A POLYNOMIAL-TIME BINARY SEARCH ALGORITHM FOR THE MAXIMUM BALANCED FLOW PROBLEM

Akira Nakayama
Otaru University of Commerce

(Received Janualy 20, 1988; Revised March 20, 1989)

Abstract

We consider the maximum balanced flow problem of a two-terminal network N, i.e., a maximum flow problem with an additional constraint described in terms of a balancing rate function $\alpha: A \rightarrow \mathbf{R}_{+}-\{0\}$, where A is the arc set of N and \mathbf{R}_{+}is the set of nonnegative reals. In this paper, we propose a polynomial time algorithm for the maximum balanced flow problem, on condition that all given functions in N are rational. The proposed algorithm, which is composed of a binary search algorithm and Dinic's maximum flow algorithm with a parameter, requires $O\left(\max \left\{\log \left(c^{*}\right), m \log \left(\eta^{*}\right), n m\right\} T(n, m)\right)$ time, where $c^{*}=\max \left\{c^{\circ}(a): a \in A\right\}$ for positive integral arc capacities $\left(c^{\circ}(a): a \in A\right)$ and $\eta^{*}=\max \{\eta(a): a \in A\}$ for $\alpha(a) \equiv \zeta(a) / \eta(a) \leq 1$ such that $\zeta(a)$ and $\eta(a)$ are positive integers, and $T(n, m)$ is the time for the maximum flow computation for a network with n vertices and $m=|A|$ arcs.

1. Introduction

Minoux [10] considered the maximum balanced flow problem, i.e., the problem of finding a maximum flow in a two-terminal network such that each arc flow value of the underlying graph is bounded by a fixed proportion of the total flow value from source s to sink t. The maximum balanced flow problem is motivated by Minoux's research of reliability analysis of communication networks. If a flow from s to t is balanced, then it is guaranteed that the value of the blocked arc flow is at most the fixed proportion of the total flow value from s to t.

Several algorithms $[2,3,10,11,13]$ are proposed for the maximum balanced flow problem. Cui $[2,3]$ showed a simplex and a dual simplex methods without cycling on the underlying graph G of two-terminal network. When balancing rate functions are constant, Minoux's algorithm [10] and that of Nakayama [11] are proposed. The former needs $O\left(p_{\max }{ }^{2} S(n, m)\right)$ time, where $p_{\max }$ is the maximum number of arc disjoint directed paths from source to sink of G and $S(n, m)$ is the complexity of the shortest path problem for a network with n vertices and m arcs and with a nonnegative arc length function. The latter takes $O(\min \{m,\lfloor 1 / r\rfloor\} T(n, m))$ time, where $\alpha(a)=r(a \in A)$ for given balancing rate function $\alpha: A \rightarrow \mathbf{R}_{+}-\{0\} \quad\left(\mathbf{R}_{+}\right.$is the set of nonnegative reals.), some real r and the arc set A of G, and $T(n, m)$ is the time for the maximum flow computation for a. two-terminal network with n vertices and m arcs, and $\lfloor 1 / r\rfloor$ is the maximum integer less than or equal to $1 / r$. For general balancing rate functions, Zimmermann [13] proposed an algorithm with $O\left(T(n, m)^{2}\right)$ computation time.

On the other hand, Ichimori et al. $[7,8]$ considered the weighted minimax flow problem, and Fujishige et al. [5] pointed out the equivalence of the maximum balanced flow problem and the weighted minimax flow problem. When capacity function $c: A \rightarrow Z_{+}$and weight function $w: A \rightarrow \mathbf{Z}_{+}$are given for the set \mathbf{Z}_{+}of nonnegative integers, the algorithm $[8]$ takes $O(T(n, m) P)$ computation time, where
$P=\log (\max \{c(a) w(a): a \in A\})$. The algorithm [7] runs in $O\left(T(n, m)^{2}\right)$ time for general weight functions, having the same speed as Zimmermann's.

We can see the minimax transportation problem, studied by Ahuja [1],of finding a feasible flow ($x(a): a=(i, j) \in I \times J)$ from I to J such that $\max \{c(a) x(a)$: $a=(i, j) \in I \times J\}$ is minimum, where I is a set of origins, J is a set of destinations and $c(a)$ is the cost of unit shipment on each arc $a=(i, j) \in I \times J$. The minimax transportation problem may be regarded as a special version of the weighted minimax flow problem.

The objective of the present paper is to propose a polynomial time algorithm for the maximum balanced flow problem of a two-terminal network N, on condition that all given functions including $\alpha: A \rightarrow \mathbf{R}_{+}$in N are rational. We put $\alpha(a)=\varsigma(a) / \eta(a)$ ($a \in A$) for some two positive integers $\zeta(a)$ and $\eta(a)$. The total complexity is $O\left(\max \left\{\log c^{*}, m \log \eta^{*}, n m\right\} T(n, m)\right)$, where $c^{*}=\max \left\{c^{\circ}(a): a \in A\right\}$ for arccapacities $c^{o}(a) \in \mathbf{Z}_{+}-\{0\}(a \in A), \eta^{*}=\max \{\eta(a): a \in A\}$. The proposed algorithm, which is composed of a binary search algorithm and Dinic's maximum flow algorithm with a parameter, will be expected to be faster than known algorithms in case that all input data are rational.

