8) n 0 E I'; { 1 - P ( v Os») ~ P {ep'(SS») ~ 1 - n r E r { 1 - P (w
r
S»). 

Proof: From the hypotheses and (3.5), we have 

P lep' (s::;) I P [(1 0 E I'; {( n ~I Q i) \ vc~}] 

~ n 0 El'; P {( n l,,1 Q i) \ voSI = n 0 E I'; { 1 - P (VOS) I. 
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P {q5"I(SS;)} = 1 - P {n r E r (Il~IQ i)\ W
r
S

) 

~ 1 -- n r E r P {( n i~1 n i) \ wrS} = 1 - n r E r { 1 - P (Wr
s

)} Q. E. D. 

Corollary 3.1. Under the same hypotheses of Theorem 3.3 and the addi t ional assump

tion that P=09~IR, the following inequality holds: 

(3.9) IlOE!J.{I-ni~,R(pro.Q'(vos)} ~ P{q5"I(SS;)} 

~ I-n rEr[l-ni~IR{pro.Q,(wrs)}]. 

Proof: From the assumption on p, we see that 

(3.10) P(vos) IlL~IE{pro.Q'(vos)} and P(W
r
s ) = Il~IR{pro.Q,(wrs)}. 

Then the resul t fol lows obviously from (3.8) and (3.10). Q. E. D. 

3.2 Application to soae concrete systeas. 

We apply the resul ts of the previous sect ion to some concrete systems, i. e., the 

binary-state system, the Barlow-Wu system [2] and the multi-state system. Furthermore, 

we demonstrate numerical stochastic bounds for a simple generalized system composed of 

two compon en t s. 

(I) Binary-state systea 

A system (lli~l\2 j, S, rp) is called a binary-state system if Q j and S are totally 

ordered sets containing two elements, that is, Q i = S = {O,ll (lE C). For any binary

state system, it follows that q5"1(1~)=q5"I(1) and q>-1(1;$)=q5"1(0). Let ~I, ... ,~t be all 

the minimal elements of q5"I O) and let .Y...l., ... , h be all the maximal elements of q5"1(0). 

For each ~k (1~k~t) and each Lk (1~k~u), Ak and Bk are defined as 

Ak~ {i; (~k)i ~1} and B k = Ii; (Lk)j=O}, 

where (~k) j and (Lk) j are the i-th coordinate of ~k and Lk respectively. 

Consequently, w/(r Er) and vi(o E!J.) are given as follows: 

r = {l. ... , tl. W~= IlL; lLk~lL} (kE r), !J. = {l. ... , u}, v ~= {L; L~Lk} (kE!J.). 

From Theorems 3.2 and 3.3, if p, a probability on (n~IQ i,09~I.]i)' is associated, 

then we obtain stochastic bounds for the binary-state system. 

(3. 11) n i E 1_' AI A j R (1) ~ m a x j Ern i E Aj R (1) ~ P {q5"1 (1)} 

<;;; 1 - m a x . E " n . E B. R (0) ~ 1 - n . E IJ.U. u. R (0), J L1 1 J 1 .=1 DJ 

(3. 12) n j E !J. { 1 - P B}.Q..Bj)} ~ P {q5"1 (l)} ~ 1 - n j E r { 1 - P A}.L Aj)} , 

where P A is the restriction of P to (niEAQj,09iEA.]j). 

These stochastic bounds correspond to the well-known max-min bounds in [1]. 

(2) Barlow-tu systea 

A system (Ili~IQi'S,rp) is called a Barlow-Wu system if Qi(lEC) and S are the 

same finite totally ordered sets and rp is represented by using a class, {Aj}j~I' of 

subsets of C, A;\Aj (l"ej), as follows: 

(3. 13) rp C1!.J -- m a x 1 ~ j ~ pm i n i EA j <"~J i for any 1L of n [,,1 Q i· 
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Let Bl ..... B k beall the minimal elements of {B;BIIAn"cP for all Ajl. wheremin

imal elements arc taken wi th respect to the inclusion relation between sets. Th"Jl !p i~ 

also represented as 

(3.14) ~C~J=mi nl::;;;j::;;;kmaxiEBjC~Ji for anY1Lof IC~,Qi' 

