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A bstmct The essence of AHP is to evaluate objects in terms of the eigen vector of the comparison matrix. 
But when the number of objects, n, is too large, it causes often worse reliability for an observer to evaluate 
all paired comparisons at a time. So it is necessary to decompose the whole set of pairs into several classes, 
and for each class to be evaluated by one observer. We propose the decomposition by BIBD (balanced 
incomplete block design) well known in the field of experimental design or combinatorics. We show by 
simulation experiments that our method gives better evaluations than the ordinary AHP. 

In connection with these, we show that the logarithmic least square method, which has been proposed 
by several authors, gives very good approximation to the eigen vector method when n is rather small, and 
that the former completely coincides with the latter when n :s; 3, surprisingly. 

1. Introduction 
The essence of AHP (Analytic Hierarchy Process) is to evaluate objects in terms of the 

eigen vector corresponding to the maximal eigen value of matrix whose (i,j) element is the 
ratio of evaluation of object i to object j [1, 2, 3]. The idea is to intend to unify local 
informations taken by paired comparison into a global information. 

But when the number of objects is too large, it causes often worse reliability for a observer 
to evaluate all paired comparisons at a time. In such case, it is necessary to decompose the 
whole set of pairs of objects into several blocks, and for each block to be observed by one 
observer. It is important how to decompose the set of pairs. We propose the decomposition 
by BIBD (Balanced Incomplete Block Design) well known in the field of experimental design 
[4, 5]. And we show that this method is to give better evaluation under certain assumptions 
by simulation experiments (§4). Further we propose the logarithmic least square method for 
our problem, and show that this gives a good approximation to the eigen value method in 
AHP (§3). 

2. BIBD 
Let E = {I, 2,···, v} be the set of objects i = 1,2,···, v. The number of pairs among E 

is vC2 = v(v -1)/2, and if v is large this becomes very large and an observer cannot compare 
all such pairs at a time. Let the set of objects which an observer can accommodate with 
sufficient reliability, be called an "allowable block", and let us denote the size of allowable 
block by k(~ v). 

Then we need to decompose the set of vC2 pairs into the classes of size kC2 and to 
allocate several observers to these classes. Each observer makes paired comparisons in his 
class. We unify these results and can get the evaluation on E. 

For example, there are v = 7 applicants for a prize essay contest, and we try to judge 
their essays and to decide ranking on them. Let the allowable block· size be k = 3, that 
is, one judge can read 3 essays and make paired comparisons on them. In this case, the 
7C2 = 21 pairs are decomposed into classes of size 3C2 = 3. So we need 21/3 = 7 judges. 
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Analysis of AHP by BIBD 13 

We unify the results of 7 judges into the whole ranking on 7 applicants. 
It is the problem how to decompose the set of "C2 pairs into blocks and how to unify the 

results of observations on blocks into the whole evaluation. We propose the decomposition 
by BIBD and the unification by the eigen value analysis used in AHP. 

BlBD on E = {1,2,···,v} is the class D= {BI, ... ,Bb } of subsets (called "blocks") 
Be ~ E( e = 1, ... , b) satisfying the followings; (i) for any t = 1" .. , b 

IBe I = k (the block size is constant) 
(ii) for any i = 1, ... , v 

I{ e liE Be, e = 1, ... , b} I = r (the replication number is constant) 
(iii) for any i,j = 1" .. , v(i f. j) 

I{ e liE Be, j E Be, e = 1" .. , b}1 = A (the int.ersection number is constant) 
(where 151 denotes the size of a set 5.) 

It is clear that (iii) implies (ii), so (i) and (iii) suffice for D to be BIBD. Specifically a 
BIBD with A = 1 is called Steiner system and here we consider only Steiner system, which 
is denoted by (v, k)-D. 

Example 1. The class of subsets of E = {1,:2, ... ,7} shown in Table 1 is (7, 3)-D. The 
pairs in each block are shown on the right hand of the block. All such pairs construct the 
set of 7C2 pairs. In other word, the set of pairs in E is decomposed into pairs in blocks. 

