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Abstract The essence of AHP is to evaluate objects in terms of the eigen vector of the comparison matrix.
But when the number of objects, n, is too large, it causes often worse reliability for an observer to evaluate
all paired comparisons at a time. So it is necessary to decompose the whole set of pairs into several classes,
and for each class to be evaluated by one observer. We propose the decomposition by BIBD (balanced
incomplete block design) well known in the field of experimental design or combinatorics. We show by
simulation experiments that our method gives better evaluations than the ordinary AHP.

In connection with these, we show that the logarithmic least square method, which has been proposed
by several authors, gives very good approximation to the eigen vector method when n is rather small, and
that the former completely coincides with the latter when n < 3, surprisingly.

1. Introduction

The essence of AHP (Analytic Hierarchy Process) is to evaluate objects in terms of the
eigen vector corresponding to the maximal eigen value of matrix whose (¢, j) element is the
ratio of evaluation of object 7 to object 7 [1, 2, 3]. The idea is to intend to unify local
informations taken by paired comparison into a global information.

But when the number of objects is too large, it causes often worse reliability for a observer
to evaluate all paired comparisons at a time. In such case, it is necessary to decompose the
whole set of pairs of objects into several blocks, and for each block to be observed by one
observer. It is important how to decompose the set of pairs. We propose the decomposition
by BIBD (Balanced Incomplete Block Design) well known in the field of experimental design
[4, 5]. And we show that this method is to give better evaluation under certain assumptions
by simulation experiments (§4). Further we propose the logarithmic least square method for
our problem, and show that this gives a good approximation to the eigen value method in

AHP (§3).

2. BIBD

Let E = {1,2,---,v} be the set of objects ¢ = 1,2,-.-,v. The number of pairs among E
is yCp = v(v—1)/2, and if v is large this becomes very large and an observer cannot compare
all such pairs at a time. Let the set of objects which an observer can accommodate with
sufficient reliability, be called an “allowable block”, and let us denote the size of allowable
block by k(< v).

Then we need to decompose the set of ,Cy pairs into the classes of size rC, and to
allocate several observers to these classes. Each observer makes paired comparisons in his
class. We unify these results and can get the evaluation on E.

For example, there are v = 7 applicants for a prize essay contest, and we try to judge
their essays and to decide ranking on them. Let the allowable block size be k = 3, that
is, one judge can read 3 essays and make paired comparisons on them. In this case, the
7C, = 21 pairs are decomposed into classes of size 3C; = 3. So we need 21/3 = 7 judges.
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Analysis of AHP by BIBD 13

We unify the results of 7 judges into the whole ranking on 7 applicants.

It is the problem how to decompose the set of ,C; pairs into blocks and how to unify the
results of observations on blocks into the whole evaluation. We propose the decomposition
by BIBD and the unification by the eigen value analysis used in AHP.

BIBD on E = {1,2,---,v} is the class D= {Bj,---, By} of subsets (called “blocks”)
B. C E(e=1,---,b) satisfying the followings; (i) for any t =1,---,b

|Be| = k (the block size is constant)

(ii) for anyt =1,---,v
[{e|i € Be,e=1,---,b}| = r (the replication number is constant)
(iii) for any ¢,5 = 1,---,v(i # 7)

|[{e|? € Be,j € Beye=1,---,b}} = A (the intersection number is constant)
(where |S| denotes the size of a set S.)

It is clear that (iii) implies (ii), so (i) and (iii) suffice for D to be BIBD. Specifically a
BIBD with A = 1 is called Steiner system and here we consider only Steiner system, which
is denoted by (v, k)—D.

Example 1. The class of subsets of £ = {1,2,---,7} shown in Table 1 is (7, 3)-D. The
pairs in each block are shown on the right hand of the block. All such pairs construct the
set of 7Cy pairs. In other word, the set of pairs in E is decomposed into pairs in blocks.

