A POLYNOMIAL-TIME BINARY SEARCH ALGORITHM FOR THE MAXIMUM BALANCED FLOW PROBLEM

Akira Nakayama Otaru University of Commerce

(Received Janualy 20, 1988; Revised March 20, 1989)

Abstract We consider the maximum balanced flow problem of a two-terminal network N, *i.e.*, a maximum flow problem with an additional constraint described in terms of a balancing rate function $\alpha : A \to \mathbf{R}_+ - \{0\}$, where A is the arc set of N and \mathbf{R}_+ is the set of nonnegative reals. In this paper, we propose a polynomial time algorithm for the maximum balanced flow problem, on condition that all given functions in N are rational. The proposed algorithm, which is composed of a binary search algorithm and Dinic's maximum flow algorithm with a parameter, requires $O(\max\{\log(c^*), m\log(\eta^*), nm\}T(n, m))$ time, where $c^* = \max\{c^o(a) : a \in A\}$ for positive integral arc-capacities $(c^o(a) : a \in A)$ and $\eta^* = \max\{\eta(a) : a \in A\}$ for $\alpha(a) \equiv \zeta(a)/\eta(a) \leq 1$ such that $\zeta(a)$ and $\eta(a)$ are positive integers, and T(n, m) is the time for the maximum flow computation for a network with n vertices and m = |A| arcs.

1. Introduction

Minoux [10] considered the maximum balanced flow problem, i.e., the problem of finding a maximum flow in a two-terminal network such that each arc flow value of the underlying graph is bounded by a fixed proportion of the total flow value from source s to sink t. The maximum balanced flow problem is motivated by Minoux's research of reliability analysis of communication networks. If a flow from s to t is balanced, then it is guaranteed that the value of the blocked arc flow is at most the fixed proportion of the total flow value from s to t.

Several algorithms [2,3,10,11,13] are proposed for the maximum balanced flow problem. Cui [2,3] showed a simplex and a dual simplex methods without cycling on the underlying graph G of two-terminal network. When balancing rate functions are constant, Minoux's algorithm [10] and that of Nakayama [11] are proposed. The former needs $O(p_{\max}^2S(n,m))$ time, where p_{\max} is the maximum number of arc disjoint directed paths from source to sink of G and S(n,m) is the complexity of the shortest path problem for a network with n vertices and m arcs and with a nonnegative arc length function. The latter takes $O(\min\{m, \lfloor 1/r \rfloor\}T(n,m))$ time, where $\alpha(a) = r$ ($a \in A$) for given balancing rate function $\alpha : A \to \mathbf{R}_+ - \{0\}$ (\mathbf{R}_+ is the set of nonnegative reals.), some real r and the arc set A of G, and T(n,m) is the time for the maximum flow computation for a two-terminal network with n vertices and m arcs, and $\lfloor 1/r \rfloor$ is the maximum integer less than or equal to 1/r. For general balancing rate functions, Zimmermann [13] proposed an algorithm with $O(T(n,m)^2)$ computation time.

On the other hand, Ichimori et al. [7,8] considered the weighted minimax flow problem, and Fujishige et al. [5] pointed out the equivalence of the maximum balanced flow problem and the weighted minimax flow problem. When capacity function $c: A \to \mathbb{Z}_+$ and weight function $w: A \to \mathbb{Z}_+$ are given for the set \mathbb{Z}_+ of nonnegative integers, the algorithm [8] takes O(T(n,m)P) computation time, where

 $P = \log(\max\{c(a)w(a) : a \in A\})$. The algorithm [7] runs in $O(T(n,m)^2)$ time for general weight functions, having the same speed as Zimmermann's.

We can see the minimax transportation problem, studied by Ahuja [1], of finding a feasible flow $(x(a) : a = (i, j) \in I \times J)$ from I to J such that $\max\{c(a)x(a) : a \in J\}$ $a = (i, j) \in I \times J$ is minimum, where I is a set of origins, J is a set of destinations and c(a) is the cost of unit shipment on each arc $a = (i, j) \in I \times J$. The minimax transportation problem may be regarded as a special version of the weighted minimax flow problem.