We can represent this situation in terms of 
graph theory in the following way; To construct 
(v,k)-D is equivalent to decompose the set of 
edges complete graph with v points into b com
plete graphs each of which has k points. (~ Fig. 1) 
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Fig. 1 BIBD decomposition 

B. = 
Bs = 
Bs = 
B7 = 

Table 1 (7, 3)-0 

11,2,41 -+ 12, 14,24 
12, 3, 51 -+ 23, 25, 35 
13, 4, 61 -+ 34, 36, 46 
14,5,71 -+ 45, 47, 57 
15,6, 11 -+ 56, 51,61 
16, 7, 21 -+ 67, 62, 72 
17, 1,31 -+ 71, 73, 13 
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14 l. Takahashi 

By the graph theoretic representation stated in Example 1 we can easily have the fol
lowing relations. 

vr = bk 

b= v C2 = v(v-1) 
kC2 k(k - 1) 

(2.1) 

(2.2) 

If a (v, k)-D exists then integers v and k satisfy (2.1) and (2.2) with integers rand b, 
so for any integers v and k we do not necessarily have (v, k)-D. For example (8, 3)-D never 
exists. But (9, 3)-D exists, so we can treat the case v = 8, k = 3 by taking one of objects in 
(9, 3)-D as a dummy. 

The conditions of existence and construction methods of (v, k )-D have been widely and 
deeply researched in the field of experimental designs and combinatorial theories [4, 5]. 

In order to show why the decomposition by the (v, k)-D is appropriate, we propose 
another rather natural decomposition shown in Table 2. Of course this D= {B1,'" B7} is 
not BIBD, where pair (1,2) occurs twice in B1 and B7, while pairs (1,4) and (1, 5) do not 
occur anywhere. 

The author believes that (v, k)-D would give the best possible decompositions for our 
problems. At the end of this section we give another (v, k)-D in Table 3. 

Table 2 (7,3)·D Table 3 (13, 4)·0 

BI = 11, 2, 31 -- 12, 13,23 
BI = 11. 2, 4. 101 B2 = 12,3,41 -- 23, 24, 34 -- (1.2), (1,4), (1, 10), (2,4), (2,10), (4.10) 

B3 = 13,4,5\ -- 34, 35, 45 B2 = 12, 3, 5, 111 -- (2,3), (2,5), (2,11), (3,5). (3,11). (5. 11) 

B4 = 14,5,6\ -- 45, 46. 56 
B3 = 13, 4, 6.121 -- (3,4), (3.6), (3.12), (4.6), (4. 12), (6.12) 

Bs = 15,6,71 -- 56, 57, 67 
B, = 14, 5. 7. 131 -- (4,5), (4.7), (4, 13). (5,7). (5, 13), (7. 13) 

B6 = 16,7, 11 -- 67. 61, 71 
B5 = 15. 6, 8, 11 -- (5,6). (5,8). (5, 1). (6.8). (6. 1). (8,1) 

B7 = 17, 1. 21 --71,72.12 B6 = 16. 7, 9, 21 -- (6,7), (6,9), (6.2), (7.9), (9.2), (9.2) 

B7 = 17, 8, 10, 31 -- (7,8), (7,10), (7.3). (8,10), (8.3), (10.3) 

B8 = 18. 9, 11, 41 -- (8.9), (8. 11), (8.4), (9. 11). (9,4). (11. 4) 

B9 = 19.10.12.51 -- (9, 10). (9. 12). (9.5). (10.12). (10.5). (12. 5) 

B1O= 110, 11, 13. 61 -- (10,11), (l0, 13). (10,6). (11. 13), (11. 6). (13,6) 

BII = Ill, 12, 1. 71 -- (11, 12), (11, 1), (11,7), (12, 1). (12,7). (1.7) 

B 12 = 112, 13. 2, 81 -- (12.13), (12.2), (12.8), (13. 2). (13. 8). (2.8) 

B13= 11.3,1.3,91 -- (13. 1), (13, 3), (13,9), (1,3). (1.9), (3.9) 