We can represent this situation in terms of

graph theory in the following way; To construct Table 1 (7, 3)-D
(v, k)-D is equivalent to decompose the set of B, = L2 4] —12 14,24
edges complete graph with v points into b com- B, = |2.3.5] — 23,25, 35
plete graphs each of which has k points. (— Fig. 1) By = 13, 4,61 — 34,36, 46
By = 14,5, 71 — 45,4757
Bs = 15,6, 11 — 56,51, 61
Bg = 16,7, 2| — 67 62, 72
B;= 17,1,3 —+ 71,7313
1
3

Fig. 1 BIBD decomposition
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14 1. Takahashi

By the graph theoretic representation stated in Example 1 we can easily have the fol-
lowing relations.

vr = bk (2.1)
_+C2_v(v-1)
b= ¥Ca  k(k—1) (22)

If a (v, k)-D exists then integers v and k satisfy (2.1) and (2.2) with integers r and &,
so for any integers v and k we do not necessarily have (v, k)-D. For example (8, 3)-D never
exists. But (9, 3)-D exists, so we can treat the case v = 8,k = 3 by taking one of objects in
(9, 3)-D as a dummy.

The conditions of existence and construction methods of (v, k)-D have been widely and
deeply researched in the field of experimental designs and combinatorial theories [4, 5].

In order to show why the decomposition by the (v,k)-D is appropriate, we propose
another rather natural decomposition shown in Table 2. Of course this D= {Bj,--- Br} is
not BIBD, where pair (1, 2) occurs twice in By and By, while pairs (1, 4) and (1, 5) do not
occur anywhere.

The author believes that (v, k)-D would give the best possible decompositions for our
problems. At the end of this section we give another (v, k)-D in Table 3.

Table 2 (7, 3)-D Table 3 (13, 4)-D

B, = {1,231 — 12,13, 23

B, = 2.3 4] — 23 24 34 B, =11,2,4, 100 ~ (1.2, (1,4, (1,10, (2 4). (2,10, (4.10)

By = 13,4, 5| — 34, 35,45 B, =12,3,5 111 — (23 (285 (211, 3.5 (311, (.11)

B, = 14.5 6] — 45 46, 56 By =13,4,6, 12 — (3.4), (3.6)., (3.12), (4.6), (4.12), (612

Bs = 156,71 — 56.57. 67 B, =14,5,7. 13t — 4,5, 4.7, 4 13). (6,7, (5 13), (7,13)

Bg= 16,711 —+67 61,71 B; =15.6,8 11 —(56). (5.8. (5.1 (6.8 (6.1. B 1)

B, = 17.1.2| —71.72 12 Bs =16.7.9.20 — (67 (69 62 (7.9 92, 92
B; =1{7,8,10,31 — (7.8), {7.10), (7.3). (8,10), (8.3), (10.3)
By =18.9,11,4] ~ (8,9, (8. 11), (8 4). (9.11), 9. 4. (11,4
By =19,10,12, 5/ — (9,10), (9.12). (9.5). (10, 12),(10.5). (12, 5)

Bio= 110, 11, 13, 6} — (10, 11), (10, 13), (10, 6). (11, 13),(11,6), (13, 6)
B =111,12,1,70 = (11,12)(11, 1), (11,7 (12, 1), (12,7, (1.7
B1,=112,13, 2,8 - (12,13),(12,2), (12,8, (13.2), (13.8). (2.8
B;3=113,1,3,90 — (13, 1), (13,3, (13,9, (1,3, (L9 (3.9

3. LLS, AHP estimation

Let {1,---,n} be the set of objects ¢ = 1,2,---,n. An observer observes the ratio of
evaluation object ¢ to object j and let us denote the observation by z;;.

