Journal of the Operations Research © 1990 The Operations Research Society of Japan
Society of Japan
Vol. 33, No. 1, March 1990

A POLYNOMIAL-TIME BINARY SEARCH ALGORITHM
FOR THE MAXIMUM BALANCED FLOW PROBLEM

Akira Nakayama
Otaru University of Commerce

(Received Janualy 20, 1988; Revised March 20, 1989)

Abstract We consider the maximum balanced flow problem of a two-terminal network N, i.e., a maximum
flow problem with an additional constraint described in terms of a balancing rate function o : A — Ry —{0},
where A is the arc set of N and R is the set of nonnegative reals. In this paper, we propose a polynomial time
algorithm for the maximum balanced flow problem, on condition that all given functions in N are rational.
The proposed algorithm, which is composed of a binary search algorithm and Dinic’s maximum flow algorithm
with a parameter, requires O(max{log(c*), mlog(n*),nm}T(n,m)) time, where ¢* = max{c°(a) : a € A} for
positive integral arc—capacities (c°(a) : @ € A) and n* = max{n(a) : a € A} for a(a) = {(a)/n(a) < 1 such
that ((a) and n(a) are positive integers, and T(n,m) is the time for the maximum flow computation fer a
network with n vertices and m = |A| arcs.

1. Introduction

Minoux [10] considered the mazimum balanced flow problem, i.e., the problem of
finding a maximum flow in a two-terminal network such that each arc flow value of
the underlying graph is bounded by a fixed proportion of the total flow value from
source s to sink t. The maximum balanced flow problem is motivated by Minoux’s
research of reliability analysis of communication networks. If a flow from s to t is
balanced, then it is guaranteed that the value of the blocked arc flow is at most the
fixed proportion of the total flow value from s to t.

Several algorithms (2,3,10,11,13] are proposed for the maximum balanced flow
problem. Cui [2,3] showed a simplex and a dual simplex methods without cycling
on the underlying graph G of two-terminal network. When balancing rate functions
are constant, Minoux’s algorithm [10] and that of Nakayama [11] are proposed. The
former needs O(ppmax?S(n,m)) time, where pyax is the maximum number of arc
disjoint directed paths from source to sink of G and S(rn,m) is the complexity of
the shortest path problem for a network with n vertices and m arcs and with a
nonnegative arc length function. The latter takes O(min{m,|1/r]|}T(n,m)) time,
where a(a) = r (a € A) for given balancing rate function ac: A - Ry — {0} (R4 is
the set of nonnegative reals.), some real r and the arc set A of G, and T'(n,m) is the
time for the maximum flow computation for a two-terminal network with n vertices
and m arcs, and |1/r] is the maximum integer less than or equal to 1/r. For general
balancing rate functions, Zimmermann [13] proposed an algorithm with O(T'(n,m)?)
computation time.

On the other hand, Ichimori et al. [7,8] considered the weighted minimaz flow
problem, and Fujishige et al. [5] pointed out the equivalence of the maximum bal-
anced flow problem and the weighted minimax flow problem. When capacity func-
tion ¢ : A — Z5 and weight function w : 4 — Z, are given for the set Z, of
nonnegative integers, the algorithm [8] takes O(T(n, m)P) computation time, where

1

A. Nakayama

P = log(max{c(a)w(a) : a € A}). The algorithm {7] runs in O(T(n,m)?) time for
general weight functions, having the same speed as Zimmermann’s.

We can see the minimaz transportation problem, studied by Ahuja [1],of finding

a feasible flow (z(a) : ¢ = (7,7) € I x J) from [to J such that max{c(a)z(a) :
a = (¢,7) € I x J} is minimum, where [is a set of origins, J is a set of destinations
and c(a) is the cost of unit shipment on each arc a = (¢,5) € I X J. The minimax
transportation problem may be regarded as a special version of the weighted minimax
flow problem.