2. The Maximum Balanced Flow Problem

Let $G=(V, A)$ be a directed graph where V is the vertex set and A is the arc set of G. For two capacity functions $\boldsymbol{c}^{o}: A \rightarrow \mathbf{R}_{+}$and $c_{o}: A \rightarrow \mathbf{R}_{+}$, a balancing rate function $\alpha: A \rightarrow \mathbf{R}_{+}-\{0\}$ and a function $\beta: A \rightarrow \mathbf{R}$, consider a two-terminal network $N=\left(G=(V, A), c^{o}, c_{o}, \alpha, \beta, s, t\right)$ where \mathbf{R}_{+}is the set of nonnegative reals, \mathbf{R} is the set of reals, s is the source and t is the sink of G. The maximum balanced flow problem (P) for network N is formulated as follows.
$(P):$ Maximize $f\left(a^{*}\right)$

> subject to

$$
\begin{equation*}
D \cdot f=0 \tag{1}
\end{equation*}
$$

(

$$
\begin{array}{ll}
c_{o}(a) \leq f(a) \leq c^{o}(a) & (a \in A), \\
f(a) \leq \alpha(a) f\left(a^{*}\right)+\beta(a) & (a \in A), \tag{3}
\end{array}
$$

where arc $a^{*}=(t, s) \notin A$ is added to G and D is the vertex-arc incidence matrix of G. We assume that c^{o}, c_{o} and β are integral, and that $c^{o}(a)>\beta(a) \quad(a \in A)$ and $\alpha(a) \equiv \zeta(a) / \eta(a) \leq 1 \quad(a \in A)$ for some positive integers $\zeta(a)$ and $\eta(a)$. Define θ by
(4) $\quad \theta=\prod\{\eta(a): a \in A\}$.

If the function $f: A^{*} \rightarrow \mathbf{R}_{+}\left(A^{*}=A \cup\left\{a^{*}\right\}\right)$ satisfies (1) $\sim(3)$, then f is called a balanced flow in network N. Let f^{*} be the value maximizing $f\left(a^{*}\right)$ in N, and define the boundary $\partial f: V \rightarrow \mathbf{R}$ of a function $f: A^{*} \rightarrow \mathbf{R}_{+}$in N by

$$
\begin{equation*}
\partial f(v)=\sum\left\{f((v, i)):(v, i) \in A^{*}\right\}-\sum\left\{f((i, v)):(i, v) \in A^{*}\right\}, \tag{5}
\end{equation*}
$$

where $v \in V$. Associated with problem (P), consider the following two problems (P^{*}) for network $N^{*}=\left(G=(V, A), c^{o}, c_{o}, s, t\right)$:
$\left(P^{*}\right):$ Maximize $g\left(a^{*}\right)$
subject to (1) and (2), where f should be replaced by g,
and $(P(y))$ for network $N(y)=\left(G=(V, A),\left(c^{\prime}(a, y): a \in A\right), c_{o}, \beta, s, t\right)$, where y is a parameter and $c^{o}(a, y)=\min \left\{c^{o}(a), \alpha(a) y+\beta(a)\right\}$:

$$
\begin{align*}
(P(y)) & : \text { Maximize } f\left(a^{*}\right) \\
& \text { subject to constraint (1) and } \\
& c_{o}(a) \leq f(a) \leq c^{\circ}(a, y) \quad(a \in A) . \tag{6}
\end{align*}
$$

Note that $(P(y))$ can be regarded as a maximum flow problem with parameter y in capacities ($c^{\circ}(a, y): a \in A$).

Proposition 1. Let $f^{* *}(y)$ be the value maximizing $f\left(a^{*}\right)$ in network $N(y)$. If problem (P) is feasible, then we have $f^{*}=\max \left\{y: f^{* *}(y)=y\right\}$. \square

Define the capacity $c(A(S))$ of a cut $A(S)=A^{+}(S) \cup A^{-}(S)$ by

$$
c(A(S))=\sum\left\{c^{o}(a): a \in A^{+}(S)\right\}-\sum\left\{c_{o}(a): a \in A^{-}(S)\right\}
$$

where for $S \subset V(s \in S, t \notin S), A^{+}(S)=\{(i, j) \in A: i \in S, j \notin S\}$ and $A^{-}(S)=\{(i, j) \in A: j \in S, i \notin S\}$. A minimum cut is defined to be a cut having the minimum capacity. Then we have:

THEOREM 2 [4]. For any network the maximum flow value from the source to the sink is equal to the capacity of a minimum cut.