We assume the statistical model of z;; to be

Tij = a5 - €5, a5 = wijw; (i < j,i,j =1~n)
zji = 1/xi (3.1)

Where w;(> 0) is the real evaluation of object 7 and is an unknown parameter, and e;;(> 0)
is an independent random variable representing the error of the observation. And we always
recognize that any multiples of [wy ---wy] are equivalent to [wy -« -wy] itself. Further we
assume that

E(lne;;) =0, V(lney;) = o?(n) (3.2)

and 0%(n) is a monotone increasing function of n, the number of objects to be observed.
Whether these assumptions are reasonable or not is a psychological or a physiological
problem, but we can agree with these assumptions as a trial scheme.
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Analysis of AHP by BIBD 15

The main purpose of AHP is to get estimates ; of wi(t = 1,---,n) by calculating the
eigen vector @ = [@y,---, %y} corresponding to the maximal eigen value A of the n x n
comparison matrix X = [z;;].

Of course we have other estimation methods. The most natural one is “logarithmic least
square (LLS)”. For simplicity let Z;; = Inz;;, @; = Inw; and &;; = Ine;;. Then we have

Ty = w; — W + &; (i<ii,j=1,---,n) (3.3)

Appling the least square method to (3.3) we have least square estimate w; of @;, and
taking inverse transform we have @; = exp(@;)(: == 1,---,n). This is LLS estimation.
For example let n = 3, then we have

F1p = W1 — W2 + 12, T13 = W1 — Wy + €13, Taz = Wy — W3 + €23 (3.4)

As the vector w = [wy,---,w,] multiplied by an arbitrary constant is equivalent to w
itself, we can assume wjwywz = 1, so we have

wy + Wy +wz =0 (3.5)
Applying least square method to (3.4), (3.5) and taking inverse transform we have

1/3

W1 = (212213) 3, Wy = (293593, W3 = (z31232)/° (3.6)

This estimation is very simple, but we have a surprising fact that w;(¢ = 1,2,3) in (3.6)
coincide with the components of the eigenvector corresponding to the maximal eigenvalue of
the comparison matrix X = [z;;]. That is, we have

Theorem 1. In the case < 3, LLS estimates coincide with AHP estimates.
Proof: In case of n = 2, we have easily

W1 = /12, W2 = VIn (3.7)

as the LLS estimates of wy, we respectively. And by direct calculation we have

X ﬁ)l =9 fl)l Kv — 1 12
iy 15} ’ T3 1
and the maximal eigen value of 2 x 2 comparison matrix is 2, so ;3 in (3.7) are the AHP

estimates.
In case of n = 3, from (3.6) we have

1z zi3] [d1 41
1 1 zaz| juwa| =A|de
31 z32 1 w3 w3

A=1+4r+1/r, r= Yri2223231

by direct calculation. But from Perron & Frobenius Theorem we can state that if a positive
matrix has a positive eigen vector then this corresponds to the maximal eigen value, (A
positive matrix (vector) means a matrix (vector) whose components are all positive). (See
the proof of the theorem 4 in [6]).

Like the case n = 3 we have general LLS estimates

W = (Iyzi)V™ i =1, ,m, (3.8)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



16 1. Takahashi

which can be stated simply as @; is the geometric mean of the ¢-th row of the comparison
matrix X.

But unfortunately they no longer coincide with AHP estimates for n > 3. Thus if
n > 3 then Theorem 1 does not hold. But through Theorem 1 we can state that if o?(n) is
reasonably small LLS estimates must be good approximations to AHP estimates even if n
is greater than 3. This also teaches us that our statistical model (3.1) is valid for the AHP
analysis.

4. Decomposition Methods by BIBD

Now we propose our decomposition methods by BIBD. We are given the set of objects
E ={1,2,.--,v} to be evaluated. Let the allowable block size k be far smaller than v. We
decompose F into blocks By,-- -, By which construct Steiner system (v, k)-D.