Furthermore. w,s(, Er) and v(5s«(5 E~) are defined as 

s ,IA·1 
r={l ..... pl. \\j =[s.--1 JlliEC\AjQ; (jEr). and 

~~{I .... kl. v/=(+-.sjBjllliEC\ BjQ i (jE~). 
where [s.--)~{x;s~xl. (+-.s)={x;x<sl. IAjl denotes the cardinality of Aj and so 

is I B jl. and [s. --) lA jl denotes the product set of lA jl number of Cs. ---+) and so is 

(+-. s) I B j I . 
From Theorems 3.2 and 3.3. if P is an associated probability on (lL~,Q;. ®i~,:ili). 

then we obtain stochastic bounds for the Barlow-Wu system. 

(3.15) niEUj~,AjR{[s.---+)I::;;; maxjErlliEAjR{[s.--)}::;;; P{qi'(ss)} 

~l--ma 

(3. 16) 

XjE~lliEBjR{(+-.s)} ::;;;l-lliEUj";"BjR{(+-.s)}, 

PIL{(+-.s)IBjll]::;;; P{qi'(ss)l 

::;;; l-r~Er [l-~j {([s.---+)IAjll]. 

(3) Multi-state syste. 

A system (lIi~d2i. S."P) is called a multi-state system if Q i (iE C) and S are 

fini te totally ordered sets which are not necessarily the same. Note that qi'(:)$) = 

qi'«s)={~Eni~,Q;;~C~J<sl for any SES. since S is a totally ordered set. We 

denote all the minimal elements of qi'(ss) and </j"«s) by ~1.··· .~t and .Ll .. ·· . .Lu 

respectively. 

Then W,s(, Er) and vi( (5 E ~) are defined as 

r- {l. .... tl. w~c{1L;1Lk::;;;1LI(kEr). ~={1. .... ul.v~={L;L::;;;Lkl(kE~). 

From Theorems 3 2 and 3.3. if P. a probability on (ni~,Qi.®i~,Ji). is associated. 
then we obtain stochastic bounds for the multi-state system. 

(3. 17) 

(3. 18) 

II G"R {pro.Q, (iI j Er wj)} ::;;; m a x jE r IIG"R {pro.Q, (wj)}::;;; P {qi'(ss)l 

::;;; I-ma XjE~ IIG"R{pro.Q,(v/)1 $; l-IIG"R{pro.Q,(iljE~ v/)l. 

IIjE~{l-P(VjS)}::;;; P{qi'(ss)}::;;; l-IIjEr{l-P(Wj>}. 

If the multi-state system (1l~,Q;. S.~) satisfies the additional condition Q;=S 

(j E C). these stochastic bOunds are identical wi th the bounds established in [4]. 

(4) Nu.erical exa.ple of generalized sysle. 

We consider the simple generalized system (Q tXQ2. S. "P) composed of independent 

two components such that Qt=Q2= S = {a.b.c.d}. d<b<a. d<c<a. b$c and c$b. 

where b<a denotes b::;;;a and b*a. The elements a and d mean the perfect functioning 

state and the complete failed state. respectively. The other elements band c are the 

distinct intermediate states between a and d. Furthermore. the structure of system ~ 

is given as follows: 
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N [cp'(a)]'~ (a. b). (a.c). (b. a)}. N[cp'(b)]= {(b. b). (b.c)} and 
N [cp'(c)] = (c. b). (c. c)}. 

Further. for the sake of brevity. we assume that the reliabilities of both componrnts 
are identical and 

P a - 04, Pb= 0.3, Pc= 0.2 and Pd= 0.1. 

where Pi (iE {a,b.c.d}) denotes the probability that the component takes the state i. 