Let $A(S, y)$ be a minimum cut in network $N(y)$ at y, and
$K^{\prime}(S, y)=\left\{a \in A^{+}(S, y): c^{o}(a)>\alpha(a) y+\beta(a)\right\}$ and $K^{\prime \prime}(S, y)=A^{+}(S, y)-$ $K^{\prime}(S, y)$. From theorem 2 we have $f^{* *}(y)=U(S, y) y+W(S, y)$, where $U(S, y)=\sum\left\{\alpha(a): a \in K^{\prime}(S, y)\right\}$ and $W(S, y)=\sum\left\{\beta(a): a \in K^{\prime}(S, y)\right\}+$ $\sum\left\{c^{o}(a): a \in K^{\prime \prime}(S, y)\right\}-\sum\left\{c_{o}(a): a \in A^{-}(S)\right\} . U(S, y)$ is called slope in $N(y)$ at y. Define b^{o} and b_{o} by

$$
\begin{equation*}
b^{o}=\max \left\{\left(c^{o}(a)-\beta(a)\right) / \alpha(a): a \in A\right\} \tag{7}
\end{equation*}
$$

(8) $b_{o}=\max \left\{\max \left\{\left(c_{o}(a)-\beta(a)\right) / \alpha(a): a \in A\right\}, 0\right\}$.

3. Algorithm for the Maximum Balanced Flow Problem

Consider two functions $z=f^{* *}(y)$ and $z=y$ in a (y, z)-plane. From proposition 1, if problem (P) is feasible then the optimal value of (P) is the maximum y^{*} such that $\left(y^{*}, y^{*}\right)$ is an intersection point of $z=f^{* *}(y)$ and $z=y$. The outline of our algorithm is composed of the following two parts 1 and 2 , though the detailed description will be shown in subsequent sections:

Part 1: By a binary search algorithm, we find y_{o} and y° such that $y_{o} \leq f^{*} \leq y^{o}$ and $y^{o}-y_{o}<\gamma$ for some fixed value $\gamma \in \mathbf{R}_{+}$.

Part 2: We find f^{*} by Dinic's maximum flow algorithm with parameter y satisfying $y_{\circ} \leq y \leq y^{o}$.

3.1 Algorithm of Part 1

In later discussion, we assume that problem (P^{*}) is feasible. Let

$$
\begin{equation*}
\gamma=1 /\left(\theta m^{2}(m+n+1)^{2 n-6} 2^{w}\right) \tag{9}
\end{equation*}
$$

where $m=|A|, n=|V|$ and $w=2 m n+n^{2}-2 m+n-2$. Algorithm I of Part 1 is as follows.

Algorithm I:

Step 1: Put $F L A G 0=F L A G 1=1$. Find the maximum flow value g^{*} in network N^{*}. If $g^{*} \geq b^{\circ}$, then we have the optimal value $f^{*}=g^{*}$ and stop. Otherwise, put $y^{o}=g^{*}$ and $y_{o}=b_{o}$.
Step 2: (2.1) If $y^{o}-y_{o}<\gamma$, then stop. Otherwise, put $y^{\prime \prime}=\left(y^{\circ}+y_{o}\right) / 2$.
Do WAIT-A-MINUTE ($y^{\prime \prime}, y^{o}, y_{o}, F L A G 0, N(y)$).
If $F L A G 0=0$ (y_{o} is renewed.), then go back to (2.1).
(2.2) Do JUDGE ($y^{\prime \prime}, y^{o}, y_{o}, F L A G 1, N(y)$). If $F L A G 1=0$, then stop. Otherwise, go back to (2.1).

In algorithm I, WAIT-A-MINUTE ($\left.y^{\prime \prime}, y^{\circ}, y_{o}, F L A G 0, N(y)\right)$ and JUDGE ($y^{\prime \prime}, y^{o}, y_{o}, F L A G 1, N(y)$) are the following procedures, where two variables FLAG0 and $F L A G 1$ are in $\{0,1\}$ and $N(y)=\left(G=(V, A),\left(c^{o}(a, y): a \in A\right), c_{o}, s, t\right)$.

Procedure WAIT-A-MINUTE ($y^{\prime \prime}, y^{o}, y_{o}, F L A G 0, N(y)$) :
Calculate the maximum flow value $f^{* *}(y)$ of $N(y)$ at $y=y^{\prime \prime}$. If we have $y^{\prime \prime} \leq f^{* *}\left(y^{\prime \prime}\right)$ or no flows for $N(y)$, then put $y_{o}=y^{\prime \prime}$ and $F L A G 0=0$.
Otherwise, we put $F L A G 0=1$.

Procedure JUDGE ($\left.y^{\prime \prime}, y^{o}, y_{o}, F L A G 1, N(y)\right)$:
Find line $z=L(y)$ with slope $U\left(S, y^{\prime \prime}\right)$ for some $S \subset V$ containing point
$\left(y^{\prime \prime}, f^{* *}\left(y^{\prime \prime}\right)\right)$. Then obtain the intersection point $\left(y^{\prime}, y^{\prime}\right)$ of $z=L(y)$ and $z=y$.
If $y^{\prime}>y^{o}$ or $y^{\prime}<y_{o}$, then put $F L A G 1=0$. Otherwise, renew y^{o} or y_{o} as follows:

$$
\begin{array}{ll}
y^{o}=y^{\prime} & \left(y^{\prime} \leq y^{\prime \prime}\right) \\
y_{o}=y^{\prime} & \left(y^{\prime}>y^{\prime \prime}\right)
\end{array}
$$

$F L A G 0$ shows whether $\operatorname{JUDGE}\left(y^{\prime \prime}, y^{o}, y_{o}, F L A G 1, N(y)\right.$) is carried out or not, while $F L A G 1$ means that if $F L A G 1=0$, then problem (P) is infeasible.