3. LLS, AHP estimation 
Let {I,·." n} be the set of objects i = 1,2"", n. An observer observes the ratio of 

evaluation object i to object j and let us denote the observation by Xij' 

We assume the statistical model of Xij to be 

Xij = aij' eij, aij = w;/Wj (i < j,i,j = 1 f'V n) 

Xji = l/Xij (3.1 ) 

Where Wi(> 0) is the real evaluation of object i and is an unknown parameter, and eij(> 0) 
is an independent random variable representing the error of the observation. And we always 
recognize that any multiples of [Wl ... wn ] are equivalent to [Wl ... wn ] itself. Further we 
assume that 

(3.2) 

and (72(n) is a monotone increasing function of n, the number of objects to be observed. 
Whether these assumptions are reasonable or not is a psychological or a physiological 

problem, but we can agree with these assumptions as a trial scheme. 
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Analysis of AHP by BIBD 15 

The main purpose of AHP is to get estimates Wi of Wi (i = 1" .. , n) by calculating the 
eigen vector W = [WI,"', wnl corresponding to the maximal eigen value ,\ of the n x n 
comparison matrix X = [Xij]. 

Of course we have other estimation methods. The most natural one is "logarithmic least 
square (LLS)". For simplicity let Xij = lnxij, Wi = lnwi and eij = lneij. Then we have 

Xij = Wi - Wj + eij (i < j, i,j = 1"" ,n) (3.3) 

Appling the least square method to (3.3) we have least square estimate fui of Wi, and 
taking inverse transform we have Wi = exp(fui)(i== 1"", n). This is LLS estimation. 

For example let n = 3, then we have 

(3.4) 

As the vector W = [Wl,"" wnl multiplied by an arbitrary constant is equivalent to W 

itself, we can assume Wl W2 W3 = 1, so we have 

Applying least square method to (3.4), (3.5) and taking inverse transform we have 

Wl = (X12X13)1/3,W2 = (X23X2d1/3,W3 = (X31X32)1/3 

(3.5) 

(3.6) 

This estimation is very simple, but we have a surprising fact that Wi( i = 1,2,3) in (3.6) 
coincide with the components of the eigenvector corresponding to the maximal eigenvalue of 
the comparison matrix X = (x;j]. That is, we have 

Theorem 1. In the case :S 3, LLS estimates coincide with AHP estimates. 
Proof: In case of n = 2, we have easily 

as the LLS estimates of Wl, W2 respectively. And by direct calculation we have 

(3.7) 

and the maximal eigen value of 2 x 2 comparison matrix is 2, so Wl W2 in (3.7) are the AHP 
estimates. 

In case of n = 3, from (3.6) we have 

X12 
1 

X32 

.\ = 1 + r + l/r, r ::: -&",X12X23X31 

by direct calculation. But from Perron & Frobenius Theorem we can state that if a positive 
matrix has a positive eigen vector then this corresponds to the maximal eigen value, (A 
positive matrix (vector) means a matrix (vector) whose components are all positive). (See 
the proof of the theorem 4 in [6]). 

Like the case n = 3 we have general LLS estimates 

A (rrn )1/n. 1 Wi = j=1 Xij ~ = ,' .. , n, (3.8) 
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16 l. Takahashi 

which can be stated simply as Wi is the geometric mean of the i-th row of the comparison 
matrix X. 

But unfortunately they no longer coincide with AHP estimates for n > 3. Thus if 
n> 3 then Theorem 1 does not hold. But through Theorem 1 we can state that if 0-2(n) is 
reasonably small LLS estimates must be good approximations to AHP estimates even if n 
is greater than 3. This also teaches us that our statistical model (3.1) is valid for the AHP 
analysis. 

4. Decomposition Methods by BIBD 
Now we propose our decomposition methods by BIBD. We are given the set of objects 

E = {I, 2, ... , v} to be evaluated. Let the allowable block size k be far smaller than v. We 
decompose E into blocks B I ,···, Bb which construct Steiner system (v, k)-D. 