Then the system reliability and its stochastic bounds are calculated from Theorems 3. I 
and 3.3 as follows: 

Lower bound System reliability Upper bound 

p {cp' (a~)} O. 466 0.480 0.606 
P (cp' (b~)} O. 630 O. 630 0.704 
P {cp'(c~)} O. 5 9 9 O. 660 O. 733 

4. Stoehastie bounds using .odular deeo.positions. 

In this section we consider the generalized system composed entirely of modules. 
A module is a subset of components which constitutes a sub-system. and the module it
self can be treated as cne component of the system (see [12]). we exploit stochastic 
bounds in case that the generalized system is decomposed into a number of modules. We 
show that these stochastic bounds are always tighter than the stochastic bounds derived 
in section 3, if all the modules which compose a system satisfy a condition given later 
on. First of all, we present the definition of the modular decomposition. 

Definition 4.l. A partition (Aj}f'l of C is called a modular decomposition of a 
general ized system (II i E CQ j. S. ip) if and only if there exist general ized systems 

(II iEAjQ i' S j' X j), j=l, .... r. and Wr.1 S j' s. rP) satisfying that 

(4.]) ip<'~)=cb{Xl(lLA1) ... "XrC~_Ar)1 for anYlLof IIiECQj. 

For the sake of brevity. throughout the rest of this section we consider the 
generalized systems (X.Z.ip). (Xj.Yj.X j ). j=l, .... r. (X.Y.x) and (Y.Z,cb) 

satisfying the following conditions: 
(il X j' Y j' (j=l, .... r) and Z are finite partially ordered sets. 

( i i) X = II r.1 X j and Y = II f'l Y j' 

(iii) ip(~..J=rP(X(~» for any ~of X. where X(~)=(X,(Xl) ..... Xr(xr». 

We will exploit new stochastic bounds for the above system (X. Z. ip) composed 
of r modules. Since the lower and upper bounds on system reliability are derived dually 
as shown in section 3, we are devoted to the lower bound in the following. For the 
upper bound the only results are given. In developing the lower bound for the system 
composed of a num~er of modules. the following condi tion. which wi II be called MC 
(Maximal Coincidence) condi tion. plays an important role. In particular. it is notable 
to inspect whether the generalized system (X. Y. X) satisfies MC condition. 
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Definition 4.2. The generalized system (X. Y. x) satisfies MC condition if and 

only if 
x (~) - L for any L of Y and any ~ of M[X·'(~L)]. 

All the elements of the set M [x"(~L)] are the maximal vectors such that the 
performance of the general ized system X is less than or equal to the state L. Physi

cally. the MC property of the generalized system warrants that the system performance 

for any maximal vectors of M[x"(~L)] invariably occupies the state L. Clearly. 
the MC condition does not necessarily hold for any generalized systems. 

With respect to MC condition. the next property and lemma hold. 

Property 4.1. The following four conditions are equivalent: 

(1) The generalized system (X. Y. x) satisfies MC condition. 
(2) M[x"(~L)]==M[x"(L)] for any L of Y. 

(3) .!...~E Y and .!..<~ imply that for any.!!... of M[x·'(.!..)] there exists a v of 

M[x"(~)] such that .!!...<.Y.... 

(4) .!...~E Y and .!..<~ imply that for any.!!... of X·'(.!..) there exists a .Y... of x"(~) 

such that.!!... <.Y... . 
where.!.. < ~ (.!... ~E Y) denotes .!..~~ and 8F b. 

Since it is immediate from Definition 4.2. the proof is omitted. 

Le .. a 4.1. The generalized system (X. Y. x) satisfies MC condition i'f and only 

if the generalized systems (X j' Y j' X j)' j=l. .... r. satisfy MC condition. 

Proof: It is proved by using Property 4.1 and the definition of (X. Y. X) and 

(Xj.Yj.Xj)' j=1. .... r. Q.E.D. 

From Lemma 4.1. if the generalized system (X. Y. x) satisfies MC condition. it 
follows that for any ~of Y. 

(4.2) M[x"(~)]= !(al ..... a r ); a;EM[x·,'(b;)J. i=l. .... r}. 

Further arbitrary maximal element of qJ'(z;1) (z E Z) is represented by both a maximal 
element of r/J"(z;1) and a maximal element of X·'(~L). where L belongs to the set 

of all the maximal elements of r/J"( z ;1). and the converse holds. that is. the follow-

ing lemma holds. 