3.2 Algorithm of Part 2

Assume that $y^{o}-y_{o}<\gamma$ after algorithm I. Before describing algorithm $I I$, change network $N(y)$ into network $N^{\prime}(y)=\left(G^{\prime}=\left(V^{\prime}, A^{\prime}\right),\left(c^{\prime}(a, y): a \in A^{\prime}\right), s^{\prime}, t^{\prime}\right)$ as follows.

$$
\begin{align*}
& V^{\prime}=V \cup\left\{s^{\prime}, t^{\prime}\right\}, \quad A^{\prime}=A^{*} \cup A^{+} \cup A^{-} \tag{10}\\
& A^{+}=\left\{\left(s^{\prime}, v\right): v \in V, \partial c_{o}(v)<0\right\}, \quad A^{\cdots}=\left\{\left(v, t^{\prime}\right): v \in V, \partial c_{o}(v)>0\right\} \\
& c^{\prime}(a, y)=c^{o}(a, y)-c_{o}(a) \quad\left(a \in A^{*}\right) \\
& c^{\prime}\left(\left(s^{\prime}, v\right), y\right)=-\partial c_{o}(v) \quad\left(\left(s^{\prime}, v\right) \in A^{+}\right) \\
& c^{\prime}\left(\left(v, t^{\prime}\right), y\right)=\partial c_{o}(v) \quad\left(\left(v, t^{\prime}\right) \in A^{-}\right)
\end{align*}
$$

where $c_{o}\left(a^{*}\right)=c^{o}\left(a^{*}, y\right)=y, s^{\prime}$ is the source and t^{\prime} is the sink of $N^{\prime}(y)$. Then we have the following proposition.

PROPOSITION 3 [9]. We have a feasible flow in $N(y)$ satisfying $c_{o}\left(a^{*}\right)=c^{o}\left(a^{*}, y\right)=$ y if and only if we have a maximum flow ($f^{\prime}(a, y): a \in A^{\prime}$) from s^{\prime} to t^{\prime} in $N^{\prime}(y)$ such that $f^{\prime}(a, y)=c^{\prime}(a, y) \quad\left(\forall a \in A^{+}\right)$.

Let $q(y)$ and $q^{\prime}(y)$ be linear functions of y, and $\Gamma=\left[r, r^{\prime}\right] \subset \mathbf{R}$ be a closed interval. If either $q(y) \leq q^{\prime}(y) \quad(\forall y \in \Gamma)$ or $q(y) \geq q^{\prime}(y) \quad(\forall y \in \Gamma)$ then $q(y)$ and $q^{\prime}(y)$ are comparable in Γ. Define ROUTINE $\left(q(y), q^{\prime}(y), \Gamma, Y\right)$ as follows, where Y is a variable.

Procedure ROUTINE $\left(q(y), q^{\prime}(y), \Gamma, Y\right)$:
If $q(y)$ and $q^{\prime}(y)$ are comparable in Γ, then put $Y=-1$. Otherwise, obtain the solution $Y \in \mathbf{R}$ of equation $q(y)=q^{\prime}(y) \quad(y \in \Gamma)$.

Now we show algorithm $I I$ of Part 2.

Algorithm II:

Step 1: Put $F L A G 0=F L A G 1=1$. Calculate a maximum flow for network $N^{\prime}(y)$ by Dinic's maximum flow algorithm: Construct layered network L of $N^{\prime}(y)$ and find a maximal flow of L.
(1.1) Renew L and denote new layered network by L again. If we attain a maximum flow ($f^{\prime}(a, y): a \in A^{\prime}$), then go to Step 2. Otherwise, find a maximal flow of L :
(1.1.1) Find a flow-augmenting path $Q(y)$ of L and choose two arccapacities $q(y)$ and $q^{\prime}(y)$ of $Q(y)$. (Note that $q(y)$ and $q^{\prime}(y)$ are linear functions of y.)
(1.1.2) Do $\operatorname{ROUTINE}\left(q(y), q^{\prime}(y),\left[y_{o}, y^{\circ}\right], Y\right)$. If $Y=-1$, then go to (1.1.3). Otherwise, do WAIT-A-MINUTE ($Y, y^{o}, y_{o}, F L A G 0, N(y)$).
If $F L A G 0=0$, then go to (1.1.3). Otherwise, do $\operatorname{JUDGE}\left(Y, y^{\circ}, y_{o}, F L A G 1, N(y)\right)$. If $F L A G 1=0$, then stop.
(1.1.3) If we calculated the minimum are capacity of $Q(y)$, do the flow
augmentation of $Q(y)$. Otherwise, find other two arc-capacities $q(y)$ and $q^{\prime}(y)$ of $Q(y)$ and go to (1.1.2). If we have a maximal flow of L, then go to (1.1) of Step 1. Otherwise, go to (1.1.1).
Step 2: If we attain a maximum flow ($\left.f^{\prime}(a, y): a \in A^{\prime}\right)$ such that $f^{\prime}(a, y)=c^{\prime}(a, y)$ for all $a \in A^{+}$, then we have the optimal value $f^{*}=\max \left\{y: y \in\left[y_{o}, y^{o}\right]\right\}$ and stop. Otherwise, (P) is infeasible.