Step 1. For each B, == {1,082, - -, 0k} C E an observer observes the objects and gets
observation g4, by a paired comparison f3; to B4(t < z;t,8 = 1,---, k). Note that the
observation error of zg,5, (measured by V(In zg,5, = o(k)) is far smaller than the one
incurred by the observation in the whole set E.
Step 2. Let

Se = {‘Tﬁlyﬁz?zﬂxﬂa’""mﬂk—lﬂk} (4'1)
and let

S’C = {xﬂzlﬂ yTBafrs mﬂkﬂk—l}
={1/zp.p, /85> » 1/2pese}
fore=1,2,---b. (4.2)
Then by the properties of BIBD
($78)7 (55527 -V (S} S)

constructs the set of all paired comparisons zi;(,j = 1,---,v) from which we construct
the v X v comparison matrix X = [z;j]
Step 3. We apply the usual AHP to the comparison matirix X, that is, we calculate

the eigen vector w= [y, Wy, - - -, O,] corresponding the maximal eigen value of X. Then
w; is the desired estimate of w; in (3.1) (¢ =1,---,n).

We will show by several simulation examples that this decomposition method has higher
reliability than the ordinary direct method.

Example 3. (v =7,k = 3, BIBD decomposition)

Let wy,---,wy of (3.1) take the values shown in Table 4. Of course these are unknown
for the observers and are to be estimated. Further a;; = w;/w;(¢,7 = 1,---,7) are also
shown in Table 4.

For each block B, (shown in Table 2) an observer takes observations g, g,, g, g;, T,4s»
where

TiBe = OB.5,E.B, (4:3)
and eg,g, is a random number whose logarithm Ineg, g, normally distributes with zero mean
and variance 0%(3), by our model, (3.1) and (3.2) (For the actual value of 62(3), see (4.5)).

For e = 1,2,--+,7 5, = {xﬂlﬂz’zﬁlﬂavxﬂzﬂa} and Se = {zﬂZBI = l/xﬂsﬂl = l/zﬂlﬂwxﬂsﬂz
1/xg,8,} are whon in Table 5 in the matrix form

L zpp zpp,
Xe = $ﬂ2ﬁ1 1 ‘Tﬂzﬂs (44)
Ty TBspa 1

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Analysis of AHP by BIBD 17

Unifying X3,---, X7 we have the 7 x 7 comparison matrix X shown in Table 6, and
calculating the eigen vector for the maximal eigen value A of X we have the estimates
@y, -+, Wy shown also in Table 6. Comparing @; to w;(¢ =1 ~ 7) we can say that we have
generally fairly good estimates.

Tabte 4 7%7 {a,)

1 2 3 4 5 6 7
w =1 1|1 1.857  20.43 8.094 8.094 3.605 4.516
w,=0.538 2 |0.538 1 11.00 4.358 4.358 1.941 2.432
wy=0.049 3 ]0.04895 0.09091 1 0.3962  0.3962  0.1765  0.2211
wy=0.124 4 |0.1235 0.2294  2.524 1 1 0.4454  0.5579
ws=0.124 5 [0.1235 0.2294  2.524 1 1 0.4454  0.5579
ws=0.277 6 [0.2774  0.5152  5.667 2.245 2.245 1 1.253
wy;=0.221 7 {0.2214 0.4113  4.524 1.792 1.792 0.7983 1
Table 5 X;. X2, . X7
1 2 4 2 3 5
Bi=1.24 1]1 1.540  7.236 Be=12,3.50 2|1 13.05  6.171
Xp=  2]0.6493 1 4.269 Xz=  3(0.07665 1 0.4057
4(0.138  0.2342 1 5(0.1621  2.465 1
3 4 6
Ba=[3.4.6] 3|1 0.4033  0.1975 X .
Xz= 4[2.479 1} 0.3329 4 5 7
6[5.068 3004 1 3,=14,57 4|1 1.030  0.5590
5 6 1 X4= 0.9709 1 0.5544
7(1.789  1.804 1
Bs15.6.1i 5(1 0.3887 0.1135
Xs=  6[2.572 1 0.2632
1{8.814 3.800 1
7 : 3 T T R
B,=17.13 7|1 0.1870  4.361 3=16.7.2 61 1.226  0.5317
Xe=  1(5.347 1 19.33 Xe= 7/0.8160 1 0.3623
3(0.2293 0.05173 1 2{1.881  2.760 1
Table 6 7 X7 X={x;] (BIBD decomposition)
1 2 3 4 5 6 7 2 =7.029%4
11 1.540 19.33 7.236 8.314 3.800 5.347 =1
2 |0.6493 1 13.046  4.269 6.171 1.881 2.760 iz =0.6067
3 [0.05173 0.07665 1 0.4033  0.4057  0.1975  0.2293 | @, =0.0498
4 10.1382  0.2342 2.479 1 1.030 0.1129  0.5590 | ,=0.1222
5 [0.1135  0.1621 2.465  0.9709 1 0.3887  0.5544 | ws=0.1136
6 |0.2632  0.5317 5.063  3.004 2.572 1 1.226 6 =0.2916
7 |0.1870  0.3623 4.361  1.789 1.804 0.8160 1 w,=0.2132

