
Journal of the Operations Research
Society of Japan

Vo!. 33, No. 1, March 1990

A POLYNOMIAL-TIME BINARY SEARCH ALGORITHM
FOR THE MAXIMUM BALANCED FLOW PROBLEM

Akira NakaY.lma
Otart.! University of Commerce

(Received Janualy 20, 1988; Revised March 20, 1989)

Abstract We consider the maximum balanced flow problem of a two-terminal network N, i.e., a maximum
flow problem with an additional constraint described in terms of a balancing rate function 0' : A -+ R+ - {O},
where A is the arc set of Nand R+ is the set of nonnegative reals. In this paper, we propose a polynomial time
algorithm for the maximum balanced flow problem, on condition that all given functions in N are rational.
The proposed algorithm, which is composed of a binary search algorithm and Dinic's maximum flow algorithm
with a parameter, requires O(max{log(c*),mlog(7]*),nm}T(n, m)) time, where c* = max{cO(a): a E A} for
positive integral arc-capacities (cO(a) : a E A) and 7]* = rnax{7](a) : a E A} for O'(a) = ((a)/7](a) ~ 1 sllch
that ((a) and 7](a) are positive integers, and T(n, m) is the time for the maximum flow computation for a
network with n vertices and m = IAI arcs.

1. Introduction

Minoux [10] considered the maximum balanced flow problem, i.e., the problem of
finding a maximum flow in a two-terminal network such that each arc flow value of
the underlying graph is bounded by a fixed proportion of the total flow value from
source s to sink t. The maximum balanced flow problem is motivated by Minoux's
research of reliability analysis of communication networks. If a flow from s to t is
balanced, then it is guaranteed that the value of the blocked arc flow is at most the
fixed proportion of the total flow value from .5 to t.

Several algorithms [2,3,10,11,13] are proposed for the maximum balanced flow
problem. Cui [2,3] showed a simplex and a dual simplex methods without cycling
on the underlying graph G of two-terminal network. When balancing rate functions
are constant, Minoux's algorithm [10] and that of Nakayama [11] are proposed. The
former needs 0 (Pmax 2 S (n, m)) time, where Pmax is the maximum number of arc
disjoint directed paths from source to sink of G and S(n, m) is the complexity of
the shortest path problem for a network with n vertices and m arcs and with a
nonnegative arc length function. The latter takes O(min{m, ll/rJ}T(n,m)) time,
where a(a) = r (a E A) for given balancing rate function a: A -t R+ - {o} (R+ is
the set of nonnegative reals.), some real r and the arc set A of G, and T(n, m) is the
time for the maximum flow computation for a, two-terminal network with n vertices
and m arcs, and ll/rJ is the maximum integer less than or equal to l/r. For general
balancing rate functions, Zimmermann [13] proposed an algorithm with O(T(n, m)2)
computation time.

On the other hand, Ichimori et al. [7,8] considered the weighted minimax flow
problem, and Fujishige et al. [5] pointed out the equivalence of the maximum bal­
anced flow problem and the weighted minimax flow problem. When capacity func­
tion c : A -t Z+ and weight function w : A. -t Z+ are given for the set Z+ of
nonnegative integers, the algorithm [8] takes O(T(n, m)P) computation time, where

© 1990 The Operations Research Society of Japan

2 A. Nakayama

P = log(max{c(a)w(a) : a E A}). The algorithm [7] runs in O(T(n,m)2) time for
general weight functions, having the same speed as Zimmermann's.

We can see the minimax transportation problem, studied by Ahuja [l],of finding
a feasible flow (x(a) : a = (i,)') E I X J) from I to J such that max{c(a)x(a) :
a = (i,)') E I X J} is minimum, where I i& a set of origins, J is a set of destinations
and c(a) is the cost of unit shipment on each arc a = (i,)') E I X J. The minimax
transportation problem may be regarded as a special version of the weighted minimax
flow problem.