4. The Validity and Complexity

The following proposition is easy to see:

PROPOSITION 4. If problem (P) is feasible and we have not found the optimal value f^{*} after algorithm I, then we have $y_{o} \leq f^{*} \leq y^{o}$.

The residual network $N^{\prime \prime}(y)=\left(G^{\prime \prime}=\left(V^{\prime \prime}, A^{\prime \prime}\right),\left(c^{\prime \prime}(a, y): a \in A^{\prime \prime}\right), s^{\prime}, t^{\prime}\right)$ with respect to a flow ($f(a, y): a \in A^{\prime}$) in network $N^{\prime}(y)$ is defined as

$$
\begin{align*}
& V^{\prime \prime}=V^{\prime}, \quad A^{\prime \prime}=A_{1}^{\prime} \cup A_{2}^{\prime}, \tag{15}\\
& c^{\prime \prime}(a, y)=c^{\prime}(a, y)-f(a, y) \quad\left(a \in A_{1}^{\prime}\right), \\
& c^{\prime \prime}\left(a^{-}, y\right)=f(a, y) \quad\left(a^{-} \in A_{2}^{\prime}\right),
\end{align*}
$$

where $A_{1}^{\prime}=\left\{a \in A^{\prime}: f(a, y)<c^{\prime}(a, y)\right\}$ and $A_{2}^{\prime}=\left\{a^{-}: a^{-}\right.$is the reversed arc of $a \in A^{\prime}$ with $\left.f(a, y)>0\right\}$. Let

$$
N_{i}^{\prime \prime}(y)=\left(G_{i}^{\prime \prime}=\left(V_{i}^{\prime \prime}, A_{i}^{\prime \prime}\right),\left(c_{i}^{\prime \prime}(a, y): a \in A_{i}^{\prime \prime}\right), s^{\prime}, t^{\prime}\right)
$$

be i-th residual network as to a maximal flow ($f_{i-1}(a, y): a \in A_{i-1}^{\prime \prime}$) of $N^{\prime \prime}{ }_{i-1}(y)$, where $N^{\prime \prime}{ }_{1}(y)=N^{\prime}(y)$. Let $L^{\prime \prime}{ }_{i}(y)$ be the layered network of $N^{\prime \prime}{ }_{i}(y)$, and $Q(y)$ be a flow augmenting path of $L^{\prime \prime}{ }_{i}(y)$. The flow augmentation of $Q(y)$ is called path-flow augmentation of $L^{\prime \prime}{ }_{i}(y)$.

PROPOSITION 5. Let $n(i)$ be the number of path-flow augmentations of $L^{\prime \prime}{ }_{i}(y)$. Then we have $n(i) \leq m^{\prime}-i+1$ for $m^{\prime}=\left|A^{\prime}\right|$.
(Proof) Let Ξ_{i} be a set of the paths joining s^{\prime} and t^{\prime} of $L^{\prime \prime}{ }_{i}(y)$. We see that each path in Ξ_{i} has the same length, say, $p(i)$. Then we have

$$
p(i)+n(i)-1 \leq\left|A\left(L_{i}^{\prime \prime}(y)\right)\right| \leq m^{\prime}
$$

where $A\left(L^{\prime \prime}{ }_{i}(y)\right)$ is the arc set of $L^{\prime \prime}{ }_{i}(y)$. From $i \leq p(i)$, we have $n(i) \leq m^{\prime}-i+1$. \square

PROPOSITION 6. Let $\left(f_{i} j(a, y): a \in A\left(L^{\prime \prime}{ }_{i}(y)\right)\right.$) be a flow of $L^{\prime \prime}{ }_{i}(y)$ obtained after j path-flow augmentations of $L^{\prime \prime}{ }_{i}(y)$. Then we have:

$$
\begin{align*}
& f_{i j}(a, y)=\sum\left\{\kappa_{i}^{a}(e) c_{i}^{\prime \prime}(e, y): e \in A\left(L_{i}^{\prime \prime}(y)\right)\right\} \quad\left(\kappa_{i}^{a}(e) \in \mathbf{Z}, a \in A\left(L_{i}^{\prime \prime}(y)\right)\right) \tag{18}\\
& \quad \max \left\{\left|\kappa_{i}^{a}(e)\right|: e \in A\left(L_{i}^{\prime \prime}(y)\right)\right\} \leq 2^{j-1} \\
& \text { If } f_{i} j(a, y)<c_{i}^{\prime \prime}(a, y), \text { then we have } \kappa_{i}^{e}(a)=0 \quad\left(e \in A\left(L_{i}^{\prime \prime}(y)\right)\right) \tag{19}
\end{align*}
$$

where Z^{2} is the set of integers, Z_{+}is the set of nonnegative integers and
$c^{\prime \prime}{ }_{i}(e, y) \in \mathbf{Z}_{+}-\{0\}$ is the capacity of arc e in $N^{\prime \prime}{ }_{i}(y)$.
(Proof) We can prove (18) and (19) by induction on j. We note here that if $f_{i k}(a, y)=c^{\prime \prime}{ }_{i}(a, y)$ for some $a \in A\left(L^{\prime \prime}{ }_{i}(y)\right)$ and some $k \leq j$, then we have: $f_{i d}(a, y)=c^{\prime \prime}{ }_{i}(a, y) \quad(k \leq d \leq j)$.