The objective of the present paper is to propose a polynomial time algorithm for the maximum balanced flow problem of a two-terminal network N, on condition that all given functions including $\alpha: A \to \mathbf{R}_+$ in N are rational. We put $\alpha(a) = \zeta(a)/\eta(a)$ $(a \in A)$ for some two positive integers $\zeta(a)$ and $\eta(a)$. The total complexity is

 $O(\max\{\log c^*, m\log\eta^*, nm\}T(n,m)),$ where $c^* = \max\{c^o(a): a \in A\}$ for arccapacities $c^o(a) \in \mathbf{Z}_+ - \{0\}$ $(a \in A), \ \eta^* = \max\{\eta(a) : a \in A\}$. The proposed algorithm, which is composed of a binary search algorithm and Dinic's maximum flow algorithm with a parameter, will be expected to be faster than known algorithms in case that all input data are rational.

2. The Maximum Balanced Flow Problem

Let G = (V, A) be a directed graph where V is the vertex set and A is the arc set of G. For two capacity functions $c^o: A \to \mathbf{R}_+$ and $c_o: A \to \mathbf{R}_+$, a balancing rate function $\alpha: A \to \mathbf{R}_+ - \{0\}$ and a function $\beta: A \to \mathbf{R}$, consider a two-terminal network $N = (G = (V, A), c^{\circ}, c_{o}, \alpha, \beta, s, t)$ where \mathbf{R}_{+} is the set of nonnegative reals, **R** is the set of reals, s is the source and t is the sink of G. The maximum balanced flow problem (P) for network N is formulated as follows.

(P) : Maximize
$$f(a^*)$$

subject to
(1) $D \cdot f = 0$,

- $egin{aligned} &c_o(a) \leq f(a) \leq c^o(a) & (a \in A), \ &f(a) \leq lpha(a)f(a^*) + eta(a) & (a \in A), \end{aligned}$ (2)
- (3)

where arc $a^* = (t, s) \notin A$ is added to G and D is the vertex-arc incidence matrix of G. We assume that c^o, c_o and β are integral, and that $c^o(a) > \beta(a)$ $(a \in A)$ and $\alpha(a) \equiv \zeta(a)/\eta(a) \leq 1$ $(a \in A)$ for some positive integers $\zeta(a)$ and $\eta(a)$. Define θ by

(4)
$$\theta = \prod \{\eta(a) : a \in A\}.$$

If the function $f: A^* \to \mathbf{R}_+$ $(A^* = A \cup \{a^*\})$ satisfies (1) ~ (3), then f is called a balanced flow in network N. Let f^* be the value maximizing $f(a^*)$ in N, and define the boundary $\partial f: V \to \mathbf{R}$ of a function $f: A^* \to \mathbf{R}_+$ in N by

(5)
$$\partial f(v) = \sum \{f((v,i)) : (v,i) \in A^*\} - \sum \{f((i,v)) : (i,v) \in A^*\},\$$

where $v \in V$. Associated with problem (P), consider the following two problems (P^{*}) for network $N^* = (G = (V, A), c^o, c_o, s, t)$:

$$(P^*)$$
: Maximize $g(a^*)$
subject to (1) and (2), where f should be replaced by g,

and (P(y)) for network $N(y) = (G = (V, A), (c^{\circ}(a, y) : a \in A), c_{o}, \beta, s, t)$, where y is a parameter and $c^{\circ}(a, y) = \min\{c^{\circ}(a), \alpha(a)y + \beta(a)\}$:

$$(P(y))$$
 : Maximize $f(a^*)$
subject to constraint (1) and
 $c_o(a) \leq f(a) \leq c^o(a,y)$ $(a \in A).$

Note that (P(y)) can be regarded as a maximum flow problem with parameter y in capacities $(c^{o}(a, y) : a \in A)$.