Step 1. For each Be == {;1J, ;12,' .. ,;1d ~ E an observer observes the objects and gets 
observation xp,p, by a paired comparison ;1t to ;1s(t < x; t, s = 1, ... , k). Note that the 
observation error of xp,p, (measured by V(1n xp,p, = 0-2(k)) is far smaller than the one 
incurred by the observation in the whole set E. 
Step 2. Let 

and let 

Se = {x P2P. , X P3P. , ... , X PkPk-. } 

= {1/xp,P2' l/xp,P3"'" l/xPk_.Pk} 
for e = 1,2, ... b. 

Then by the properties of BlBD 

(Sfs}t(Sf S2)U .. .u (SfSb) 

( 4.1) 

( 4.2) 

constructs the set of all paired comparisons Xij( i,j = 1" .. ,v) from which we construct 
the v x v comparison matrix X = [xii] 
Step 3. We apply the usual AHP to the comparison matirix X, that is, we calculate 
the eigen vector W= [w}, W2,"', wv ] corresponding the maximal eigen value of X. Then 
Wi is the desired estimate of Wi in (3.1) (i = 1" .. , n). 

We will show by several simulation examples that this decomposition method has higher 
reliability than the ordinary direct method. 

Example 3. (v = 7, k = 3, BlBD decomposition) 
Let W},' .. , W7 of (3.1) take the values shown in Table 4. Of course these are unknown 

for the observers and are to be estimated. Further aij = w;/wj(i,j = 1, .. ·,7) are also 
shown in Table 4. 

For each block Be (shown in Table 2) an observer takes observations XPl ,P2' XP.P3' XP2P3' 
where 

xp,p, = ap,p,ep,p, (4.3) 

and ep.p, is a random number whose logarithm lnep,p, normally distributes with zero mean 
and variance 0-2(3), by our model, (3.1) and (3.2) (For the actual value of 0-2(3), see (4.5)). 
For e = 1,2"",7 Se = {XP.P2,XP.P3,XP2P3} and Se = {XP2P. = l/xP3~1 = l/xpIP3,xP3P2 = 
1/ XP2P3} are whon in Table 5 in the matrix form 

[ 

1 XPIP2 
Xe = XP2P, 1 

XP3Pl XP3P2 
( 4.4) 
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Unifying Xl,"', X 7 we have the 7 X 7 comparison matrix X shown in Table 6, and 
calculating the eigen vector for the maximal eigen value ,\ of X we have the estimates 
Wl,"', W7 shown also in Table 6. Comparing Wi to wi(i = 1 "-' 7) we can say that we have 
generally fairly good estimates. 

Table 4 7X7 [a,,) 

wl=l 1.857 20.43 8.094 8.094 3.605 4.516 
w, =0.538 0.538 11.00 4.358 4.358 1.941 2.432 
w, =0.049 0.04895 0.09091 0.3962 0.3962 0.1765 0.2211 
w, =0.124 0.1235 0.2294 2.524 I 0.4454 0.5579 
w5=0.124 0.1235 0.2294 2.524 0.4454 0.5579 
w, =0.277 0.2774 0.5152 5.667 2.245 2.245 1.253 
w, =0.221 0.2214 0.4113 4.524 1.792 1.792 0.7983 I 

Table 5 XI. X2. "', Xl 

B,= 11.2.41 I I 1.540-7-'2~ 13,= 12.3.51 2 I 13.05 6.171 

X,== 2 0.6493 I 4.269 X2= 0.07665 I 0.4057 

4 0.138 0.2342 I 0.1621 2.465 I 

B,= 13.4.61 3 I 0.4033~~ 
X)== 2.479 I 0.3329 

5.063 3.004 I 
3,= 14.5.71 4 I 1.030 0.5590 

x.= 5 0.9709 I 0.5544 
7 1.789 1.804 

B515.6.11 5 I 0.3887 

Xs== 6 2.572 I 

I 8.814 3.800 

B,= 17.1.31 7 I 0.1870 
4.3:] 