PROPOSITION 7. Let $\left(c^{\prime \prime}{ }_{i}(a, y): a \in A^{\prime \prime}{ }_{i}\right)$ be capacity of the $i-t h$ residual network $N^{\prime \prime}{ }_{i}(y)$, where $i \geq 2$. Then we have:

$$
\begin{align*}
& c^{\prime \prime}{ }_{i}(a, y)=\sum\left\{\psi_{i}^{a}(e) c^{\prime}(e, y): e \in A^{\prime}\right\} \quad\left(\psi_{i}^{a}(e) \in \mathbf{Z}, a \in A^{\prime \prime}{ }_{i}\right), \tag{20}\\
& \max \left\{\left|\psi_{i}^{a}(e)\right|: e \in A^{\prime}\right\} \leq\left(m^{\prime}+1\right)^{i-2} 2^{u(i)}, \tag{21}
\end{align*}
$$

where $u(i)=(i-1)\left(2 m^{\prime}-i\right) / 2$ and $m^{\prime}=\left|A^{\prime}\right|$.
(Proof) We use induction on i. From proposition 6, we have (20) and (21) for $i=2$. Suppose that we carried out J path-flow augmentations to find a maximal flow
$\left(f_{i} J(e, y): e \in A\left(L^{\prime \prime}{ }_{i}(y)\right)\right)$ of $L^{\prime \prime}{ }_{i}(y)$. From proposition 6 we have
(22) For each $a \in F_{1} \equiv\left\{e \in A\left(L^{\prime \prime}{ }_{i}(y)\right): c^{\prime \prime}{ }_{i}\left(e^{\prime}, y\right)=f_{i}(e, y)\right\}$,

$$
\begin{aligned}
c_{i+1}^{\prime \prime}\left(a^{-}, y\right) & =c^{\prime}(a, y) & & \left(a \in A^{\prime}\right), \\
c_{i+1}^{\prime \prime}\left(a^{-}, y\right) & =c^{\prime}\left(a^{-}, y\right) & & \left(a \notin A^{\prime}\right),
\end{aligned}
$$

(23) For each $a \in F_{2} \equiv\left\{e \in A\left(L^{\prime \prime}{ }_{i}(y)\right): c^{\prime \prime}{ }_{i}(e, y)>f_{i}(e, y)>0\right\}$,

$$
\begin{array}{ll}
c^{\prime \prime}{ }_{i+1}(a, y)=c^{\prime \prime}{ }_{i}(a, y)-f_{i J}(a, y), & \\
c^{\prime \prime}{ }_{i+1}\left(a^{-}, y\right)=c^{\prime}(a, y)-c_{i}^{\prime \prime}(a, y)+f_{i J}(a, y) & \left(a \in A^{\prime}\right), \\
c^{\prime \prime}{ }_{i+1}\left(a^{-}, y\right)=c^{\prime}\left(a^{-}, y\right)-c^{\prime \prime}{ }_{i}(a, y)+f_{i} J(a, y) & \left(a \notin A^{\prime}\right),
\end{array}
$$

(24) For each $a \in\left(A^{\prime \prime}{ }_{i}-A\left(L^{\prime \prime}{ }_{i}(y)\right) \cup F_{3}\right) \cup F_{4}, c^{\prime \prime}{ }_{i+1}(a, y)=c^{\prime \prime}{ }_{i}(a, y)$,
where $F_{3}=\left\{e^{-}: e \in F_{1} \cup F_{2}\right\}$ and $F_{4}=\left\{e \in A\left(L^{\prime \prime}{ }_{i}(y)\right): f_{i} f(e, y)=0\right\}$. Let

$$
f_{i J J}(a, y)=\sum\left\{\kappa_{i}^{a}(e) c_{i}^{\prime \prime}(e, y): e \in A\left(L^{\prime \prime}{ }_{i}(y)\right)\right\} \quad\left(\kappa_{i}^{a}(e) \in \mathbf{Z}\right) .
$$

Then we have $\max \left\{\left|\kappa_{i}^{\alpha}(e)\right|: e \in A\left(L^{\prime \prime}{ }_{i}(y)\right)-F_{2}\right\} \leq 2^{J-1} \quad\left(a \in A\left(L^{\prime \prime}{ }_{i}(y)\right)\right)$.
From (22) $\sim(24)$, inductive assumption, $\left|A\left(L^{\prime \prime}{ }_{i}(y)\right)\right| \leq m^{\prime}$ and $J \leq m^{\prime}-i+1$, we have (20) and (21) replacing i by $i+1$. Note that

$$
1+m^{\prime}\left(m^{\prime}+1\right)^{i-2} 2^{u(i+1)} \leq\left(m^{\prime}+1\right)^{i-1} 2^{u(i+1)}
$$