PROPOSITION 1. Let $f^{**}(y)$ be the value maximizing $f(a^*)$ in network N(y). If problem (P) is feasible, then we have $f^* = \max\{y : f^{**}(y) = y\}$. \Box

Define the capacity c(A(S)) of a cut $A(S) = A^+(S) \cup A^-(S)$ by

$$c(A(S)) = \sum \{c^o(a) : a \in A^+(S)\} - \sum \{c_o(a) : a \in A^-(S)\},\$$

where for $S \subset V(s \in S, t \notin S)$, $A^+(S) = \{(i, j) \in A : i \in S, j \notin S\}$ and $A^-(S) = \{(i, j) \in A : j \in S, i \notin S\}$. A minimum cut is defined to be a cut having the minimum capacity. Then we have:

THEOREM 2 [4]. For any network the maximum flow value from the source to the sink is equal to the capacity of a minimum cut. \Box

Let A(S, y) be a minimum cut in network N(y) at y, and $K'(S, y) = \{a \in A^+(S, y) : c^o(a) > \alpha(a)y + \beta(a)\}$ and $K''(S, y) = A^+(S, y) - K'(S, y)$. From theorem 2 we have $f^{**}(y) = U(S, y)y + W(S, y)$, where $U(S, y) = \sum \{\alpha(a) : a \in K'(S, y)\}$ and $W(S, y) = \sum \{\beta(a) : a \in K'(S, y)\} + \sum \{c^o(a) : a \in K''(S, y)\} - \sum \{c_o(a) : a \in A^-(S)\}$. U(S, y) is called *slope* in N(y) at y. Define b^o and b_o by

(7) $b^o = \max\{(c^o(a) - \beta(a)) / \alpha(a) : a \in A\},\$

$$(8) \qquad b_o=\max\{\max\{(c_o(a)-eta(a))/lpha(a):a\in A\},0\}.$$

3. Algorithm for the Maximum Balanced Flow Problem

Consider two functions $z = f^{**}(y)$ and z = y in a (y, z)-plane. From proposition 1, if problem (P) is feasible then the optimal value of (P) is the maximum y^* such that (y^*, y^*) is an intersection point of $z = f^{**}(y)$ and z = y. The outline of our algorithm is composed of the following two parts 1 and 2, though the detailed description will be shown in subsequent sections:

- Part 1: By a binary search algorithm, we find y_o and y^o such that $y_o \leq f^* \leq y^o$ and $y^o y_o < \gamma$ for some fixed value $\gamma \in \mathbf{R}_+$.
- Part 2: We find f^* by Dinic's maximum flow algorithm with parameter y satisfying $y_0 \leq y \leq y^o$.

3.1 Algorithm of Part 1

In later discussion, we assume that problem (P^*) is feasible. Let

(9)
$$\gamma = 1/(\theta m^2(m+n+1)^{2n-6}2^w),$$

where m = |A|, n = |V| and $w = 2mn + n^2 - 2m + n - 2$. Algorithm I of Part 1 is as follows.

Algorithm I:

- Step 1: Put FLAG0 = FLAG1 = 1. Find the maximum flow value g^* in network N^* . If $g^* \ge b^o$, then we have the optimal value $f^* = g^*$ and stop. Otherwise, put $y^o = g^*$ and $y_o = b_o$.
- Step 2: (2.1) If $y^{\circ} y_{o} < \gamma$, then stop. Otherwise, put $y'' = (y^{\circ} + y_{o})/2$. Do WAIT-A-MINUTE $(y'', y^{\circ}, y_{o}, FLAG0, N(y))$. If FLAG0 = 0 (y_{o} is renewed.), then go back to (2.1).
 - (2.2) Do $JUDGE(y'', y^o, y_o, FLAG1, N(y))$. If FLAG1 = 0, then stop. Otherwise, go back to (2.1).

In algorithm I, WAIT-A-MINUTE $(y'', y^o, y_o, FLAG0, N(y))$ and JUDGE $(y'', y^o, y_o, FLAG1, N(y))$ are the following procedures, where two variables FLAG0 and FLAG1 are in $\{0,1\}$ and $N(y) = (G = (V, A), (c^o(a, y) : a \in A), c_o, s, t)$.