3,= 16.7.21 6 I 1.226 

Xl=: I 5.347 19.33 X6= 0.8160 

3 0.2293 0.05173 1 1.881 2.760 

Table 6 7 X 7 X=[x,,) (BIBD decomposition) 

6 A =7.0294 

1.540 19.33 7.236 8.:114 3.800 5.347 101=1 

0.6493 I 13.046 4.269 6.171 1.881 2.760 Ih, =0.6067 

0.05173 0.07665 I 0.4033 o ·1057 0.1975 0.2293 1h,=0.0498 

0.1382 0.2342 2.479 I 1)30 0.1129 0.5590 Ih, =0.1222 

5 0.1135 0.1621 2.465 0.9709 0.3887 0.5544 1h5 =0.1136 
6 0.2632 0.5317 5.063 3.004 2 ~;72 1 1.226 1h,=0.2916 

0.1870 0.3623 4.361 I. 789 1 1104 0.8160 Ih, =0.2132 

Now we consider the actual value of 0'2(n) in our model (3.1). Of course this depends 
on the given real problem. But we assume 

(4.5) 

as trial values in our simulations. 
Here we assume that 0'2 = 0'2 (n) is a linear function of the number N = n C2 of paired 

comparisons, that is 0'2 = a + bN. Of course this is not based on any psychological or 
physiological knowledges, but it is certain that 0'2 depends on N and it is rather natural to 
assume a linear function as a first approximation. Now a is determined by the condition; 
0'2 = 0 when N = 1. And b is to be arbitrary as a scale parameter. Here we select the value 
of b by the condition 0'2(7) = 0.52 which is a standard case. 
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18 I. Takahashi 

Example 4. (v = 7, direct method) 
Here we will describe the usual AHP method applied directly to Table 4. We multiply 

aij by a random number eij and have 

Xij = aijeij (i < j,i,j = 1, ... ,7) 

where lneij normally distributes with zero mean and variance (7'2(7) = 0.52(~ (4.5)), and 
calculate Xji = 1/Xij then wc have the comparison matrix X = [Xij] shown in Table 7. 
Calculating the eigen vector for the maximal eigen value A we have estimates Wi( i = 1" .. , 7) 
shown also in Table 7, quite worse than delete the ones in Table 6. 

Table 7 X= lx,,] (usual AIlP) 

A =7.323 

I. 731 13.29 7.942 8.944 1.437 4.561 wl=l 
0.5777 1 11.68 4.720 6.245 2.188 4.173 W2 =0.7679 
0.07524 0.08562 1 0.3694 1.190 0.1597 0.3299 w, =0.0793 
0.1259 0.2119 0.707 1 0.5543 0.3720 0.3892 w. =0.1303 
0.1118 0.1601 0.8402 1.804 0.5835 0.6611 w5=0.1460 
0.6959 0.4570 6.262 2.688 1.714 1 2.150 w6=0.4139 
0.2193 0.2396 3.031 2.569 1.513 0.4651 w7=0.2201 

Next we try to investigate another case v = 13, k = 4 in Examples 5, 6 along the same 
line as above. 

Example 5. (v = 13, k = 4, BIBD decomposition) 
We show wi(i = 1"" ,13) and aij = w;/wj(i,j = 1, ... ,13) in Table 8, and (13,4)-D 

and its comparison observations in Table 9, where the logarithm of the random numbers 
have the variance (7'4(4) = 0.2502 (in (4.5)). Finally the unified comparison matrix X and 
its maximal eigen value and the corresponding eigen vector are shown in Table 10. These 
give us rather good estimates. 

Example 6. (v = 13, direct method) 
If an observer observes 13C2 paired comparisons xij(i < j;i,j = 1 '" 13) at a time, then 

the logarithm of observation error eij has variance (7'2(13) = 0.9802 ( ~ (4.5)). We calculate 
Xij = aijeij from Table 8 and the random numbers eij with above mentioned properties. 
X = [Xij and its maximal eigen value and its eigen vector are shown in Table 11. These 
estimates almost have no reliability. 