Lean 4.2. Suppose that the generalized system (X. Y. X) satisfies MC condition. 

then we have for any z of Z. 

(4. 3) M [qJ' ( z ;1)] = U lE M [tli' (z ;1 ) ] M [ X' ( ~ ~V ). 
Proof: Since it is immediate that M[qJ'(z ;1)]CUIEM[tli'(z;1)]M[X'(~L)] 

for any z of Z. we show the converse of the above inclusion relationship; Note that 

( 4. 4) .l!.. E U lE M [cJj' (z ;1 ) ] M [ X' ( ~ ~) ] ~ 3 .L E M [tli' ( z ;1 )] : .l!.. E M [ X' ( ~ ~ ] . 

Let J!...EUlEM[tli'(z;1)]M[X'(~.L)]. From the hypothesis and Property 4.1. we have 

x (.!..)=L and .!..EM[X'(L)]. Since Z;1r/J(L)=r/J(X(.!..»~rp(.!..). it follows that 
J!...EqJ'(Z ;1). Supposing that ~E X and .!..<~. Then:1-< X (~) holds from the increas

ing property of X and.!..E M[X'(L»). Further z ~ r/J (x (~» holds from the increas
ing property of r/J and LEM[cJj'(;1z)]. Hence it follows that z~r/J(x(~»=rp(~). 
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so that ~EH6'(z ,1). Therefore. we obtain that ..!...EM[cp'(z ,1)]. 

Re.ark to le •• a 4.2. If X does not satisfy 

( 4. 5) M [cp' ( Z $)] c ~ lE M [tV' (z ,1 ) ] M [ 1" ( ~ .Y.) ] 

(See Example 4.2 later on.) 

MC condition. we have only 

for any Z of Z. 

~. E. IJ. 

Let R be a probabi 1 i ty on (X;. J;) and let P be the product probabi 1 i ty of R. 

(i=1. .... r). where J; is the class of all the subsets of X;. If R{i=1. .... r) 

are associated and X satisfies MC condition. from Theorem 3.3 the lower bounds on 

P{cp'(z~)} (zEZ) are directly derived as follows: 

(4.6) p{cp'(z~)} ~ 0QEM[tV'(z$)][l-Oi..R{x;EX;;X;(x;)~b;}] 

=? 0 Q E M [tV' (z ,1 ) ] 0 ! E M [ t' ( ~ Q)] [1 - 0 i:, R {x ; EX; ; X ; s: a ; } = 

Furthermore. since it follows that 

{x; EX; ; X ; (x; ) ~ b; } = X ; \ I1 a; EM [X' ; ( ~ b; ) ] [X ; \ {x; EX; ; x; ~ a ;l J 
by the association of R (i=1. .... d. we see that 

(4.7) R{X;EX;;X;(x;)~b;l ~ 1-0 [l-R{x;EX;;x;~a;)] 
a;EM[x';(~b;)] 

~ l-Oa;EM[X';(~b;)]R{x;EX;;x;:ia;l 

Let F (z) be the expression which is substituted the third expression of (4.7) in 

place of R {x; EX;; X; (x;) ~b;} of the second expression of (4.6). that is. 

( 4. 8) F ( z) = 0 [ 1 - 0 [=, {I - 0 R {x; EX; ; X ; ;1 a ; } } ] 
bEM[tV'(z;1)] a;EM[X';(~b;)] 

Denote by G (z) the modi f ied thi rd expression in (4.6). namely. 

(4. 9) G ( z) ~ 0 0 [ 1 - 0 i., {I - R {x; EX; ; x; ;1 a ; } } ] 
Q E M [tV' (z ;1 ) ] ~ E M [ t' ( ~ b) ] 

L.D. Bodin [3] has shown that for any binary-state systems the stochastic bounds 

using modular decompositions are better than those directly derived. We now rewrite 

lemma 1 in [3] as follows: 

Le .. a 4.3. Let T; be a set l1 ..... k;l for every i(=1. .... r). Let 0 <;;: p .. <;;: 
lJ; 

for every i (=1. .... r) and each j; of T i. Then it follows that 

(4.10) 1 - 0 i:, [1 - 0 . T P.. ] ~ 0 ( . .) 0 r T [1 - 0 i:. (1 - p .. )] 
J ; E ; I J ; J 1 •...• J r E ;=.; I J ; 