Procedure WAIT-A-MINUTE $(y'', y^o, y_o, FLAGO, N(y))$: Calculate the maximum flow value $f^{**}(y)$ of N(y) at y = y''. If we have $y'' \leq f^{**}(y'')$ or no flows for N(y), then put $y_o = y''$ and FLAGO = 0. Otherwise, we put FLAGO = 1.

Procedure $JUDGE(y'', y^o, y_o, FLAG1, N(y))$:

Find line z = L(y) with slope U(S, y'') for some $S \subset V$ containing point $(y'', f^{**}(y''))$. Then obtain the intersection point (y', y') of z = L(y) and z = y. If $y' > y^o$ or $y' < y_o$, then put FLAG1 = 0. Otherwise, renew y^o or y_o as follows: $y^o = y' \quad (y' \le y''),$ $y_o = y' \quad (y' > y'').$

FLAG0 shows whether $JUDGE(y'', y^o, y_o, FLAG1, N(y))$ is carried out or not, while FLAG1 means that if FLAG1 = 0, then problem (P) is infeasible.

3.2 Algorithm of Part 2

Copyright © *by ORSJ. Unauthorized reproduction of this article is prohibited.*

Assume that $y^o - y_o < \gamma$ after algorithm *I*. Before describing algorithm *II*, change network N(y) into network $N'(y) = (G' = (V', A'), (c'(a, y) : a \in A'), s', t')$ as follows.

(10) $V' = V \cup \{s', t'\}, \quad A' = A^* \cup A^+ \cup A^-,$

$$(11) \qquad A^+ = \{(s',v): v \in V, \ \partial c_o(v) < 0\}, \quad A^- = \{(v,t'): v \in V, \ \partial c_o(v) > 0\},$$

(12) $c'(a,y) = c^o(a,y) - c_o(a) \quad (a \in A^*),$

(13) $c'((s',v),y) = -\partial c_o(v)$ $((s',v) \in A^+),$

$$(14) c'((v,t'),y) = \partial c_o(v) ((v,t') \in A^-),$$

where $c_o(a^*) = c^o(a^*, y) = y$, s' is the source and t' is the sink of N'(y). Then we have the following proposition.

PROPOSITION 3 [9]. We have a feasible flow in N(y) satisfying $c_o(a^*) = c^o(a^*, y) = y$ if and only if we have a maximum flow $(f'(a, y) : a \in A')$ from s' to t' in N'(y) such that f'(a, y) = c'(a, y) ($\forall a \in A^+$). \Box

Let q(y) and q'(y) be linear functions of y, and $\Gamma = [r, r'] \subset \mathbb{R}$ be a closed interval. If either $q(y) \leq q'(y)$ ($\forall y \in \Gamma$) or $q(y) \geq q'(y)$ ($\forall y \in \Gamma$) then q(y) and q'(y) are comparable in Γ . Define *ROUTINE* ($q(y), q'(y), \Gamma, Y$) as follows, where Y is a variable.

Procedure ROUTINE($q(y), q'(y), \Gamma, Y$):

If q(y) and q'(y) are comparable in Γ , then put Y = -1. Otherwise, obtain the solution $Y \in \mathbf{R}$ of equation q(y) = q'(y) $(y \in \Gamma)$.

Now we show algorithm II of Part 2.

Algorithm II:

- Step 1: Put FLAG0 = FLAG1 = 1. Calculate a maximum flow for network N'(y) by Dinic's maximum flow algorithm: Construct layered network L of N'(y) and find a maximal flow of L.
 - (1.1) Renew L and denote new layered network by L again. If we attain a maximum flow $(f'(a, y) : a \in A')$, then go to Step 2. Otherwise, find a maximal flow of L:
 - (1.1.1) Find a flow-augmenting path Q(y) of L and choose two arccapacities q(y) and q'(y) of Q(y). (Note that q(y) and q'(y) are linear functions of y.)
 - (1.1.2) Do $ROUTINE(q(y), q'(y), [y_o, y^o], Y)$. If Y = -1, then go to (1.1.3). Otherwise, do $WAIT-A-MINUTE(Y, y^o, y_o, FLAG0, N(y))$. If FLAG0 = 0, then go to (1.1.3). Otherwise, do $JUDGE(Y, y^o, y_o, FLAG1, N(y))$. If FLAG1 = 0, then stop.
 - (1.1.3) If we calculated the minimum arc capacity of Q(y), do the flow

A. Nakavama

augmentation of Q(y). Otherwise, find other two arc-capacities q(y) and q'(y) of Q(y) and go to (1.1.2). If we have a maximal flow of L, then go to (1.1) of Step 1. Otherwise, go to (1.1.1).