The objective of the present paper is to propose a polynomial time algorithm for
the maximum balanced flow problem of a two-terminal network N, on condition that
all given functions including a : A --+ R+ in N are rational. We put a(a) = da)j1](a)
(a E A) for some two positive integers da) and 1](a). The total complexity is
O(max{logc*,mlog1]*,nm}T(n,m)), where c* = max{cO(a) : a E A} for arc­
capacities CO (a) E Z+ - {o} (a EA), 1]* = max{1](a) : a E A}. The proposed
algorithm, which is composed of a binary search algorithm and Dinic's maximum flow
algorithm with a parameter, will be expected to be faster than known algorithms in
case that all input data are rational.

2. The Maximum Balanced Flow Problem

Let G = (V, A) be a directed graph where V is the vertex set and A is the arc
set of G. For two capacity functions CO : A --+ R+ and Co : A --+ R+, a balancing
rate function a : A --+ R+ - {o} and a function {3 : A --+ R, consider a two-terminal
network N = (G = (V,A),cO,co,a,{3,s,t) where R+ is the set of nonnegative reals,
R is the set of reals, s is the source and t is the sink of G. The maximum balanced
flow problem (P) for network N is formulated as follows.

(1)
(2)
(3)

(P) : Maximize f(a*)
subject to
D·f =0,
co(a) ~ f(a) ~ CO (a)
f(a) ~ a(a)f(a*) + {3(a)

(a EA),
(a EA),

where arc a* = (t,s) r:J. A is added to G and D is the vertex-arc incidence matrix of
G. We assume that co, Co and {3 are integral, and that CO (a) > {3(a) (a E A) and
a(a) == ~(a)j1](a) ::; 1 (a E A) for some positive integers da) and 1](a). Define () by

(4) () = IT {1](a) : a EA}.

If the function f : A * -+ R+ (A * = A U {a*}) satisfies (1) ~ (3), then f is called a
balanced flow in network N. Let f* be the value maximizing f(a*) in N, and define
the boundary B f : V --+ R of a function f : A * --+ R+ in N by

(5) Bf(v) = L{f((v,i)) : (v,i) E A*} - LU((i,v)) : (i,v) E A*},

where v E V. Associated with problem (P), consider the following two problems (P*)
for network N* = (G = (V,A),cO,co,s,t):

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced Flows

(P*) Maximize g(a*)
subject to (1) and (2), where J ohould be replaced by g,

and (P(y)) for network N(y) = (G = (V,A), (cO(a,y) : a E A),co,,B,s,t), where y is
a parameter and cO(a, y) = min{cO(a), a(a)y + /1(a)}:

(P(y)) : Maximize J(a*)
subject to constraint (1) and

(6) co(a) ::::: J(a) ::::: cO(a,y) (a EA).

Note that (P(y)) can be regarded as a maximum flow problem with parameter y in
capacities (cO(a, y) : a EA).

PROPOSITION 1. Let /**(y) be the value ma.ximizing J(a*) in network N(y). If
problem (P) is feasible, then we have /* = max{y : /**(y) = y}. 0

Define the capacity c(A(S)) of a cut A(S) := A + (S) u A - (S) by

c(A(S)) = I:{cO(a) : a E A+(S)} - I:{Co(lt) : a E A-(S)},

where for S c V(s E S, t (j-. S), A+(S) = {(i,J·) EA: i E S,j (j-. S} and
A-(S) = {(i,j) Eo A: j E S,i (j-. S}. A minimum cut is defined to be a cut having
the minimum capacity. Then we have:

THEOREM 2 [4]. For any network the maximum flow value from the source to the
sink is equal to the capacity of a minimum cut. 0

Let A(S,y) be a minimum cut in network N(y) at y, and

K'(S,y) = {a E A+(S,y) : cO(a) > a(a)y + ,B(an and K"(S,y) = A+(S,y)­

K'(S,y). From theorem 2 we have !**(y) = U(S,y)y + W(S,y), where

U(S,y) = I:{a(a) : a E K'(S,y)} and W(S,y) = E{,B(a) : a E K'(S,y)}+
E{cO(a) : a E K"(S,y)} - E{co(a) : a E A-(S)}. U(S,y) is called slope in N(y) at

y. Define bO and bo by

(7) bO = max{(cO(a) - ,B(a))/a(a) : a EA},

(8) bo = max{max{(co(a) - ,B(a))/a(a) : a Eo: A},O}.