Proof: Consider the binary-state system (0 i.. O. ET Q ... S. Ij) represented by 
J i ; 1 J ; 

Fig. 4.1. and composed of 0 i.,(k;) independent components. Hence it follows that 

~l ij; - S ~ to. I} for each j(=1. .... r) and each j; of T;. and 

Ij) (.10 = 1 - 0 [=, {1- 0 j JET i (x i j i )} for any 1L of 0 [". 0 j JET i Q i j i . 

Here lett i ng P.. be a probabi I i ty of 1 of Q ... then from Theorem 3.1. we obtain that 
1 J i 1 J i 

(4. 11) P {cp' (l)} = 1 - 0 :;,. [1- 0 j i ET i Pi j;]' 

Further let Lt ..... Lt be all the maximal elements of cp'(O). where t=Oi=,(k;). From 

the network representation of Fig. 4.1. any maximal elements are the form; for each 

i(=1. .... r>. there exists only one s of T; such that y;s=O. and for any uC""s) Yiu=l. 

We have. from Theorem 3.2. 

(4.12) P{cp'(l)} ~ 01~j~t[l-Pl.lLEOi..Oj;ET;Qij;; lL~.YjJ] 

Considering the mapping f ; Oi..T; --+ {I. .... t}. (t=Oi.,(k;» such that 
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r (j1 ..... j,)= L I:i[(L-l)xn j~i+1(kj)] + jr for any (j1 ..... j') of n[",T j. 

then f is an increasing bijection. 

Since r·'(j)=(j1.·· .. j,) implies P{1L;1L~.Yr} n l=I(1-Pij j)' 

(4. 1 3) n 1 ~ . ~ t [1 - P {1L; 1L~ v.} ] = n ( . . ) E n r_ T . [1 - n [", (1 - P.. )] 
'" J '" J J 1 •...• J , I_I I 1 J I 

Therefore. from (4.11). (4.12) and (4.13). the proof is complete. 

Xl1 x12 x1k1 
'" 

,.. · . . 
x21 x22 x2k2 

- · .. . 
x rl x X 

I"'Lr2 · .. rkr 

Fig. 4.1 Network representation of 

a binary-state system. 

Q. E. D. 

Theore.4.1. Suppose that X satisfies MC condition and R. a probability. on 

(X j. J- j). i=I, .... r. are associated. Then we have for any z of Z. 

(4.10 P{qi'(Z~)} ~ n [1-n[",{1-n R{XjEXj;Xj;$aj}}] 
!2.EM[cV' (z;1)] ajEM[i'j(~bj)] 

~ n 11 L 1 - n l=1 {I - R {x j E X j ; X j ;1 a j } } J 
!2.EM[cV' (z;1)] ~EM[i'(~;b)] 

= 11 [1 - n l=1 { 1 - R {x j E X j ; X j ;1 a j } } ] 
~E M[qi'(z;1)] 

Proof: The fi rst inequality is obvious from (4.6). (4.7) ar.d (4.8). For arbi lrar-

i 1 y fix ed .£. 0 f M [cV' (z ;1 ) J. 1 et tin g 

M [i' j ( ? b j ) ] = { a i j f= X j ; j JET j }. ( i = 1 ..... r) and 

P .. = R{XjEX j ;xj;1a .. }. (i=I, .... r. jjET j ). 
1 J j 1 J j 

Then from Lemma 4.3 and (4.2). we see that 

(4. 15) 1 - n [",[ 1 - n .. E M [...,.'. (S;; b. ) ] R {x j E X j ; x j ;1 a ... } ] a1Jj A.I - I IJ, 

~ n (a 1 j 1 ••••• a
r 

j ,) EM [i' ( ~ 12)] [ 1 - n [", {I - R Ix j E X j ; X j ;1 a i j j } } ] 

Therefore. it follows that F(z)~G(z) for any z of Z. Finally. the third inequal-

i ty holds from lemma 4.2. Q. E. D. 