Table 8 13X13 fa;,1 

10 11 12 13 

WI =0.1341 1 1 1.111 1.235 1.372 1.524 1. 6393 1.882 2.091 2.323 2.581 2.868 3.187 3.541 
W2 =0.1207 2 0.9 1 1.111 1.235 1.372 1.524 1.693 1.882 2.091 2.323 2.581 2.868 3.187 
WJ =0.1086 3 0.81 0.9 1 1.111 1.235 1.382 1.524 1.693 1.882 2.091 2.323 2.581 2.868 
w. =0.0977 0.729 0.81 0.9 1.235 1.372 1.524 1.693 1.882 2.091 2.323 2.581 
W, =0.0880 0.6561 0.729 0.81 0.9 1 1.111 1.235 1.372 1.524 1.693 1.882 2.091 2.323 
W6 =0.0792 0.5905 0.6561 0.729 0.81 0.9 1.111 1.235 1.:l72 1.524 1.693 1.882 . 2.091 
W7 =0.0713 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111 1.235 1.372 1.524 1.693 1.882 
w, =0.0641 8 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111 1.235 1.372 1. 524 1.693 
Wg =0.0577 9 0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111 1.235 1.372 1.524 
wlo=0.0519 10 0.3874 0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1.111 1.235 1.372 
WII =0.0468 11 0.3487 0.3874 0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1 1.111 1.235 
wl2=0.0421 12 0.3138 0.3487 0.3874 0.4305 0.4783 0.5314 0.5905 0.6561 0.729 0.81 0.9 1.111 
w,,=0.0379 13 0.2824 0.3138 0.3487 0.3874 0.4305 0.4783 0.5314 0.5905 0.65610.729 0.81 0.9 
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Table 9 XI. X, . ... XI3 

IO 2 3 5 11 12 

I I 1.272 1.057 3.144 2 I 0.9162 2.;~~ 
I I. 388a.666 

3 1 1.167 1.055 2.107 
0.8383 2.667 

1.951 
0.5118 I 

2 0.7862 I 0.9282 1.415 3 1.057 
5 0.4733 

11 0.3262 

4 0.869 
4 0.9161 1.077 2.618 0.7205 I 1.937 6 0.9179 1.193 

2 0.4155 0.375 IO 0.3181 0.7067 0.3776 I 0.6002 0.5163 I 

13 
---~----~ 

4 1 1.189 1.55 1.523 5 I 1.328 1.523 1.091 
0.5811 
0.5105 

I 

1.135 1.904 0.7153 
0.5731 
0.3708 

X."'" 5 0.841 1 0.76-17 1.949 6 0.753 1.147 X6= 7 0.8811 I 1.15 
7 0.6452 1.308 1 1.816 8 0.6566 0.8718 I 0.5252 0.8696 1 

1.398 1.741 2.697 13 0.6568 0.5132 0.5417 I 1 0.9139 I. 712 I. 959 

10 11 10 12 

7 I 1.077 0.9667 0.5356 
0.9633 0.7553 
I 0.722 
1.385 I ~

~--.------~ ... 

8 I 1.553 0.6957 0.9597 
9 0.6439 I 1.117 0.5774 

11 1.437 0.8718 I 0.4792 
4 1.012 I. 732 2.0g7 1 

9 1 0.9799 1.421 0.7321 
0.621 
0.56531 

X,= 8 0.9285 I XII= 10 1.021 1.17 
10 1.031 1.038 
3 1.867 1.324 

12 0.7037 0.8547 1 
5 1.366 1.613 1.769 -----------

10 11 13 11 12 12 13 
-------. 