PROPOSITION 8. Let $\rho(i)=\left(m^{\prime}+1\right)^{i-2} 2^{u(i)}$ in (21). Then we have:
(25) $\quad \rho(i) \leq \rho(n-1)=(m+n+1)^{n-3} 2^{\nu} \quad(2 \leq i \leq n-1)$, where $\nu=(n-2)(2 m+n+1) / 2$.
(Proof) Let p be the length of the shortest directed path from s^{\prime} to t^{\prime} of network $N^{\prime}(y)$. From $p \geq 3, i \leq\left|V^{\prime}\right|-1,\left|V^{\prime}\right|=n+2, m^{\prime} \leq m+n$ and proposition 7 , we have (25).

Proposition 9. If $Y \neq-1$ in WAIT-A-MINUTE $\left(Y, y^{o}, y_{o}, F L A G 0, N(y)\right)$, then we have $Y=\tau \theta / \chi$ for some $\chi \in\left\{z \in \mathbf{Z}_{+}: 0<z \leq \theta m 2^{m+n} \rho(n-1)\right\}$ and some $\tau \in \mathbf{Z}_{+}$.
(Proof) Consider i-th layered network $L^{\prime \prime}{ }_{i}(y)$. Assume that we are going to do J-th path-flow augmentation. From (10) $\sim(14)$ and proposition 7 we see that the solution Y is obtained from linear equation of y such that

$$
\begin{equation*}
\sum\left\{\kappa_{i}^{1}(e) \alpha(e): e \in A\right\} y+\tau_{1}=\sum\left\{\kappa_{i}^{2}(e) \alpha(e): e \in A\right\} y+\tau_{2} \tag{26}
\end{equation*}
$$

where $\kappa_{i}^{d}(e) \in \mathbf{Z},\left|\kappa_{i}^{d}(e)\right| \leq \rho(i) 2^{J-1}$ and $\tau_{d} \in \mathbf{Z}$ for $d=1,2$. From (4) we have $\zeta^{\prime}(a) \in \mathbf{Z}_{+}-\{0\} \quad(a \in A)$ such that $\alpha(a)=\zeta^{\prime}(a) / \theta \leq 1$. Let

$$
\begin{equation*}
\chi=\sum\left\{\kappa_{i}^{1}(e) \zeta^{\prime}(e): e \in A\right\}-\sum\left\{\kappa_{i}^{2}(e) \zeta^{\prime}(e): e \in A\right\} \tag{27}
\end{equation*}
$$

Assuming $\tau_{21}=\tau_{2}-\tau_{1} \geq 0$ we have $Y=\tau_{21} \theta / \chi$. From (27), propositions 5 and 8 and $\zeta^{\prime}(e) \leq \theta \quad(e \in A)$, we have $\chi \leq \theta m 2^{m+n} \rho(n-1)$.

Proposition 10. WAIT-A-MINUTE ($Y, y^{o}, y_{o}, F L A G 0, N(y)$) is carried out at most once for $Y \neq-1$.
(Proof) Assume that WAIT-A-MINUTE ($Y, y^{o}, y_{o}, F L A G 0, N(y)$) is carried out twice for $Y=y_{1}$ and y_{2}, where $y_{1} \neq y_{2}, y_{1} \neq-1$ and $y_{2} \neq-1$. From proposition 9 , we have

$$
\begin{equation*}
y_{i}=\tau_{i} \theta / \chi_{i} \quad\left(\tau_{i} \in \mathbf{Z}_{+}, \quad \chi_{i} \in\left\{z \in \mathbf{Z}_{+}: 0<z \leq \theta m 2^{m+n} \rho(n-1)\right\}\right) \tag{28}
\end{equation*}
$$

where $i=1,2$. From (9) and proposition 8, we have

$$
\begin{equation*}
\left|y_{1}-y_{2}\right| \geq \frac{\theta}{\left(\theta m 2^{m+n} \rho(n-1)\right)^{2}}=\gamma . \tag{29}
\end{equation*}
$$

From $\left|y_{1}-y_{2}\right| \leq y^{\circ}-y_{o}<\gamma$ and (29), we have a contradiction. \square

Concerning the total complexity of algorithms I and $I I$, we have:

Proposition 11. The total computational complexity of algorithms I and $I I$ is

$$
O\left(\max \left\{\log c^{*}, m \log \eta^{*}, n m\right\} T(n, m)\right),
$$

where $c^{*}=\max \left\{c^{o}(a): a \in A\right\}, \eta^{*}=\max \{\eta(a): a \in A\}$ and $T(n, m)$ is the time for the maximum flow computation for a two-terminal network with n vertices and m arcs.
(Proof) Consider algorithm I. We have $O(T(n, m))$ time for each step 2. Let k be the number of repetitions of Step 2. From $g^{*} / 2^{k}<\gamma$ algorithm I takes $O\left(\max \left\{\log g^{*}, \log \theta, m n\right\} T(n, m)\right)$ time, where g^{*} is the maximum flow value of network N^{*}. From proposition 10 and $[6]$ algorithm $I I$ requires $O\left(n^{2} m+T(n, m)\right)$ time. From $g^{*} \leq m c^{*}$ and $\theta \leq\left(\eta^{*}\right)^{m}$, we have this proposition. .