Step 2: If we attain a maximum flow $(f'(a, y) : a \in A')$ such that f'(a, y) = c'(a, y)for all $a \in A^+$, then we have the optimal value $f^* = \max\{y : y \in [y_o, y^o]\}$ and stop. Otherwise, (P) is infeasible.

4. The Validity and Complexity

The following proposition is easy to see:

PROPOSITION 4. If problem (P) is feasible and we have not found the optimal value f^* after algorithm I, then we have $y_o \leq f^* \leq y^o$. \Box

The residual network $N''(y) = (G'' = (V'', A''), (c''(a, y) : a \in A''), s', t')$ with respect to a flow $(f(a, y) : a \in A')$ in network N'(y) is defined as

 $\begin{array}{ll} (15) & V''=V', \quad A''=A_1'\cup A_2', \\ (16) & c''(a,\ y)=c'(a,y)-f(a,y) & (a\in A_1'), \\ (17) & c''(a^-,y)=f(a,y) & (a^-\in A_2'), \end{array}$

where $A_1' = \{a \in A' : f(a,y) < c'(a,y)\}$ and $A_2' = \{a^- : a^- \text{ is the reversed arc of }$ $a \in A'$ with f(a, y) > 0. Let

$$N''_{i}(y) = (G''_{i} = (V''_{i}, A''_{i}), (c''_{i}(a, y) : a \in A''_{i}), s', t')$$

be *i*-th residual network as to a maximal flow $(f_{i-1}(a, y) : a \in A''_{i-1})$ of $N''_{i-1}(y)$, where $N''_1(y) = N'(y)$. Let $L''_i(y)$ be the layered network of $N''_i(y)$, and Q(y) be a flow augmenting path of $L''_i(y)$. The flow augmentation of Q(y) is called *path-flow* augmentation of $L''_i(y)$.

PROPOSITION 5. Let n(i) be the number of path-flow augmentations of $L''_i(y)$. Then we have $n(i) \leq m' - i + 1$ for m' = |A'|.

(Proof) Let Ξ_i be a set of the paths joining s' and t' of $L''_i(y)$. We see that each path in Ξ_i has the same length, say, p(i). Then we have

 $p(i) + n(i) - 1 \leq |A(L''_{i}(y))| \leq m',$ where $A(L''_i(y))$ is the arc set of $L''_i(y)$. From $i \leq p(i)$, we have $n(i) \leq m' - i + 1$.

PROPOSITION 6. Let $(f_{i,j}(a,y) : a \in A(L''_i(y)))$ be a flow of $L''_i(y)$ obtained after j path-flow augmentations of $L''_i(y)$. Then we have:

$$(18) f_{i\ j}(a,y) = \sum \{\kappa_i^a(e)c''_i(e,y) : e \in A(L''_i(y))\} \quad (\kappa_i^a(e) \in \mathbf{Z}, \ a \in A(L''_i(y))), \\ \max\{|\ \kappa_i^a(e) \ | : e \in A(L''_i(y))\} \le 2^{j-1}.$$

(19) If
$$f_{i,j}(a,y) < c''_i(a,y)$$
, then we have $\kappa_i^e(a) = 0$ $(e \in A(L''_i(y)))$,

where \mathbf{Z} is the set of integers, \mathbf{Z}_+ is the set of nonnegative integers and

 $c''_i(e,y) \in \mathbf{Z}_+ - \{0\}$ is the capacity of arc e in $N''_i(y)$.