3. Algorithm for the Maximum Balanced Flow Problem

Consider two functions z = /** (y) and z == y in a (y, z)-plane. From proposition
1, if problem (P) is feasible then the optimal value of (P) is the maximum y* such that
(y*, y*) is an intersection point of z = /** (y) and z = y. The outline of our algorithm
is composed of the following two parts 1 and 2, though the detailed description will
be shown in subsequent sections:

.3

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

4 A. Nakayama

Part 1: By a binary search algorithm, we find Yo and yO such that
Yo ::; f* ::; yO and yO - Yo < , for some fixed value, E R+.

Part 2: We find f* by Dinic's maximum flow algorithm with parameter y
satisfying Yo ::; Y ::; yO.

3.1 Algorithm of Part 1

In later discussion, we assume that problem (P*) is feasible. Let

where m = 1 A I, n = 1 V 1 and w = 2mn + n 2
- 2m + n- 2. Algorithm I of Part 1

is as follows.

Algorithm I:

Step 1: Put F LAGO = F LAG1 = 1. Find the maximum flow value g* in network
N*. If g* ~ bO, then we have the optimal value f* = g* and stop.
Otherwise, put yO = g* and Yo = boo

Step 2: (2.1) If yO - Yo < " then stop. Otherwise, put y" = (yO + yo)/2.
Do WAIT-A-MINUTE (y",yO,yo,FLAGO,N(y)).
If FLAGO = 0 (Yo is renewed.), then go back to (2.1).

(2.2) Do JUDGE (y",yO,yo,FLAG1,N(y)). If FLAG1 = 0, then stop.
Otherwise, go back to (2.1).

In algorithm I, WAIT-A-MINUTE (y",yO,yo,FLAGO,N(y)) and JUDGE
(y", yO, Yo, F LAG1, N (y)) are the following procedures, where two variables F LAGO
and F LAG1 are in {O, I} and N(y) = (G = (V, A), (cO(a, y) : a E A), CO, s, t).

Procedure WAIT-A-MINUTE (y",yO,yo,FLAGO,N(y)) :
Calculate the maximum flow value f** (y) of N (y) at y = y". If we have
y" ::; f** (yll) or no flows for N (y), then put Yo = y" and F LAGO = O.
Otherwise, we put F LAGO = 1.

Procedure JUDGE (y",yO,yo,FLAG1,N(y)) :
Find line z = L(y) with slope U(S,y") for some S C V containing point
(y",f**(y")). Then obtain the intersection point (y',y') of z = L(y) and z = y.
If y' > yO or y' < Yo, then put F LAG1 = O. Otherwise, renew yO or Yo as follows:

yO = y' (y'::; y"),
Yo = y' (y' > y").

F LAGO shows whether JUDGE (y", yO, Yo, F LAG1, N (y)) is carried out or not, while
F LAG1 means that if F LAG1 = 0, then problem (P) is infeasible.

3.2 Algorithm of Part 2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced Flows

Assume that yO - Yo < "t after algorithm I. Before describing algorithm I I,
change network N(y) into network N'(y) = (G' = (V', A'), (c'(a,y) : a E A'),s',t') as
follows.

(10)
(11)
(12)

(13)

(14)

V' = vu {S',t'}, A' = A* U A+ U A-,

A+ = {(s',v) : v E V, Bco(v) < O}, X- = ((v,t') : v E V, Bco(v) > O},

c'(a, y) = cO(a, y) - co(a)

c'((s',v),y) = -Bco(v)

c'((v, t'),y) = Bco(v)

(a E A*),

((s' , v) E A +),
((v,t') E A-),

where co(a*) = cO(a*,y) = y, s' is the source a.nd t' is the sink of N'(y). Then we
have the following proposition.