The objective of the present paper is to propose a polynomial time algorithm for
the maximum balanced flow problem of a two-terminal network N, on condition that
all given functions including e : A — R4 in N are rational. We put a(a) = ¢(a)/n(a)
(a € A) for some two positive integers ¢(a) and n{a). The total complexity is
O(max{logc*,mlogn*,nm}T (n,m)), where ¢* = max{c°(a) : a € A} for arc-
capacities ¢°(a) € Z, — {0} (¢ € A), n* = max{n(a) : @ € A}. The proposed
algorithm, which is composed of a binary search algorithm and Dinic’s maximum flow
algorithm with a parameter, will be expected to be faster than known algorithms in
case that all input data are rational.

2. The Maximum Balanced Flow Problem

Let G = (V, A) be a directed graph where V is the vertex set and A is the arc
set of G. For two capacity functions ¢® : A —» Ry and ¢, : A — R, a balancing
rate function o : A — R, — {0} and a function 3 : A — R, consider a two-terminal
network N = (G = (V, A), % ¢o,, 3, 5,t) where R is the set of nonnegative reals,
R is the set of reals, s is the source and t is the sink of G. The maztmum balanced
flow problem (P) for network N is formulated as follows.

(P) : Maximize f(a*)

subject to
(1) D-f=0,
(2) ¢o(a) < f(a) < ¢*(a) (ac 4),
(3) fla) < a(a)f(a*) + B(a) (a € 4),

where arc a* = (t,s) ¢ A is added to G and D is the vertez-arc incidence matriz of
G. We assume that ¢°, ¢, and f are integral, and that ¢°(a) > f(a) (a € A) and
a(a) =¢(a)/n(a) <1 (a € A) for some positive integers ¢(a) and n(a). Define 8 by

(4) 6=1] {n(a) :a € A}

If the function f : A* - R4 (4* = AU {a*}) satisfies (1) ~ (3), then f is called a
balanced flow in network N. Let f* be the value maximizing f(a*) in N, and define
the boundary 3f : V — R of a function f: A* - R, in N by

(6) 95 (v) = 2{f((v,9)) : (vs2) € A"} = 3{F((3,0)) = (3, 0) € 47},

where v € V. Associated with problem (P), consider the following two problems (P*)
for network N* = (G = (V, A), ¢, ¢c,, s,1):

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced Flows

(P*) : Maximize g(a*)
subject to (1) and (2), where f should be replaced by g,

and (P(y)) for network N(y) = (G = (V, 4),(¢’(a,y) : a € 4),¢,,B,5,t), where y is
a parameter and ¢°(a,y) = min{c?(a), a(a)y + B(a)}:

(P(y)) : Maximize f(a*)
subject to constraint (1) and
(6) co(a) < fa) <c%(a,y) (a€ A).

Note that (P(y)) can be regarded as a maximum flow problem with parameter y in
capacities (¢?(a,y) : a € A).

PROPOSITION 1. Let f**(y) be the value maximizing f(a*) in network N(y). If
problem (P) is feasible, then we have f* = max{y : f**(y) = y}. O

Define the capacity c(A(S)) of a cut A(S) == AT(S)U A~ (S) by

c(A(S)) =2 {c?(a) : a € AT(8)} = 2 o{co(a) s @ € AT(S)},

wherefor S CV(s€e S, t¢S), AT (S)={(3,J) € A:i1€ 5,7 ¢S} and
A=(S) ={(E,J) € A: 5 € S,i ¢ S}. A minimum cut is defined to be a cut having
the minimum capacity. Then we have:

THEOREM 2 [4]. For any network the maximum flow value from the source to the
sink is equal to the capacity of a minimum cut. o

Let A(S,y) be a minimum cut in network N(y) at y, and
K'(S,y) ={a € AT(S,y) : c°(a) > afa)y + B(a)} and K"(S,y) = AT (S,y)—
K'(S,y). From theorem 2 we have f**(y) = U(S,y)y + W (S,y), where
U(S,y) = {ala) : a € K'(S,y)} and W(S,y) = > {B(a) :a € K'(S,y)}+
S{c?(a) :a € K"(S,y)} — > {co(a) :a € A= (S)}. U(S,y) is called slope in N(y) at
y. Define b° and b, by

(1) 8 =max{(c’(a) — (a))/ale) : a € 4},
(8) b, = max{max{(c,(a) — B(a))/a(a) : a € A},0}.