Now we consider the actual value of ¢%(n) in our model (3.1). Of course this depends
on the given real problem. But we assume

o(3)% = 0.158%, 0%(4) = 0.250%, 0%(7) = 0.5%, 6%(13) = 0.980? (4.5)

as trial values in our simulations.

Here we assume that ¢ = 0%(n) is a linear function of the number N = ,,C; of paired
comparisons, that is > = a + bN. Of course this is not based on any psychological or
physiological knowledges, but it is certain that o depends on N and it is rather natural to
assume a linear function as a first approximation. Now a is determined by the condition;
0% = 0 when N = 1. And b is to be arbitrary as a scale parameter. Here we select the value
of b by the condition ¢(7) = 0.52 which is a standard case.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



18 1. Takahashi

Example 4. (v =7, direct method)
Here we will describe the usual AHP method applied directly to Table 4. We multiply
ai; by a random number ¢;; and have

zij = ajjei; (1 < 4,5 =1,--+,7)

where Ine;; normally distributes with zero mean and variance o%(7) = 0.52(— (4.5)), and
calculate zj; = 1/z;; then we have the comparison matriz X = [z;;] shown in Table 7.
Calculating the eigen vector for the maximal eigen value A we have estimates w;{z: = 1,---,7)
shown also in Table 7, quite worse than delete the ones in Table 6.

Table 7 X=[x;] (usual AHP)

1 2 3 4 5 6 7 A =7.323
1 1.731 13.29 7.942 8.944 1.437 4.561 =1

0.5777 1 11.68 4.720 6.245 2.188 4.173 2 =0.7679
0.07524  0.08562 1 0.3694 1.190 0.1597 0.3299 3 =0.0793
0.1259 0.2119 0.707 1 0.5543 0.3720 0.3892 w,=0.1303
0.1118 0.1601 0.8402 1.804 1 0.5835 0.6611 s =0.1460
0.6959 0.4570 6.262 2.688 1.714 1 2.150 26 =0.4139
0.2193 0.2396 3.031 2.569 1.513 0.4651 1 w7 =0.2201

Next we try to investigate another case v = 13,k = 4 in Examples 5, 6 along the same
line as above.

Example 5. (v =13, & = 4, BIBD decomposition)

We show w;i(1 = 1,---,13) and aij = wi/w;({,j = 1,---,13) in Table 8, and (13,4)-D
and its comparison observations in Table 9, where the logarithm of the random numbers
have the variance o%(4) = 0.250% (in (4.5)). Finally the unified comparison matrix X and
its maximal eigen value and the corresponding eigen vector are shown in Table 10. These
give us rather good estimates.

Example 6. (v = 13, direct method)

If an observer observes 13C3 paired comparisons i;(i < j;7,7 =1 ~ 13) at a time, then
the logarithm of observation error e;; has variance 02(13) = 0.980%(— (4.5)). We calculate
z;; = ai;e;; from Table 8 and the random numbers e;; with above mentioned properties.
X = [z;; and its maximal eigen value and its eigen vector are shown in Table 11. These
estimates almost have no reliability.