PROPOSITION 3 [9]. We have a feasible flow in N(y) satisfying co(a*) = cO(a* ,V) =
Y if and only if we have a maximum flow (I' (a, y) : a E A') from s' to t' in N' (y) such
that !'(a,y) =c'(a,y) (VaEA+).D

Let q(y) and q'(Y) be linear functions of y, and r = [r,r'] C R be a closed
interval. If either q(y) ::; q'(y) (Vy E r) or q(y) 2:: q'(Y) (Vy E r) then q(y) and
q'(Y) are comparable in r. Define ROUTINE (q(y)'q'(y),r,Y) as follows, where Y is
a variable.

Procedure ROUTINE(q(y), q'(y), r, Y):
If q(y) and q'(Y) are comparable in r, then put Y = -1. Otherwise, obtain the
solution Y E R of equation q(y) = q'(Y) (y Er).

Now we show algorithm I I of Part 2.

Algorithm 11:

Step 1: Put FLAGO = FLAGl = 1. Calculate a. maximum flow for network N'(y)
by Dinic's maximum flow algorithm: Construct layered network L of N'(y)
and find a maximal flow of L.

(1.1) Renew L and denote new layered network by L again. If we attain a
maximum flow (I' (a, y) : a EA'), then go to Step 2. Otherwise, find
a maximal flow of L:

(1.1.1) Find a flow-augmenting path Q(l') of L and choose two arc­
capacities q(y) and q'(Y) of Q(y). (Note that q(y) and q'(Y) are
linear functions of y.)

(1.1.2) Do ROUTINE(q(y),q'(y),[yo,yOj,Y). IfY = -1, then go to (1.1.3).
Otherwise, do WAIT-A-MINUTE(Y,yO,yo,FLAGO,N(y)).
If F LAGO = 0, then go to (1.1.:1). Otherwise, do
JUDGE(Y,yO,yo,FLAGl,N(y)). If FLAGl = 0, then stop.

(1.1.3) If we calculated the minimum ar,c capacity of Q(y), do the flow

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

6 A. Nakayama

augmentation of Q(y). Otherwise, find other two arc-capacities
q(y) and q'(Y) of Q(y) and go to (1.1.2). If we have a maximal flow
of L, then go to (1.1) of Step 1. Otherwise, go to (1.1.1).

Step 2: If we attain a maximum flow (I' (a, y) : a E A') such that f' (a, y) = e' (a, y)
for all a E A +, then we have the optimal value f* = max{y : y E [Yo, yO]}
and stop. Otherwise, (P) is infeasible.

4. The Validity and Complexity

The following proposition is easy to see:

PROPOSITION 4. If problem (P) is feasible and we have not found the optimal value
f* after algorithm I, then we have Yo ::; f* ::; yD. 0

The residual network N" (y) = (G" = (V", A"), (e" (a, y) : a EA"), s', t') with
respect to a flow (I(a, y) : a E A') in network N'(Y) is defined as

(15)
(16)
(17)

V" = V', A" == A~ U A~,
e" (a, y) = e' (a, y) - f (a, y)
e"(a-,y) = f(a,y)

(a EAU,
(a- E A~),

where A~ = {a E A' : f(a,y) < e'(a,y)} and A~ = {a- : a- is the reversed arc of
a E A' with f(a,y) > a}. Let

N"i(Y) = (G"i = (V"i,A"i), (e"i(a,y) : a E A"i),S',t')

be i-th residual network as to a maximal flow (J.-1(a,y) : a E A"i-d of N"i-dY),
where N" dY) = N' (y). Let L" i (y) be the layered network of N" i (y), and Q (y) be a
flow augmenting path of L" i (y). The flow augmentation of Q (y) is called path-flow
augmentation of L" .. (y).