10 1 0.9447 1.454 0.8606 
0.3994 
0.3431 

11 I 0.9362 o. n37 0.511 

X02=1;211i1.024 
0.9769 0.2638 0.7886 

0.2.467 0.5901 X,,=II 1.059 1.101 X,,=12 1.068 0.H58 0.62421 

3 3.6876 0.9082 I I 4.477 2.147 I 2.215 2 .791 4.054 1.691 

6 1.162 2.504 2.915 
----' 

71.945 1.602 0.1;15 I 8 1.268 1.695 0.5914 I 
-------~ 

13 
XI3= 1 

13 

o 2024'- O~3372 O. 8~91 
4.94 1 I. 76 1.865 
2.966 0.568 1 1.97 

1.:.1~_O.:2.3~2 __ ~5_0~--'~_J 

1.0000 1.2720 1.7600 1.0570 0.9139 1.7120 2.2150 .9590 1.8650 3.1410 4.1770 2.1470 4.9400 

0.7862 1.0000 0.9462 0.9282 2.1130 1.3980 1.7440 1.6910 2.6970 1.4150 3.0660 3.7910 4.0540 

0.56821.05701.0000 1.1670 1.3880 1.05,,0 1.8670 1.3240 1.9700 1.3850 1.66602.40702.9660 

0.9461 1.0770 0.8569 1.0000 1.1890 0.8383 1.5500 1.0420 1.7320 2.6480 2.0870 2.6670 1.5230 

1.0940 0.4'733 0.7205 0.8410 1.0000 1.3280 <t.7617 1.5230 1.3660 1.6130 1.9370 1.7690 1.9490 

0.5841 0.7153 0.9479 1.1930 0.7530 1.0000 1.1350 1.1470 1.9040 1.1620 2.5040 1.9540 2.9150 

0.4515 0.5734 0.5356 0.6452 1.3080 O.BBII 1.0000 1.0770 1.1500 0.9667 1.9450 1.6020 1.8460 

0.5105 0.5914 0.7553 0.9597 0.6566 0.8718 0.9285 1.0000 t.5530 0.9633 0.6957 1.2680 1.6950 

0.5362 0.3708 0.5076 0.5774' 0.7321 0.5252 0.8696 0.6439 1.0000 0.9799 1.1470 1.4210 1.1751 

0.3181 0.7067 0.7220 0.3776 0.6200 0.8606 1.0340 1.0380 1.0210 1.0000 0.9447 1.1700 1.4540 

0.2237 0.3262 0.6002 0.4792 0.5163 0.3994 0.5141 l.4370 0.8718 1.0590 1.0000 0.9362 1.1010 

0.4658 0.2638 0.4155 0.3750 0.5653 '0.5118 0.6242 0.7886 0.7037 0.8547 1.0680 1.0000 0.9769 

0.2024 0.2467 0.3372 0.6568 0.5132 0.3431 0.5417 0.5901 0.8497 0.6876 0.9082 1.0240 1.0000 

• eig('n valu('"= 13.343 · v('clor 

1.00000 0.88'177 0.71639 0.70760 0.60639 0.6291S 0.498S6 0.46627 0.38128 IU1478 0.33S.56 O.:1l258 0.2.]811 
"'I w... Ut] w~ W5 W6 ti'7 t08 W9 Wl0 lOll ",12 W13 

Table 11 13X 13 x·· [x,,] (usual AIIP) 

10 11 12 13 

774 1.071 2.175 1.919 0.5758 1.045 12.48 1616 3.908 0.8363 1.902 3.884 

0.5636 0.8771 3.227 1.781 0.4639 0.2651 1.411 1.370 0.9083 1.924 8.971 3.072 

0.9338 1.140 1 6.522 1.000 2.094 0.4587 4.016 3.730 1.012 3.680 0.6331 2.824 

0.4599 0.3099 0.1533 1 7.611 0.9521 1.959 0.1990 0.2546 0.8926 2.651 0.5842 3.456 

0.5212 0.5615 0.999 0.1314 1 1.357 1.393 1.208 0.8352 1.392 8.979 6.493 0.7722 

I. 737 2.156 0.4776 1.050 0.7372 1 0.6666 2.710 8.762 10.76 0.6958 1.390 3.436 

0.9574 3.772 2.180 0.5104 0.7178 1.500 1.085 0.7848 2.004 14.61 6.686 3.485 

0.080130.7087 0.2490 5.024 0.8277 0.3691 0.921 1.584 0.5654 6.730 1.110 7.981 

0.061870.7300 0.2681 3.927 1.197 0.1141 1.274 0.6312 1.145 1.349 0.5351 2.335 

0.2559 1.101 0.9879 1.120 0.7182 0.092970.4989 1.869 0.8730 I 2.956 0.8129 1.162 
1.196 0.5197 0.2718 0.3772 0.114 1.437 0.0684;'.0.1486 0.1415 0.3383 I 0.88\4 1.807 