Table 8 13X13 [yl
1 2 3 4 5 [ 7 8 9 10 1 12 13

wp =0.1341 1|1 1111 1.235 1.372 1.524 1.6393 1.882 2.091 2.323 2.581 2.868 3.187 3.541
wz =0.1207 20.9 1 .11t 1.235 1,372 1.524 1.693 1.882 2.091 2.323 2.581 2.868 3.187
wy =0.1086 3|0.81 0.9 1 1.111 1.235 1.382 1.524 1.693 1.882 2.091 2.323 2.581 2.868
wa =0.0977 4]0.729 0.81 0.9 1 1.235 1.372 1.524 1.693 1.882 2.091 2.323 2.581

ws =0.0880 5]0.6561 0.729 0.81 0.9 1 1.111 1.235 1.372 1.524 1.693 1.882 2.091 2.323
ws =0.0792 6|0.5905 0.6561 0.729 0.81 0.9 1 1.111  1.235 1.372 1.524 1.693 1.882 -2.091
w7 =0.0713 7]0.5314 0.5905 0.6561 0.729 0.8l 0.9 1 1.111  1.235 1.372 1.524 1.693 1.882
wg =0.0641 8|0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111 1,236 1.372 1.524 1.693
wg =0.0577 9|0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111  1.235 1.372 1.524
wio=0.0519 10| 0.3874 0.4305 0.4783 0.5314 0.5905 0.6561 0.723 0.81 0.9 T 1.111  1.235 1.372
w1 =0.0468 11 |0.3487 0.3874 0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111  1.235
wiz=0.0421 120.3138 0.3487 0.3874 0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111
wi3=0.0379 13 |0.2824 0.3138 0.3487 0.3874 0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1
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Table 9 Xrl, Xa .. X1