PROPOSITION 5. Let n(i) be the number of path-flow augmentations of L".(y).
Then we have n(i) ::; rn' - i + 1 for rn' = I A' I.
(Proof) Let 6 .. be a set of the paths joining s' and t' of L" .. (y). We see that each path
in 6 .. has the same length, say, p(i). Then we have

p(i) + n(i) -1 ::; 1 A(L" .. (y)) 1 ::; rn',

where A(L"i(Y)) is the arc set of L"i(Y). From i::; p(i), we have n(i) ::; rn' - i + 1. 0

PROPOSITION 6. Let (I .. j(a,y) : a E A(L"i(Y))) be a flow of L"i(Y) obtained after
j path-flow augmentations of L"i(Y). Then we have:

(18) J. j(a,y) = 2::{K:f(e)e".;(e,y) : e E A(L"i(Y))} (K:f(e) E Z, a E A(L"i(y))),

max{1 K:f(e) I: e E A(L"i(Y))} ::; 2j - 1.

(19) If J. j(a,y) < e"i(a,y), then we have K::(a) = a (e E A(L"i(y))),

where Z is the set of integers, Z+ is the set of nonnegative integers and

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced Rows

c"i(e,y) E Z+ - {o} is the capacity of arc e in N"i(Y).

(Proof) We can prove (18) and (19) by induction on j. We note here that if

h k(a,y) = e"i(a,y) for some a E A(L"i(y)) and some k::::: j, then we have:
h d(a,y) = e"i(a,y) (k::::: d::::: j). 0

PROPOSITION 7. Let (e" i (a, y) : a E A" i) be capacity of the i - th residual network
N" i (y), where i ~: 2. Then we have:

(20) c"i(a,y) = 2:Nf(e)c'(e,y) : e EA'} Nf(e) E Z, a E A"i),

(21) max{1 1,bf(e) 1 : e EA'} ::::: (rn' -+- l)i- 2 2u (i),

where u(i) = (i - 1)(2rn' - i)/2 and rn' = 1 A' I.

(Proof) We use induction on i. From proposition 6, we have (20) and (21) for i = 2.
Suppose that we carried out J path-flow augmentations to find a maximal flow

(h J(e,y) : e E A(L"i(Y))) of L"i(Y)· From proposition 6 we have

(22) For each a E F1 == {e E A(L"i(Y)) : c"i(e,y) = fi J(e,y)},

c"i+da- ,y) = c'(a,y) (a EA'),

C"i+l(a-,y) = c'(a-,y) (a €f. A'),

(23) For each a E F2 == {e EA(L"i(Y)): e"i(e,y) > h J(e,y) > O},

c"i+da,y) = c"i(a,y) - h J(a,y),

e"i+da- ,y) = c'(a,y) - c"i(a,y) -+- h J(a,y)

e"i+da-, y) = e'(a-, y) - e"i (a, y) -+- fi J (a, y)

(a EA'),

(a €f. A'),

(24) For each a E (A"i - A(L"dy)) u F3) U FI, e"i+da,y) = e"i(a,y),

where F3 = {e- : e E F1 U Fz} and F4 = {e E A(L"i(Y)) : fi J(e,y) = O}. Let

h J(a,y) = 2:{x:f(e)e"i(e,y) : e E A(L".(y))} (x:f(e) E Z).

Then we have max{1 x:f(e) I: e E A(L"i(Y)) - F'z} ::::: 2J- 1 (a E A(L"i(Y))).

From (22) ~ (24), inductive assumption, 1 A(L"i(Y)) 1 ::::: rn' and
J ::::: rn' - i + 1, we have (20) and (21) replacing i by i + 1. Note that

1 + rn' (rn' + l)i- Z2u (i+1) ::::: (rn' + l)i- 12u (i+1). 0

PROPOSITION 8. Let p(i) = (rn' + l)i- 2 2u (i) jJ1 (21). Then we have:
(25) p(i) ::::: p(n - 1) = (rn + n + l)n- 3 2v (2::::: i ::::: n - 1),
where v = (n - 2)(2rn + n + 1)/2.