Re.ark to Theore. 4. L If X does not satisfy MC condition, the second inequal-

i ty. i. e.. F (z) ~ G (z). does not necessari ly hold. See Example 4.2. On the other 

hand. note that MC condition of X is invariably satisfied for any binary systems since 

the state spaces of the system and all the components are two-element totally ordered 

se ts. 

Theorem 4.1 shows that F (z) is always the better bound than G (z) if X satis-

fies MC condition and R is associated. From a physical point of view. F(z) is the 

lower bound for P (cV'(z ~)} when the lower bound of all the modules is regarded as 
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the precise reliability of them. Further, G (z) is the lower bound for P W'(l'.· )1 

which is directly derived from Theorem 3.3 and has no connection with the existence of 

the modules. 

From (4.7), we see that 

(4.16) R{XiEXi:Xi(X;):H;} ~ ITa;EM[t';(~bi)]R{XiEX;:x;~a;}. 

so that we define <l;{X;EX;:X;(x;)~b;} as 

(4.17) <l;{XiEXi;Xi(Xj)~b;} max IT R{XjEXj;Xj~a;}. 
bj~cj ajEM[t'j(~Cj)] 

Then the next Theorem holds. 

Theore. (.2. 

of Z, 

Under the same hypotheses of Theorem 4.1, it follows that for any z 

(4. 18) P {cp' (z ~)} ~ IT£EM[cJi'(z~)][I-IT[=.{l-R{xiE X;;x ;(xi)~b;}}] 

~ IT£EM[tli'(z~)][1 ....., IT (,,1 {1-Q.{x;E Xj:x i(Xi)~bi}}] 

~ F(z) ~ G(z). 

Proof: The first and fourth inequalities are obvious from Theorems 3.3 and 4. I 

respectively. Since b;,C;EY; and b;~c; imply 

R{XjEXi;Xj(Xj)~Cj} ~. R{XjEXj;X;(Xi)~bj}. 

we obtain that 

R{XjEXj;Xj(xj)~bi} ~ <l;{XiEXi:X;(Xi)~bj} for any bj of Y j . 

Thus, the second i n~qual i ty follows. 

The third inequality holds since we see that, from (4.17), for any b j of Y j. 

<l;{x;EX;;Xi(XI)~bi} ~ ITajEM[t'j(~bi)]R{XiEXi;xi~ai} Q.E.D. 

Now we will establish upper bounds on system reliability based on modular decompo-

sitions. Since al I results and their proof with respect to upper bounds are similarly 

gi ven. we present the Theorems corresponding to Theorems 4.1 and 4.2. 

Theore. (.3. 

of Z, 

Under the same hypotheses of Theorem 4.1, it follows that for any z 

(4. 19) p {cp' ( z ~)} ~ - IT [ 1 - IT [=1 {I - IT (1 - R {x i : a i ~ Xi} ) }] (~H ( z ) ) 
£EN[tli'(z~)] a;EN[t'i(~b;)] 

- IT IT [ 1 - IT (,,1 R {x i E Xi: a i ~ Xi} ] 

£EN[tli'(z~)] !EN[X'(b~)] 

- IT [ 1 - IT (,,1 R {x i E Xi; a; ~ Xi}] (~ I (z» 
~EN[cp'(z~)] 

Theore. 4.4. Under the same hypotheses of Theorem 4.1, it follows that for any z 

of Z, 

(4. 20) P{cp'(z~)} ~ 1 -ITbEN[tli'(z~)][1-IT(".I1-R{XiEXi;b;~x j(Xj)}}] 

~ 1 -ITbEN[tli'(z~)][l-IT(,,'{l-g;{XiEXi;bi~X j(Xi)}}] 

~ H(z) ~ I(z), 

w her e g; {x i EX.; ; b j ~ X ; (X i )} = m i n c i ~ b i IJ a i E N [X' I (C i ~ ) ] R {x; : a i ~ Xi} . 