3. Algorithm for the Maximum Balanced Flow Problem

Consider two functions z = f**(y) and z == y in a (y, z)-plane. From proposition
1, if problem (P) is feasible then the optimal value of (P) is the maximum y* such that
(y*,y*) is an intersection point of z = f**(y) and z = y. The outline of our algorithm
is composed of the following two parts 1 and 2, though the detailed description will
be shown in subsequent sections:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

A. Nakayama

Part 1: By a binary search algorithm, we find y, and y° such that
Yo < f* < y®and y° — y, < -y for some fixed value y € R

Part 2: We find f* by Dinic’s maximum flow algorithm with parameter y
satisfying y, £y <y°.

3.1 Algorithm of Part 1
In later discussion, we assume that problem (P*) is feasible. Let
9) ~y=1/(m3(m + n + 1)2n~62%),

wherem =| A, n=|V | and w = 2mn +n? — 2m + n — 2. Algorithm I of Part 1
is as follows.

Algorithm I:

Step 1: Put FLAGO = FLAG1 = 1. Find the maximum flow value ¢* in network
N*. If g* > b°, then we have the optimal value f* = g* and stop.
Otherwise, put y° = ¢* and y, = b,.

Step 2: (2.1) If ¥° — y, < 7, then stop. Otherwise, put y" = (y° + yo)/2.
Do WAIT-A-MINUTE (y",4°,yo, FLAGO, N(y)).
If FLAGO =0 (y,, is renewed.), then go back to (2.1).
(2.2) Do JUDGE (y¥",y°, Y0, FLAG1,N(y)). If FLAG1 = 0, then stop.
Otherwise, go back to (2.1).

In algorithm I, WAIT-A-MINUTE (y",y°,y., FLAGO, N (y)) and JUDGE
(¥",¥°,¥o, FLAG1, N (y)) are the following procedures, where two variables FLAGO
and FLAG1 are in {0,1} and N(y) = (G = (V, A), (c°(a,y) : a € 4),¢,, s, t).

Procedure WAIT-A-MINUTE (y",y°,y0, FLAGO,N(y)) :
Calculate the maximum flow value f**{y) of N(y) at y = y”. If we have
y" < f**(y") or no flows for N(y), then put y, =y’ and FLAGO = 0.
Otherwise, we put FLAGO = 1.

Procedure JUDGE (y”,y°,y0, FLAGL, N (y)) :
Find line z = L(y) with slope U(S,y") for some S C V containing point
(¥", F**(¥"")). Then obtain the intersection point (y’,%') of z = L(y) and z = y.
If y' > y? or y' < y,, then put FLAG1 = 0. Otherwise, renew y° or y, as follows:
=y (¥ <y"),
o=y (¥ >y")
FLAGO shows whether JUDGE (y",y°,y,, FLAGL, N (y)) is carried out or not, while
FLAG1 means that if FLAG1 = 0, then problem (P) is infeasible.

3.2 Algorithm of Part 2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced Flows

Assume that y° — y, < v after algorithm I. Before describing algorithm II,
change network N (y) into network N'(y) = (G' = (V', A’),(c'(a,y) : a € A'),s',¢t') as
follows.