(Proof) Let p be the length of the shortest directed path from s' to t' of network
N'(y). From p ?: 3, i ::::: 1 V' 1- 1, 1 V' 1 = n + 2, rn' ::::: rn + n and proposition 7, we
have (25).0

7

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

8 A. Nakayama

PROPOSITION 9. If Y i' -1 in WAIT-A-MINUTE(Y,yO,yo,FLAGO,N(y)), then
we have Y = TB/X for some X E {;; E Z+ : 0 < z ::::; Bm2=+np(n - I)} and some
T E Z+.

(Proof) Consider i-th layered network L" i (y). Assume that we are going to do J -th
path-flow augmentation. From (10) ~ (14) and proposition 7 we see that the solution
Y is obtained from linear equation of Y such that

(26) L:{ICf(e)o:(e) : e E A}y + Tl = L:{IC;(e)o:(e) : e E A}y + TZ,

where IC~l(e) E Z, I ICf(e) I::::; p(i)2J-l and Td E Z for d = 1,2. From (4) we have

((a) E Z+ - {O} (a E A) such that o:(a) = <;'(a)/B ::::; 1. Let

(27) X = L:{ICf(e)<;I(e) : e E A} - L:{IC;(e)<;'(e) : e EA}.

Assuming TZl = TZ - Tl 2: 0 we have Y = TZl B / X. From (27), propositions 5 and 8

and ~'(e) ::::; B (e E A), we have X ::::; Bm2=+np(n - 1). 0

PROPOSITION 10. WAIT-A-MINUTE (Y,yO,yo,FLAGO,N(y)) is carried out at
most once for Y oF -1.

(Proof) Assume that WAIT-A-MINUTE (Y, yO, Yo, F LAGO, N(y)) is carried out twice
for Y = Yl and Yz, where Yl oF Yz, Yl oF -1 and Yz oF -1. From proposition 9, we
have

(28)

where i = 1,2. From (9) and proposition 8, we have

(29)
B

I Yl - Yz I 2: (8m2tn+np(n _ I))Z = "I.

From I Yl - yz I ::::; yO - Yo < "I and (29), we have a contradiction. 0

Concerning the total complexity of algorithms I and 11, we have:

PROPOSITION 11. The total computational complexity of algorithms I and I I is

O(max{log c*, m log 1]* ,nm}T(n, m)),

where c* = max{cO(a) : a EA}, 1]* = max{1](a) : a E A} and T(n,m) is the time
for the maximum flow computation for a two-terminal network with n vertices and
m arcs.

(Proof) Consider algorithm I. We have O(T(n, m)) time for each step 2. Let
k be the number of repetitions of Step 2. From g* /2k < "I algorithm I takes
O(max{logg*,logB,mn}T(n,m)) time, where g* is the maximum flow value of net­
work N*. From proposition 10 and [6] algorithm 11 requires O(nZm + T(n, m)) time.
From g* ::::; mc* and B ~; (1]*)tn, we have this proposition. 0

Now we show an example of our algorithm:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced Rows

EXAMPLE: Consider network N = (G = (V,A),cO,ca,a,,B,s,t) with a* = (t,s) in
Fig.l, where a* 9'. A, V = {s,I,2,t} and A = {at: 1 ::; i::; 5}. The ordered triple
attached to each a E A is (co(a), cO(a), a(a)y + ,B(a)). We have bo = 0, bO = 20,
g* = 12, (} = 24 and "/ = 1/(24 x 25 x 100 >: 248

). In Fig.2 we have z = y and
z = 1** (y). After Step 1 of algorithm I we have yO = 12 and Yo = o. Going to
Step 2 we calculate value f**(y) of network N(y) for y = (12 + 0)/2 = 6. From
1** (6) = 17/2> 6, we put Yo = 6 and go to (2.1). Repeating Step 2, we finally have
yO = 9 + 1/3 and Yo = 9 + E (c = (1 - 1/263)/3).

(1 • 6 /y / H 1)

(0,
I a 2

(1,10,2 3+4)

1

a
3
(0, 7'~+2)

. t
I, Y /2)

(3,ft,y/2+3) L. __ :, a,

z I
I

1~
!