In order to explain the behavior of the stochastic bounds mentioned above, we 

present two simple examples by using multi-state systems, which defined in 3.2 (3), in 
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the rest of this section. For convenience, both examples of multi-state systems 

(11 iEC Q j' S. rp) are assumed as follows: 

(I) The system is composed of four independent components, that is, C = {I, 2, 3, 4} 

(2) All the state spaces of the system and their components are restricted such as 

Qi=S= {O, I, 2} (iEC), 

(3) The modular decomposition {AI. A 2} of the system is such that AI = {I, 2} and 

A 2 = {3, 4}. From Definition 4,1. three multistate systems 
2 

(J1iEA
t

Q i' S I' Xl)' (l1iEA2Qi' S2' X 2). and (l1 j =I S j' s, </I) are defined as 

rp(x)=</I{x (x AI ) X (x A2 )} for any _x of 11 1'EC Q 1" - 1-' 2-
(4) To simplify the calculation, the reliabilities of all the four components arc 

ident i cal and let Pi be the probabi I i ty that the component takes the state i (i=O. 

1. 2) . 

In the following, R (i) denotes the system reliability P {rp'(i~)} obtained by 

Theorem 3.1. and F (j) and G (i) denote the lower bounds of P {rp'(j ~)} by (4.8) and 

(4.9) respect ively. where i=1. 2. 

BxalpJe '.1 rp, X I' X 2 and </I are given as follows: 

M [rp'(~O)] = {(0012), (0021), (0202), (1102). (2002), (0220), (1120), (2020), (0211), 

(l111),(2011)} , 

M[rp'(~I)]= {(0022), (0212), (1112), (2012), (0221), (1121), (2021), (2202), (2220), 

(22 II)} . 

M [ i' I ( ~ 0) ] = {( 0 O)} . M [ i'l (~ 1) ] = {( 02), (11), (20)} , 

M [ i' 2 ( ~ 0 ) ] = {( 0 2), (11), (20)} , M [ i' 2 ( ~ 1)] 00 {(l2 ), (21)} 

M [cV' ( ~ 0) ] = {( 0 1 ), (lO)} , M [cV' ( ~ 1) ] = {( 0 2), (11), (20)} . 

Note that X 1 and X 2 satisfy MC condition. The calculated resul ts are as follows: 

P0 PI P2 R (I) F (I) G (1) R (2) F (2) 

O. 10 O. 45 O. 45 0.84189 0.80429 0.45485 0.44651 O. 36528 

O. 45 O. 10 O. 45 0.48122 O. 31651 0.02582 0.18782 0.06239 

O. 45 O. 45 O. 10 O. 17178 0.08926 8.180e-4 0.01698 3.066e-3 

0.05 O. 05 0.90 0.98978 0.98818 0.77371 0.88898 0.87320 

0.05 O. 90 0.05 0.17622 0.16783 0.01124 0.01082 7.924e-3 

O. 90 O. 05 0.05 0.01089 3.743e-4 1. 15e-l0 5.125e-4 6.433e-1 

O. 33 O. 34 O. 33 0.53107 0.39150 0.04320 0.17183 0.07260 

Thus we see that G(J)~F(J)~R(ll for 1=1.2. 

BxalpJe.2 rp, Xl' X2 and </I are given as follows: 

M [rp' ( <;: 0) ] = i (0202). (0220). (2002), (2020). (1 III ), (0211), (2011)} 

M [rp' ( ~ 1) ] = {( 0222), (202 2), (11 0 2 ), (1120), (2211)} . 

M [ i' 1 ( ~ 0) ] = {( 02). (20)} , M [ i' 1 (~ 1) ] = {( 0 2), (11), (20)} 

M[i'2(~0)]= {(l1)} , M[i'2(~1)]= {(02), (11), (20)} . 