10) V' =vu{s,t}, A =A*UAdtuAa,
) At ={(s",v) :v eV, de,(v) <0}, A ={(v,t') v EV, Be,(v) >0},
) c'(a,y) = ¢°(a,y) —cola) (a € A%),

13) c((s',v),y) = —8co(v) ((s',v) € AT),
) (vt y) = dcov) ((v,t')€AT),

where ¢,(a*) = ¢®(a*,y) = y, s’ is the source and ¢’ is the sink of N'(y). Then we
have the following proposition.

PROPOSITION 3 [9]. We have a feasible flow in N (y) satisfying c,(a*) = ¢°(a*,y) =
y if and only if we have a maximum flow (f'(a,y) : a € A’) from s' tot' in N'(y) such
that f'(a,y) = c'(a,y) (Vae At). o

Let ¢(y) and ¢'(y) be linear functions of y, and T' = [r,r'] C R be a closed
interval. If either q(y) < ¢'(y) (Yy € T) or q(y) > ¢'(y) (Vy € T) then ¢(y) and
¢'(y) are comparable in T'. Define ROUTINE (q(y), ¢ (v),T,Y) as follows, where Y is

a variable.

Procedure ROUTINE(q(y),q'(y),T,Y):
If ¢(y) and ¢'(y) are comparable in T, then put ¥ = —~1. Otherwise, obtain the
solution Y € R of equation ¢(y) = ¢'(y) (y €T).

Now we show algorithm IT of Part 2.

Algorithm II:

Step 1: Put FLAGO = FLAG1 = 1. Calculate a maximum flow for network N’(y)
by Dinic’s maximum flow algorithm: Construct layered network L of N'(y)
and find a maximal flow of L.

(1.1) Renew L and denote new layered network by L again. If we attain a
maximum flow (f'(a,y) : @ € A’), then go to Step 2. Otherwise, find
a maximal flow of L:

(1.1.1) Find a flow-augmenting path Q(y) of L and choose two arc-
capacities ¢(y) and ¢'(y) of Q(y). (Note that g(y) and ¢'(y) are
linear functions of y.)

(1.1.2) Do ROUTINE(q(y),4'(y), [¥0,¥°],Y). f Y = —1, then go to (1.1.3).
Otherwise, do WAIT-A-MINUTE(Y,y°,y,, FLAGO, N (y)).
If FLAGO = 0, then go to (1.1.3). Otherwise, do
JUDGE(Y,y°,yo, FLAG1,N(y)). If FLAG1 = 0, then stop.

(1.1.3) If we calculated the minimum arc capacity of Q(y), do the flow

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

L

A. Nakayama

augmentation of @(y). Otherwise, find other two arc-capacities
q(y) and ¢'(y) of Q(y) and go to (1.1.2). If we have a maximal flow
of L, then go to (1.1) of Step 1. Otherwise, go to (1.1.1).

Step 2: If we attain a maximum flow (f'(a,y) : @ € A') such that f'(a,y) = ¢'(a,y)
for all @ € A", then we have the optimal value f* = max{y : y € [yo,y°]}
and stop. Otherwise, (P) is infeasible.

4. The Validity and Complexity

The following proposition is easy to see:

PROPOSITION 4. If problem (P) is feasible and we have not found the optimal value
f* after algorithm I, then we have y, < f* <y°. o

The residual network N"(y) = (G" = (V",A"),(c"(a,y) : a € A"),s',t') with
respect to a flow (f(a,y) : @ € A') in network N'(y) is defined as
(15) V"=V' A" =AlUA,,
(16) c"(a, y) =c'(a,y) — fla,y) (a € A}),
(17) <"(a7,y) = f(a,y) (a= € AS),
where A} = {a € 4’ : f(a,y) < ¢’(a,y)} and A} = {a™ : a” is the reversed arc of
a € A' with f(a,y) > 0}. Let

N",‘(y) — (G",‘ — (V”,‘,A",‘), (C";(d, y) ca € A",’),S',t')
be 1—th residual network as to a maximal flow (fi—1(a,y) :a € A”;_1) of N";_,(y),
where N”1(y) = N'(y). Let L";(y) be the layered network of N";(y), and Q{y) be a

flow augmenting path of L”;(y). The flow augmentation of Q(y) is called path-flow
augmentation of L";(y).