(Proof) We can prove (18) and (19) by induction on j. We note here that if $f_{i,k}(a,y) = c''_i(a,y)$ for some $a \in A(L''_i(y))$ and some $k \leq j$, then we have: $f_{i,d}(a,y) = c''_i(a,y)$ $(k \leq d \leq j)$. \Box

PROPOSITION 7. Let $(c''_i(a, y) : a \in A''_i)$ be capacity of the *i*-th residual network $N''_i(y)$, where $i \ge 2$. Then we have:

(20)
$$c''_i(a,y) = \sum \{\psi_i^a(e)c'(e,y) : e \in A'\} \quad (\psi_i^a(e) \in \mathbf{Z}, \ a \in A''_i),$$

(21)
$$\max\{|\psi_i^a(e)|: e \in A'\} \le (m'+1)^{i-2}2^{u(i)}$$

where u(i) = (i-1)(2m'-i)/2 and m' = |A'|.

(Proof) We use induction on *i*. From proposition 6, we have (20) and (21) for i = 2. Suppose that we carried out J path-flow augmentations to find a maximal flow

 $(f_i \ _J(e,y): e \in A(L''_i(y)))$ of $L''_i(y)$. From proposition 6 we have

(22) For each
$$a \in F_1 \equiv \{e \in A(L''_i(y)) : c''_i(e, y) = f_i |_J(e, y)\},\ c''_{i+1}(a^-, y) = c'(a, y) \quad (a \in A'),\ c''_{i+1}(a^-, y) = c'(a^-, y) \quad (a \notin A'),$$

(23) For each
$$a \in F_2 \equiv \{e \in A(L''_i(y)): c''_i(e, y) > f_i \ _J(e, y) > 0\},\ c''_{i+1}(a, y) = c''_i(a, y) - f_i \ _J(a, y),\ c''_{i+1}(a^-, y) = c'(a, y) - c''_i(a, y) + f_i \ _J(a, y) \quad (a \in A'),\ c''_{i+1}(a^-, y) = c'(a^-, y) - c''_i(a, y) + f_i \ _J(a, y) \quad (a \notin A'),$$

(24) For each $a \in (A''_i - A(L''_i(y)) \cup F_3) \cup F_4$, $c''_{i+1}(a,y) = c''_i(a,y)$,

where $F_3 = \{e^- : e \in F_1 \cup F_2\}$ and $F_4 = \{e \in A(L''_i(y)) : f_i |_J(e, y) = 0\}$. Let

$$f_{i}_{i}(a,y) = \sum \{\kappa_{i}^{a}(e)c''_{i}(e,y) : e \in A(L''_{i}(y))\} \quad (\kappa_{i}^{a}(e) \in \mathbf{Z})$$

Then we have $\max\{ | \kappa_i^a(e) | : e \in A(L''_i(y)) - F_2 \} \le 2^{J-1} \quad (a \in A(L''_i(y))).$ From (22) ~ (24), inductive assumption, $| A(L''_i(y)) | \le m'$ and

 $J \le m' - i + 1$, we have (20) and (21) replacing i by i + 1. Note that

$$1 + m'(m'+1)^{i-2}2^{u(i+1)} \le (m'+1)^{i-1}2^{u(i+1)}$$
.

PROPOSITION 8. Let $\rho(i) = (m'+1)^{i-2}2^{u(i)}$ in (21). Then we have: (25) $\rho(i) \le \rho(n-1) = (m+n+1)^{n-3}2^{\nu}$ ($2 \le i \le n-1$), where $\nu = (n-2)(2m+n+1)/2$.

(Proof) Let p be the length of the shortest directed path from s' to t' of network N'(y). From $p \ge 3$, $i \le |V'| - 1$, |V'| = n + 2, $m' \le m + n$ and proposition 7, we have (25). \Box

A. Nakayama

PROPOSITION 9. If $Y \neq -1$ in WAIT-A-MINUTE $(Y, y^o, y_o, FLAG0, N(y))$, then we have $Y = \tau \theta / \chi$ for some $\chi \in \{z \in \mathbb{Z}_+ : 0 < z \leq \theta m 2^{m+n} \rho(n-1)\}$ and some $\tau \in \mathbb{Z}_+$.