0.5258 0.1l15 1.579 1.712 0.1540 0.7196 0.1496 0.9006 1.869 1.230 1.135 0.0550 

0.2574 0.3255 0.3541 0.2894 1.295 0.2911 0.2869 0.1253 0.4283 0.8563 0.5535 18.15 

cigell valu('= 19.80 

• eigen vector = 
0.4795 0.6·IIS 0.4.5.51 0.4517 0.6925 0.7016 O . .5IXX) 0.3069 0.2703 0.2202 0.2479 0.3613 

w, w, w, w, 
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At the end of this section we note that we can use LLS estimation (----t§3) for our purpose. 
First we apply LLS estimation (----t(3.8)) to Table 6 (Example 3) and have w; as estimate 

of wi(i = 1"",7) (in Table 4). These are shown in Table 12, where Wi (in Table 6) are 
shown again for the comparison. (Of course wis are standardized as w~ = 1). We can see 
that w; gives a surprisingly good approximation to wi(i = 1,,··,7). 

Applying LLS again to Table 7 we have Table 13. This also gives fairly good approxi
mations. Next we have Table 14 from Table 10 and Table 15 from Table 11 by the same way 
as above. 

Tab!. 12 Table 13 Tabl(' 14 Tahl(' 15 

(Decomposition) (AHP) (()('composition) (AHI') 

- -----"-
Wo w: w, wo' Wo w' w, 1.0/ 

I I 

0.6067 0.6061 2 0.7679 0.78601 0.8828 0.8966 0.4795 0.6032 
0.0498 0.0498 3 0.0793 0.075~, 0.7164 0.7354 0.6415 0.6837 
0.1222 0.1218 4 0.1303 0.127:l 0.7076 0.7126 0.4.>51 0.7600 
0.1136 0.11:17 0.1460 0.138~, O.f,Of>4 O.fi{)!n 0.4517 IJ.5 I 119 

6 0.2916 0.2904 0.4139 0.4067 0.6292 O.643!) O.G92S O.77IJ5 
7 0.2131 0.2134 7 0.2201 0.2224 0.4!186 0.5102 0.7016 0.8428 

(cigen (LLS) (rigell (LLS) 0.4663 0.4723 0 .. 1000 0.4641 
vector) vector) 0.3813 0.3926 9 0.3069 0.3240 

10 0.4148 0.4206 10 0.2703 0.3635 
11 0.3356 0.3354 11 0.2202 0.2123 
12 0.3126 0.3209 12 0.2479 0.2496 
13 0.2781 0.2833 13 0.:1613 0.2.141 

(cigrn (US) (rigell (US) 
vector) v('('lor) 

Generally we can say that the LLS estimation gives a good approximation to the eigen 
vector estimation when the observation error is small and the number of objects is small. 

The labor of the calculation of the LLS is far easier than the eigen vector method. The 
former is easily done on a desk calculator of pocket size, but the latter needs at least a 
personal computer. So the advantage of LLS method should be highly appreciated even in 
the highly computerized countries like Japan, USA and etc. Nevertheless the author thinks 
that the deep meaning of AHP is concealed in using the eigen vector for a estimation. 

Conclusions 

For the statistical model stated in (3.1) and (3.2) our BIBD method gives better results 
than the usual AHP method. Further the LLS method (3.8) gives very good approximation 
to the eigen value method. In our present research we neglect the block effects (that is, (4.3) 
holds commonly for any blocks). But the evaluation criterion often depends on the judge 
himself. So for such cases we should modify the assumption that (3.1) or (4.3) hold. 
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