PROPOSITION 5. Let n(¢) be the number of path-flow augmentations of L";(y).
Then we have n(s) <m' —i+1form' =] A" |.

(Proof) Let E; be a set of the paths joining s’ and t' of L";(y). We see that each path
in E; has the same length, say, p(¢). Then we have

p(1) +n(1) —1 <[A(L"(y)) [< m',
where A(L";(y)) is the arc set of L";(y). From i < p(7), we have n(i) <m' —i+1. o

PROPOSITION 6. Let (f; j(a,y):a € A(L"i(y))) be a flow of L";(y) obtained after
J path-flow augmentations of L";(y). Then we have:

(18) fijla,y) = X{kf(e)c"i(e,y) e € A(L"i(y))} (ki(e) € Z, a€ A(L"i(y))),
max{| xf(e) | : e € A(L":(y))} <2771
(19) If f; j(a,y) < ¢"i(a,y), then we have ké(a) =0 (e € A(L";(y))),

where Z is the set of integers, Z is the set of nonnegative integers and

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced Flows

¢"i(e,y) € Z, — {0} is the capacity of arc e in N";(y).

(Proof) We can prove (18) and (19) by induction on j. We note here that if
fi k(a,y) = ¢"i(a,y) for some a € A(L";(y)) and some k < 7, then we have:
fiala,y) =c"i(a,y) (k<d<y) o

PROPOSITION 7. Let (¢"i(a,y) : @ € A";) be capacity of the i—th residual network
N";(y), where 1 > 2. Then we have:

(20) "i(a,y) =2 {¢f(e)c' (e;y) e € A} (Yf(e) €Z, a € A™),
(21) max{| ¥¢(e) | e € A’} < (m' + 1)i~%24(),
where u(z) = (— 1)(2m' —¢)/2 and m' = | A’ |.

(Proof) We use induction on 7. From proposition 6, we have (20) and (21) for ¢« = 2.
Suppose that we carried out J path-flow augmentations to find a maximal flow

(fi s(e,y) e € A(L";(y))) of L";(y). From proposition 6 we have
(22) Foreachac Fy ={ec A(L":(y)) : "i(e.y) = fi s(e,¥)},
iv1(a”,y) = (a,y) (a€ A,
"ip1(e™,y) =c'(a7,y) (a g A)
(23) Foreacha € Fp = {e€ A(L";(y)): ¢"i(e,y) > fi s(e,y) > 0},
¢"ir1(a,y) = "s(a,y) — fi s(a,y),
¢"iv1(a”,y) = (a,y) — ¢"ila,y) + fi s(a,y) (e € A),
iv1{a”,y) = (a7,y) — "i(a,y) + fi s(a,y) (ag A),
(24) For each a € (A"; — A(L"i(y)) U F3) U Fy, ¢"iy1(a,y) = ¢"i(a,y),
where F5 = {e” :e€ F{ U F;} and Fy, = {e € A(L";(y)) : fi s(e,y) = 0}. Let
fi 1(a,y) = YoAxi(e)e"s(e,y) s e € A(L"i ()} (xf(e) € Z).
Then we have max{| x¢(e) |: e € A(L";(y)) — F2} <2771 (a € A(L":(v))).

From (22) ~ (24), inductive assumption, | A(L";(y)) | < m’ and
J <m' —1+ 1, we have (20) and (21) replacing ¢ by 7 + 1. Note that

y

1+ m’(m’ + 1)i—22u(i+1) < (mr + 1)1‘-—121‘(:’+1)' o

PROPOSITION 8. Let p(i) = (m’ +1)*~22%() in (21). Then we have:
(25) p@) <p(n—1)=(m+n+1)""%2* (2<i<n-1),
where v = (n — 2)(2m +n + 1)/2.