Now we show an example of our algorithm:

EXAMPLE: Consider network $N=\left(G=(V, A), c^{o}, c_{o}, \alpha, \beta, s, t\right)$ with $a^{*}=(t, s)$ in Fig.1, where $a^{*} \notin A, V=\{s, 1,2, t\}$ and $A=\left\{a_{i}: 1 \leq i \leq 5\right\}$. The ordered triple attached to each $a \in A$ is $\left(c_{o}(a), c^{o}(a), \alpha(a) y+\beta(a)\right)$. We have $b_{o}=0, b^{o}=20$, $g^{*}=12, \theta=24$ and $\gamma=1 /\left(24 \times 25 \times 100 \times 2^{48}\right)$. In Fig. 2 we have $z=y$ and $z=f^{* *}(y)$. After Step 1 of algorithm I we have $y^{o}=12$ and $y_{o}=0$. Going to Step 2 we calculate value $f^{* *}(y)$ of network $N(y)$ for $y=(12+0) / 2=6$. From $f^{* *}(6)=17 / 2>6$, we put $y_{o}=6$ and go to (2.1). Repeating Step 2, we finally have $y^{o}=9+1 / 3$ and $y_{o}=9+\xi \quad\left(\xi=\left(1-1 / 2^{63}\right) / 3\right)$.

Fig. 1

Fig. 2

We have network $N^{\prime}(y)$ in Fig. 3 and the layered networks $L^{\prime \prime}{ }_{i}(y)$ in Figs. 4-6, where the linear function of y beside each arc in each figure is the arc-capacity. From $1 \leq y-3 \quad(y \in[9+\xi, 28 / 3])$, we have $L^{\prime \prime}{ }_{2}(y)$ in Fig.5. Solving $1-y / 12=2 y / 3-6$ in Fig.6, we have the optimal value $f^{*}=28 / 3$.

Fig. 3

Fig. 4

Fig. 6

Acknowledgements

The auther wishes to thank referees for pointing out a few errors in the earlier draft of this paper. He also thanks Professor Satoru Fujishige of University of Tsukuba for giving valuable suggestions on this paper.

References

[1] Ahuja, R. K. : Algorithms for the Minimax Transportation Problem. Naval Research Logistics Quarterly 33 (1986) 725-739.
[2] Cui, W.-T. : An Algorithm for the Maximum Balanced Flow Problem. Second Year Essay, Doctoral Program in Socio-Economic Planning, University of Tsukuba, 1986.
[3] Cui, W.-T. : A Network Simplex Method for the Maximum Balanced Flow Problem. Journal of the Operations Research Society of Japan 31 No. 4 (1988) 551564.
[4] Ford, L. R., Jr. and Fulkerson, D. R. : Flows in Networks. Princeton University Press, Princeton, N.J., 1962.
[5] Fujishige, S., Nakayama, A. and Cui, W.-T. : On the Equivalence of the Maximum Balanced Flow Problem and the Weighted Minimax Flow Problem. Operations Research Letters 5 No. 4 (1986) 207-209.
[6] Hu, T. C. : Combinatorial Algorithms. Addison-Wesley Publishing Company, 1982.
[7] Ichimori, T., Ishii, H. and Nishida, T. : Weighted Minimax Real-Valued Flows. Journal of the Operations Research Society of Japan 24 No. 1 (1981) 52-60.
[8] Ichimori, T. and Nishida, T. : Finding the Weighted Minimax Flow in a Polynomial Time. Journal of the Operations Research Society of Japan 23 No. 3 (1980) 268-271.
[9] Iri, M., Fujishige, S. and Oyama, T. : Graphs, Networks and Matroids, Lecture Series on Mathematical Programming, No.7, Sangyo-Tosho, 1986 (in Japanese).
[10] Minoux, M. : Flots Équilibrés et Flots avec Sécurité. E.D.F-Bulletin de la Direction des Études et Recherches, Série C-Mathématiques, Informatique 1 (1976) 5-16.
[11] Nakayama, A. : A Polynomial Algorithm for the Maximum Balanced Flow Problem with a Constant Balancing Rate Function. Journal of the Operations Research Society of Japan 29 No. 4 (1986) 400-410.
[12] Nakayama, A. : Revised Polynomial-Time Binary Search Algorithm for the Maximum Balanced Flow Problem. Discussion Paper on Data, Theories and Computation in Economic and Management Sciences, Otaru University of Commerce, January, 1989.
[13] Zimmermann, U. : Duality for Balanced Submodular Flows. Preprint No.89, Fachbereich Mathematik, Universität Kaiserslautern, 1985.

Akira NAKAYAMA : Department of Management Sciences, Faculty of Commerce, Otaru University of Commerce, Otaru, Hokkaido, 047, Japan