8

44/

z==4y / Ht)

z=3y /1+5

z==y /4+7

---y....,--~--.------' ---

z==y

9

j12/74 28/3 20 Y
I

Fig.l Fig.2

We have network N'(Y) in Fig.3 and the layered networks L"i(Y) in Figs. 4-6,
where the linear function of y beside each arc in each figure is the arc-capacity. From
1::; y - 3 (y E [9 + e,28/3]), we have L"z(y) in Fig.5. Solving 1- y/12 = 2y/3 - 6
in Fig.6, we have the optimal value f* = 28/3.

y-3

y-2 1 t'

9
U o X)V

capacity

2
of arc (u,V)

Fig.3

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

10 A.Nakayama

FigA

-4

s'

Fig.5

u v
o >0

capacity
of arc(u,v)

u v
o >0
capacity
of arc(u,v)

2y' /:5 6 5 1 '. 1 - y /1 22. Y / :5 - 6./
- >~~~----~>(~----~>O~'~,---~'~~--~--~~~

s' s 2 1 t t'

Fig.6

Acknow ledgements
The auther wishes to thank referees for pointing out a few errors in the earlier

draft of this paper. He also thanks Professor Satoru Fujishige of University of Tsukuba
for giving valuable suggestions on this paper.

References

[1] Ahuja, R. K. Algorithms for the Minimax Transportation Problem. Naval
Research Logistics Quarterly 33 (1986) 725-739.

[2] Cui, W.-T. : An Algorithm for the Maximum Balanced Flow Problem. Sec­
ond Year Essay, Doctoral Program in Socio-Economic Planning, University of
Tsukuba, 1986.

[3] Cui, W.-T. : A Network Simplex Method for the Maximum Balanced Flow Prob­
lem. Journal of the Operations Research Society of Japan 31 NoA (1988) 551-
564.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Algorithm for Maximum Balanced F70ws

[4] Ford, L. R., .Jr. and Fulkerson, D. R. : Flows in Networks. Princeton University
Press, Princeton, N . .J., 1962.

[5] Fujishige, S., Nakayama, A. and Cui, W.-T. : On the Equivalence of the Maximum
Balanced Flow Problem and the Weighted Minimax Flow Problem. Operations
Research Letters 5 No.4 (1986) 207-209.

[6] Hu, T. C. : Combinatorial Algorithms. Addison- Wesley Publishing Company,
1982.

[7] Ichimori, T., Ishii, H. and Nishida, T. : Weighted Minimax Real-Valued Flows.
Journal of the Operations Research Society of Japan 24 No.l (1981) 52-60.

[8] Ichimori, T. and Nishida, T. : Finding the Weighted Minimax Flow in a Polyno­
mial Time. Journal of the Operations Research Society of Japan 23 No.3 (1980)
268-271.

[9] Iri, M., Fujishige, S. and Oyama, T. : Graphs, Networks and Matroids, Lecture
Series on Mathematical Programming, No.7, Sangyo-Tosho, 1986 (in Japanese).

[10]

[11]

[12]

Minoux, M. : Flots Equilibres et Flots avec Securite. E.D.F-Bulletin de la Direc­
tion des Etudes et Recherches, Serie C-Mathematiques, Informatique 1 (1976)
5-16.

Nakayama, A. : A Polynomial Algorithm for the Maximum Balanced Flow Prob­
lem with a Constant Balancing Rate Function. Journal of the Operations Re­
search Society of Japan 29 No.4 (1986) 400-410.

Nakayama, A. : Revised Polynomial-TIme Binary Search Algorithm for the Maxi­
mum Balanced Flow Problem. Discussion Paper on Data, Theories and Compu­
tation in Economic and Management Sciences, Otaru University of Commerce,
January, 1989.

[13] Zimmermann, U. : Duality for Balanced Submodular Flows. Preprint No.89,
Fachbereich Mathematik, Universitiit Kaiserslautern, 1985.

Akira N AKA YAMA : Department of Management
Sciences, Faculty of Commerce,
Otaru University of Commerce,
Otaru, Hokkaido, 047, Japan

11

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