(Proof) Let p be the length of the shortest directed path from s’ to t' of network
N'(y). Fromp>3,:<|V'|-1,|V'|=n+2, m' <m+n and proposition 7, we
have (25). o

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

A. Nakayama

PROPOSITION 9. IfY # —1 in WAIT-A-MINUTE(Y,y°, v, FLAGO, N(y)), then
we have Y = 10/x for some x € {z € Z4 : 0 < z < §m2™* "p(n — 1)} and some
TC Z+.

{Proof) Consider i—th layered network L";(y). Assume that we are going to do J—th
path-flow augmentation. From (10) ~ (14) and proposition 7 we see that the solution
Y is obtained from linear equation of y such that

(26) Y {xi(e)afe) rec Ay + 11 = Y {kZ(e)afe) : e € A}y + 72,

where ki(e) € Z, | k%(e) | < p(:)27* and 74 € Z for d = 1,2. From (4) we have
¢'(a) € Zy — {0} (a € A) such that a(a) = ¢'(a)/8 < 1. Let

(27) x =2 {si(e)s'(e) e € A} — 2o{rZ(e)¢(¢) r e € A}.

Assuming 75; = 72 — 73 > 0 we have Y = 75;0/x. From (27), propositions 5 and 8
and ¢'(e) <0 (e € A), we have x < 0m2™t"p(n —1). D

PROPOSITION 10. WAIT-A-MINUTE (Y,y°,y,, FLAGO, N (y)) is carried out at

most once for Y # —1.

(Proof) Assume that WAIT-A-MINUTE (Y,y°,y,, FLAGO, N (y)) is carried out twice
for Y = y; and yz, where y; # y2, y1 # —1 and y, # —1. From proposition 9, we
have

(28) vi = 10/ (n€Zy, xi€{z2€2Z4:0<z<0m2™t"p(n —1)}),

where ¢ = 1,2. From (9) and proposition 8, we have

9
Om2mtnp(n — 1))2

(29) |y1—y2|2(= .

From | y; —y2 | <y° —y, < v and (29), we have a contradiction. o

Concerning the total complexity of algorithms I and I1, we have:

PROPOSITION 11. The total computational complexity of algorithms I and 11 is
O(max{logc*,mlogn*,nm}T(n,m)),

where ¢* = max{c®(a) : a € A}, n* = max{n{a) : a« € A} and T(n,m) is the time
for the maximum flow computation for a two-terminal network with n vertices and
m arcs.

(Proof) Consider algorithm I. We have O(T(n,m)) time for each step 2. Let
k be the number of repetitions of Step 2. From g*/2* < - algorithm I takes
O(max{log¢g*,log 8, mn}T'(n,m)) time, where ¢g* is the maximum flow value of net-
work N*. From proposition 10 and [6] algorithm I requires O(n?m + T (n,m)) time.
From ¢* < mc¢* and 6 < {n*)™, we have this proposition. o

Now we show an example of our algorithm:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Falanced Flows 9

EXAMPLE: Consider network N = (G = (V, A), ¢, ¢o, @, B, 5,t) with a* = (¢,s) in
Fig.1, where a* ¢ A, V = {5,1,2,t} and A = {a; : 1 <1 < 5}. The ordered triple
attached to each a € A is (¢o{a),c’(a), a(a)y + B(a)). We have b, = 0, b° = 20,
gt =12, 0 = 24 and v = 1/(24 x 25 x 100 » 2%8). In Fig.2 we have z = y and
z = f**(y). After Step 1 of algorithm I we have y° = 12 and y, = 0. Going to
Step 2 we calculate value f**(y) of network N{y) for y = (12 + 0)/2 = 6. From
f**(6) =17/2 > 6, we put y, = 6 and go to (2.1). Repeating Step 2, we finally have
¥ =9+1/3andy, =9+¢ (&£={1-1/2%)/3).