(Proof) Consider *i*-th layered network $L''_i(y)$. Assume that we are going to do *J*-th path-flow augmentation. From (10) ~ (14) and proposition 7 we see that the solution Y is obtained from linear equation of y such that

$$(26) \qquad \textstyle \sum\{\kappa_i^1(e)\alpha(e):e\in A\}y+\tau_1=\textstyle \sum\{\kappa_i^2(e)\alpha(e):e\in A\}y+\tau_2,$$

where $\kappa_i^d(e) \in \mathbf{Z}$, $|\kappa_i^d(e)| \le \rho(i)2^{J-\perp}$ and $\tau_d \in \mathbf{Z}$ for d = 1, 2. From (4) we have $\varsigma'(a) \in \mathbf{Z}_+ - \{0\}$ $(a \in A)$ such that $\alpha(a) = \varsigma'(a)/\theta \le 1$. Let

(27)
$$\chi = \sum \{ \kappa_i^1(e) \varsigma'(e) : e \in A \} - \sum \{ \kappa_i^2(e) \varsigma'(e) : e \in A \}.$$

Assuming $\tau_{21} = \tau_2 - \tau_1 \ge 0$ we have $Y = \tau_{21}\theta/\chi$. From (27), propositions 5 and 8 and $\varsigma'(e) \le \theta$ ($e \in A$), we have $\chi \le \theta m 2^{m+n} \rho(n-1)$. \Box

PROPOSITION 10. WAIT-A-MINUTE $(Y, y^o, y_o, FLAG0, N(y))$ is carried out at most once for $Y \neq -1$.

(Proof) Assume that WAIT-A-MINUTE $(Y, y^o, y_o, FLAG0, N(y))$ is carried out twice for $Y = y_1$ and y_2 , where $y_1 \neq y_2$, $y_1 \neq -1$ and $y_2 \neq -1$. From proposition 9, we have

(28)
$$y_i = \tau_i \theta / \chi_i \qquad (\tau_i \in \mathbf{Z}_+, \ \chi_i \in \{z \in \mathbf{Z}_+ : 0 < z \le \theta m 2^{m+n} \rho(n-1)\}),$$

where i = 1, 2. From (9) and proposition 8, we have

$$(29) \qquad |y_1-y_2| \geq \frac{\theta}{(\theta m 2^{m+n}\rho(n-1))^2} = \gamma.$$

From $|y_1 - y_2| \le y^o - y_o < \gamma$ and (29), we have a contradiction. \Box

Concerning the total complexity of algorithms I and II, we have:

PROPOSITION 11. The total computational complexity of algorithms I and II is

 $O(\max\{\log c^*, m \log \eta^*, nm\}T(n, m)),$

where $c^* = \max\{c^o(a) : a \in A\}$, $\eta^* = \max\{\eta(a) : a \in A\}$ and T(n,m) is the time for the maximum flow computation for a two-terminal network with n vertices and m arcs.

(Proof) Consider algorithm *I*. We have O(T(n,m)) time for each step 2. Let k be the number of repetitions of Step 2. From $g^*/2^k < \gamma$ algorithm *I* takes $O(\max\{\log g^*, \log \theta, mn\}T(n,m))$ time, where g^* is the maximum flow value of network N^* . From proposition 10 and [6] algorithm *II* requires $O(n^2m + T(n,m))$ time. From $g^* \leq mc^*$ and $\theta \leq (\eta^*)^m$, we have this proposition. \square

Now we show an example of our algorithm:

EXAMPLE: Consider network $N = (G = (V, A), c^o, c_o, \alpha, \beta, s, t)$ with $a^* = (t, s)$ in Fig.1, where $a^* \notin A$, $V = \{s, 1, 2, t\}$ and $A = \{a_i : 1 \le i \le 5\}$. The ordered triple attached to each $a \in A$ is $(c_o(a), c^o(a), \alpha(a)y + \beta(a))$. We have $b_o = 0$, $b^o = 20$, $g^* = 12$, $\theta = 24$ and $\gamma = 1/(24 \times 25 \times 100 \times 2^{48})$. In Fig.2 we have z = y and $z = f^{**}(y)$. After Step 1 of algorithm I we have $y^o = 12$ and $y_o = 0$. Going to Step 2 we calculate value $f^{**}(y)$ of network N(y) for y = (12 + 0)/2 = 6. From $f^{**}(6) = 17/2 > 6$, we put $y_o = 6$ and go to (2.1). Repeating Step 2, we finally have $y^o = 9 + 1/3$ and $y_o = 9 + \xi$ ($\xi = (1 - 1/2^{63})/3$).

Fig.1

Fig.2

We have network N'(y) in Fig.3 and the layered networks $L''_i(y)$ in Figs. 4-6, where the linear function of y beside each arc in each figure is the arc-capacity. From $1 \le y-3$ ($y \in [9+\xi, 28/3]$), we have $L''_2(y)$ in Fig.5. Solving 1-y/12 = 2y/3 - 6 in Fig.6, we have the optimal value $f^* = 28/3$.

Copyright © *by ORSJ. Unauthorized reproduction of this article is prohibited.*

Fig.5

of arc(u, v)

Acknowledgements

The auther wishes to thank referees for pointing out a few errors in the earlier draft of this paper. He also thanks Professor Satoru Fujishige of University of Tsukuba for giving valuable suggestions on this paper.

References

- [1] Ahuja, R. K. : Algorithms for the Minimax Transportation Problem. Naval Research Logistics Quarterly 33 (1986) 725-739.
- [2] Cui, W.-T. : An Algorithm for the Maximum Balanced Flow Problem. Second Year Essay, Doctoral Program in Socio-Economic Planning, University of Tsukuba, 1986.
- [3] Cui, W.-T. : A Network Simplex Method for the Maximum Balanced Flow Problem. Journal of the Operations Research Society of Japan 31 No.4 (1988) 551-564.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

- [4] Ford, L. R., Jr. and Fulkerson, D. R. : Flows in Networks. Princeton University Press, Princeton, N.J., 1962.
- [5] Fujishige, S., Nakayama, A. and Cui, W.-T. : On the Equivalence of the Maximum Balanced Flow Problem and the Weighted Minimax Flow Problem. Operations Research Letters 5 No.4 (1986) 207-209.
- [6] Hu, T. C. : Combinatorial Algorithms. Addison-Wesley Publishing Company, 1982.
- [7] Ichimori, T., Ishii, H. and Nishida, T. : Weighted Minimax Real-Valued Flows. Journal of the Operations Research Society of Japan 24 No.1 (1981) 52-60.
- [8] Ichimori, T. and Nishida, T. : Finding the Weighted Minimax Flow in a Polynomial Time. Journal of the Operations Research Society of Japan 23 No.3 (1980) 268-271.
- [9] Iri, M., Fujishige, S. and Oyama, T. : Graphs, Networks and Matroids, Lecture Series on Mathematical Programming, No.7, Sangyo-Tosho, 1986 (in Japanese).
- [10] Minoux, M. : Flots Équilibrés et Flots avec Sécurité. E.D.F-Bulletin de la Direction des Études et Recherches, Série C-Mathématiques, Informatique 1 (1976) 5-16.
- [11] Nakayama, A. : A Polynomial Algorithm for the Maximum Balanced Flow Problem with a Constant Balancing Rate Function. Journal of the Operations Research Society of Japan 29 No.4 (1986) 400-410.
- [12] Nakayama, A. : Revised Polynomial-Time Binary Search Algorithm for the Maximum Balanced Flow Problem. Discussion Paper on Data, Theories and Computation in Economic and Management Sciences, Otaru University of Commerce, January, 1989.
- [13] Zimmermann, U. : Duality for Balanced Submodular Flows. Preprint No.89, Fachbereich Mathematik, Universität Kaiserslautern, 1985.

Akira NAKAYAMA : Department of Management Sciences, Faculty of Commerce, Otaru University of Commerce, Otaru, Hokkaido, 047, Japan