M [cV' ( ~ 0) ] = {( 01), (10)} , M [cV' ( ~ 1) ] = {( 0 2), (11), (20)} 

G (2) 

0.29589 

0.03538 

3.148c-4 

0.86962 

1. 403e-3 

1. 271e-9 

0.03468 
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Note that X 1 and X 2 do not satisfy MC condition. The calculated results are as fol-

lo\\s: 

P0 Pl P 2 R (1) F (1) G (1) R (2) F (2) G (2) 

O. 10 O. 45 O. 45 0.86417 0.79663 0.82070 0.54675 0.45806 0.53131 

O. 45 O. 10 O. 45 0.50349 0.34234 0.27425 0.20694 0.07964 0.15746 

O. 45 O. 45 O. 10 0.20823 0.08104 0.05618 0.03925 6.417e-3 0.02321 

0.05 O. 05 O. 90 0.99023 0.98856 0.98895 0.89325 0.88334 0.89258 

0.05 O. 90 O. 05 0.18049 0.16118 0.16745 0.08394 0.01480 0.08023 

O. 90 O. 05 O. 05 0.01517 1.07ge-3 8.521e-6 7.500e-4 1. 900 e-6 3.437e-5 

O. 33 O. 34 O. 33 0.58069 0.38752 0.36535 0.22221 0.10726 0.17952 

Thus since X 1 and X 2 do not satisfy MC condition in this example. we see that 

G (i);;:;; F (i) does not necessari ly hold. 

5. Co.parison of Co.putational Co.plexity 
We wi 11 present a rough estimation of the computational complexity for the system 

reliability and the stochastic bounds mentioned above. In order to avoid the compli

cated discussion. we treat the multistate system as an object of our investigation in 

this section. We assume the multi-state system (ni~cQ;. S.CP) satisfying that n is 

the number of all the components. m is the cardinality of the state space and r is 

the number of all the modules. 

In the following. Rc' Gc and F c denote the computational complexity needed 

for calculating the precise reliability P {If'(s~)}. the lower bounds G (s) and F (s) 

for any s(=O ..... m-I). respectively. where the computational complexity indicates 

the time complexity which counts an elementary operation. i.e .• an arithmetical opera

tion. as one step. Note that the precise reliability P {If'(s~)} is obtained by (3.5). 

and the lower bounds G (s) and F (s) are done by (3.9) and (4.8) respectively. 

Equat ion (3.5) means that all of the elements of If'(s~) should be ascertained 

wi thout omission so as to calculate the precise reliability. Noticing that the number 

of all the elements of n i~C Q; is mn we conclude that the computational complexi ty 

Rc to the precise reliability is O(m n). On the other hand. in order to calculate 

the lower bound G (s). all the maximal elements of If'«s) are necessary. 

to be the number of all the maximal elements of If'«s) for s=l, .... m-l, 

Letting ks 

from (3.9). 
m-I the computational complexi ty Gc is 0 (n ~ s=1 k s)' Supposing k = k s for any s(=l. ... 

. m-I). it follows that Gc is O(nmk). Let t i be the number of all the components 

of the i-th module for i=I, .... r. Let U is and v s be the number of all the maximal 

elements of X'; (s~) and t/j'«s). respectively. Similarly. supposing that t = t i' 

u = U is and v = v s for each i (=1. ...• r) and s(=1. ...• m-I). from (4.8). we see that 

the computational complexity Fc is O(m'max{n u. r v}}. 

Consequently. under several above assumptions. we have a rough estimation that the 

computational complexity as follows: 
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Rc=O(m n). Gc=O(nmk) and Fc='O(m'max{n u. r v)). 

Thus. in genera\. it is not feasible to calculate the precise reliability of a large 
and complex system. With respect to the computational complexity of stochastic bounds. 

we conclude that the method using the modular decomposition is more useful than that of 

no use. 
Finally. we demonstrate the two following case; 

Case 1 n = 100. m = 5. r = 10. t = 10. k = 50. u = 10. v = 5. 
R = 5100 = 7.9 X 10 69 

c 
G . 100 x 5 x 50 = 2.5 X 10 4 

c 
F = 5 x max (lOO x 10. 10 x 5) = 5.0 X 10 3 

C 

Case 2 n=10000. m=10. r=100. t=100. k=10000. u=200. v=50. 

R = 
C 

10 1 1!l1!l1!l1!1 

G = 
C 

10000 x 10 x 10000 = 1.0 X 10 9 

F = c 10 x max{10000 x 200. 100 x 50) 2.0xl0 7 

Ac know I edge.en t s 
The authors wish to thank the referees for their helpful comments and suggestions. 
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