12/7 4 28/3 20 y

Fig.1 Fig.2

We ha}re network N'(y) in Fig.3 and the layered networks L";(y) in Figs. 4-6,
where the linear function of y beside each arc in each figure is the arc-capacity. From
.1 < y - 3 (v €[9+¢,28/3]), we have L";(y) in Fig.5. Solving 1 — y/12 = 2y/3—86
in Fig.6, we have the optimal value f* = 28/3.

capacity
of arc (u,v)

Fig.3

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

10

A. Nakayama

y/4+2 e u v
) ' capacity
of arc(u,v)

Fig4

capacity
of arc(u,v)

Fig.5
2y /36 5 1 1-y/12 ty/8-6
- > —>o— —s— —,
s s 2 1 t %
Fig.6

Acknowledgements

The auther wishes to thank referees for pointing out a few errors in the earlier

draft of this paper. He also thanks Professor Satoru Fujishige of University of Tsukuba
for giving valuable suggestions on this paper.

References

[1] Ahuja, R. K. : Algorithms for the Minimax Transportation Problem. Naval
Research Logistics Quarterly 33 (1986) 725-739.

[2] Cui, W.-T. : An Algorithm for the Maximum Balanced Flow Problem. Sec-
ond Year Essay, Doctoral Program in Socio-Economic Planning, University of
Tsukuba, 1986.

[3] Cui, W.-T. : A Network Simplex Method for the Maximum Balanced Flow Prob-
lem. Journal of the Operations Research Society of Japan 31 No.4 (1988) 551-
564.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

[4]

(5]

(6]
[7]

(8]

(9]

[10]

[11]

12]

[13]

Algorithm for Maximum Ralanced Flows

Ford, L. R., Jr. and Fulkerson, D. R. : Flows in Networks. Princeton University
Press, Princeton, N.J., 1962.

Fujishige, S., Nakayama, A. and Cui, W.-T. : On the Equivalence of the Maximum
Balanced Flow Problem and the Weighted Minimax Flow Problem. Operations
Research Letters 5 No.4 (1986) 207-209.

Hu, T. C. : Combinatorial Algorithms. Addison-Wesley Publishing Company,
1982.

Ichimori, T., Ishii, H. and Nishida, T. : Weighted Minimax Real-Valued Flows.
Journal of the Operations Research Society of Japan 24 No.l (1981) 52-60.

Ichimori, T. and Nishida, T. : Finding the Weighted Minimax Flow in a Polyno-
mial Time. Journal of the Operations Research Society of Japan 23 No.3 (1980)
268-271.

Iri, M., Fujishige, S. and Oyama, T. : Graphs, Networks and Matroids, Lecture
Series on Mathematical Programming, No.7, Sangyo-Tosho, 1986 (in Japanese).

Minoux, M. : Flots Equilibrés et Flots avec Sécurité. E.D.F-Bulletin de la Direc-
tion des Etudes et Recherches, Série C—Mathématiques, Informatique 1 (1976)
5-16.

Nakayama, A. : A Polynomial Algorithm for the Maximum Balanced Flow Prob-
lem with a Constant Balancing Rate Function. Journal of the Operations Re-
search Society of Japan 29 No.4 (1986) 400-410.

Nakayama, A. : Revised PolynomialTime Binary Search Algorithm for the Maxi-
mum Balanced Flow Problem. Discussion Paper on Data, Theories and Compu-
tation in Economic and Management Sciences, Otaru University of Commerce,
January, 1989.

Zimmermann, U. : Duality for Balanced Submodular Flows. Preprint No.89,
Fachbereich Mathematik, Universitat Kaiserslautern, 1985.

Akira NAKAYAMA : Department of Management
Sciences, Faculty of Commerce,
Otaru University of Commerce,
Otaru, Hokkaido, 047, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

11