1 2 a 10 2 3 5 n 3 1 6 12
1 1.272  1.057 3.144 2|1 0.9462 2.113  3.066 31 1.167 1.055 2.407
0.7862 1 0.9282 1.415 Xz= 3(1.057 1 1.388  1.666 Xa= 4]0.869 1 0.8383 2.667
0.9461 1.077 1 2.648 : 5(0.4733 0.7205 1 1.937 610.9479 1.193 1 1.954
0.3181 0.7067 0.3776 1 11|0.3262 0.6002 0.5163 1 2|0.4155 0.375 0.5118 1
4 5 7 13 5 6 8 1 6 7 9 2
1 1.189 1.55  1.523 511 1.328  1.523  1.004 6 |1 1135 1.904 0.7153
0.841 1 0.7647 1.949 Xs= 6[0.753 1 1.147  0.5841 | xXs= 7 0.8811 1 1.15  0.5734
0.6452 1.308 1 1.846 810.6566 0.8718 1 0.5108 9 [0.5252 0.8696 1 0.3708
0.6568 0.5132 0.5417 1 1109139 1.712 1.959 1 2 [1.398 1.744 2.697 1
7 8 10 3 8 9 n 4 9 10 12 5
1 1.077  0.9667 0.5356 811 1.553  0.6957 0.9597 o1 0.9799 1.421 0.7321
0.9285 1 0.9633 0.7553 Xg= 910.6439 1 1147 0.5774 Xo= 10|1.021 1 1.17  0.621
1.034  1.038 1 0.722 11]1.437 0.8718 1 0.4792 12| 0.7037 0.8547 1 0.56531
1.867 1.324 1.385 1 410z 1.732 2.087 1 5(1.366 1.613 1.769 1
10 11 13 6 11 12 1 7 12 13 2 8
1 0.9447 1.454 0.8606 111 0.9362 0.2237 0.511 1211 0.9769 0.2638 0.7886
1.059 1 1101 0.3994| Xu=12 [1.068 1 0.1358 0.62421] x,;=13 [1.024 1 0.2467 0.5901
3.6876 0.9082 1 0.3431 114.477 2,147 1 2.215 23.791 4.054 1 1.691
1.162 2.504 2.915 1 70915 1.602 04515 1 8|1.268 1.695 0.5914 1
13 i 3 9
1 0.2024 0.3372 0.8497
4.9 1 1.76  1.865
2.966 0.568 1 1.97
1177 0.5362 0.5076 1
Table 10 Xy, Xo, ... X413
1.0000 1.2720 1.7600 1.0570 0.9139 1.7120 2.2150 1.9590 1.8650 3.1440 4.4770 2.1470 4.9100
0.7862 1.0000 0.9462 0.9282 2.1130 1.3980 1.7440 1.6910 2.6970 1.4150 3.0660 3.7910 4.0540
0.5682 1.0570 1.0000 1.1670 1.3880 1.0550 1.8670 1.3240 1.9700 1.3850 1.6660 2.4070 2.9660
0.9461 1.0770 0.8569 1.0000 1.1890 0.8383 1.5500 1.0420 1.7320 2.6480 2.0870 2.6670 1.5230
1.0940 0.4733 0.7205 0.8410 1.0000 1.3280 0.7647 1.5230 1.3660 1.6130 1.9370 1.7690 1.9490
0.5841 0.7153 0.9479 1.1930 0.7530 1.0000 1.1350 1.1470 1.9040 1.1620 2.5040 1.9540 2.9150
0.4515 0.5734 0.5356 0.6452 1.3080 0.8811 1.0000 1.0770 1.1500 0.9667 1.9450 1.6020 1.8460
0.5105 0.5914 0.7553 0.9597 0.6566 0.8718 0.9285 1.0000 I.5530 0.9633 0.6957 1.2680 1.6950
0.5362 0.3708 0.5076 0.5774  0.7321 0.5252 0.8696 0.6439 1.0000 0.9799 1.1470 1.4210 1.1751
0.3181 0.7067 0.7220 0.3776 0.6200 0.8606 1.0340 1.0380 1.0210 1.0000 0.9447 1.1700 1.4540
0.2237 0.3262 0.6002 0.4792 0.5163 0.3994 0.5141 1.4370 0.8718 1.0590 1.0000 0.9362 1.1010
0.4658 0.2638 0.4155 0.3750 0.5653 '0.5118 0.6242 0.7886 0.7037 0.8547 1.0680 1.0000 0.9769
0.2024 0.2467 D0.3372 0.6568 0.5132 0.3431 0.5417 0.5901 0.8497 0.6876 0.9082 1.0240 1.0000
cigen value=13.343
* vector =
1.00000 0.88277 0.71639 0.70760 0.60639 0.62915 0.49856 0.46627 0.38128 0.41478 0.33556 0.31258 0.27811
P [ 23 b3 2 s b by g e g wn w2 w3
Table 11 13%13 X==[x,;] (usual AHP) T
1 2 3 4 5 6 7 8 9 10 11 12 13
1 1.774  1.071  2.175 1.919 0.5758 1.045 12.48 16.16 3.908 0.8363 1.902 3.884
0.5636 1 0.8771 3.227 1.781 0.4639 0.265) 1.411 1.370 0.9083 1.924 8.971 3.072
0.9338 1.140 1 6.522 1.000 2.094 0.4587 4.016 3.730 1.012 3.680 0.6331 2.824
0.4599 0.3099 0.1533 1 7.611  0.9521 1.959 0.1990 0.2546 0.8926 2.651 0.5842 3.456
0.5212 0.5615 0.999 0.1314 1 1.357  1.393  1.208 ©0.8352 1.392 8.979 6.493 0.7722
1.737  2.156 0.4776 1.050 0.7372 1 0.6666 2.710 8.762 10.76 0.6958 1.390 3.436
0.9574 3.772 2.180 0.5104 0.7178 1.500 1 1.085 0.7848 2.004 14.61 6.686 3.485
0.08013 0.7087 0.2490 5.024 0.8277 0.3691 0.921 1 1.584 0.5654 6.730 1.110 7.981
0.06187 0.7300 0.268f 3.927 1.197 0.1141 1.274 0.6312 1 1.145 1.349 0.5351 2.335
0.2559 1.101 0.9879 1.120 0.7182 0.09297 0.4989 1.869 0.8730 1 2.956  0.8129 1.162
1.196 0.5197 0.2718 0.3772 0.114 1.437 0.0684% 0.1486 0.7415 0.3383 1 0.8814 1.807
0.5258 0.1115 1.579 1.712 0.1540 0.7196 0.1496 0.9006 1.869 1.230 1.135 1} 0.05509
0.2574 0.3255 0.3541 0.2894 1.295 0.2911 0.2869 0.1253 0.4283 0.8563 0.5535 18.15 1
cigen value=19.80
eigen vector =
1 04795 06415 04551 04517 0.6925 0.7016 0.5000 03069 0.2703 02202 0.2479 0.3613
iy w2 w3 by ths s 7 by by o L% 2 i3
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At the end of this section we note that we can use LLS estimation (—§3) for our purpose.

First we apply LLS estimation (—(3.8)) to Table 6 (Example 3) and have @} as estimate
of wi(i = 1,---,7) (in Table 4). These are shown in Table 12, where ; (in Table 6) are
shown again for the comparison. (Of course W!s are standardized as @] = 1). We can see
that @} gives a surprisingly good approximation to @;(i = 1,---,7).

Applying LLS again to Table 7 we have Table 13. This also gives fairly good approxi-
mations. Next we have Table 14 from Table 10 and Table 15 from Table 11 by the same way
as above.

Table 12 Table 13 Table 14 Table 15
{Decomposition) (AHP) {Decomposition) (AHP)
iy » P ' iy o i oW w;’
1 ] o | 1 1 1 t | 1
2 0.6067 0.6061 2 0.7679 0.78601 2 08828 0.8966 2 04795 0.6032
3 0.0498 0.0498 3 00793 0.0755 3 07164 0.7354 3 06415 0.6837
4 01222 o128 4 01303 0.1273 4 07076 0.7126 4 0.4551 07680
5 01136 0.1137 5 0.1460  0.1385 5 0.6064  0.6093 5 04517 05189
6 02916 0.2904 6 0.4139 0.4067 6 06292 0.6439 6 06925 0.7705
7 02131 02134 702201 02224 7 04986 0.5102 707016 08428
(cigen  (LLS) (cigen  (LLS) 8 04663 04723 8  0.5000 0.4641
vector) vector) 9 03813 0.3926 9 03069 03240
10 0.4148 0.4206 10 0.2703 03635
11 0335 0.3354 1102202 02123
12 03126 0.3209 12 0.2479  0.2496
13 0.2781 0.2833 13 03613 0.2541
{cigen  (LIS) (cigen  (LIS)
vector) vector)

Generally we can say that the LLS estimation gives a good approximation to the eigen
vector estimation when the observation error is small and the number of objects is small.

The labor of the calculation of the LLS is far easier than the eigen vector method. The
former is easily done on a desk calculator of pocket size, but the latter needs at least a
personal computer. So the advantage of LLS method should be highly appreciated even in
the highly computerized countries like Japan, USA and etc. Nevertheless the author thinks
that the deep meaning of AHP is concealed in using the eigen vector for a estimation.

Conclusions

For the statistical model stated in (3.1) and (3.2) our BIBD method gives better results
than the usual AHP method. Further the LLS method (3.8) gives very good approximation
to the eigen value method. In our present research we neglect the block effects (that is, (4.3)
holds commonly for any blocks). But the evaluation criterion often depends on the judge
himself. So for such cases we should modify the assumption that (3.1) or (4.3) hold.
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